用户名: 密码: 验证码:
水稻生长发育多效基因DDF1的遗传分析与精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
营养生长是农作物产量和品质形成的基础,而花器官发育的结果直接影响其产量和品质。目前有关植物花器官发育的分子遗传基础的研究已经很深入,但对植物的营养生长和生殖发育起关键作用的多效基因的研究还不多见。
     本课题组在水稻育种材料中发现了一个植株显著矮化、叶片短而细、花器官明显变异的突变体ddf1(Dwarf and deformed flower 1)。初步研究表明该突变体是由单基因隐性突变所致,暂将该基因命名为DDF1。推断DDF1是维持水稻正常营养生长与花器官发育,调节植株形态建成与生殖发育的重要多效基因。目前尚未见类似ddf1突变体的报道。利用此突变体进行深入研究,对于揭示植物生长发育调节基因在决定植物的形态建成与花器官发育方面的多重作用具有重要的理论意义。本研究对ddf1突变体的遗传特性进行初步分析,并对DDF1基因进行精细定位,为最终克隆该基因奠定基础。主要研究结果如下:
     1.DDF1基因的遗传分析。由于ddf1突变体的花器官发生变异而高度不育,因此ddf1突变位点只能由杂合体保持。由ddf1杂合体与Acc8558杂交,建立了一个约4000株的F_2代群体,卡平方检测表明,该群体中野生型植株与突变型植株符合3:1分离。以上结果表明,ddf1突变性状由隐性单基因控制。
     2.DDF1基因的初步定位。从F_2群体中随机取10株野生型植株和10株突变型植株,分别取其叶片等量混合并提取DNA,构成正常DNA池和突变DNA池。利用已公布的473对水稻SSR引物对ddf1杂合体和Acc8558进行检测,共找到150对在两亲本之间显示多态性的引物,然后用这些引物检测两个DNA池之间的多态性,发现位于第6号染色体上的4对引物在两个DNA池之间表现多态性,说明DDF1基因位于第6号染色体上。进一步用F_2群体中的170个突变体进行验证,结果表明DDF1位于微卫星标记RMS1和RMS2之间,与两标记之间的遗传距离分别为3.8 cM和2.4cM。
     3.DDF1基因的精细定位。在初步定位的基础上,利用已公布的水稻BAC克隆重叠群和基因组序列,在标记RMS1和RMS2之间设计并合成了25对SSR引物,其中有5对引物在两亲本之间表现出多态性。用这5对引物对ddf1杂合体×Acc8558的F_2群体中的986株突变体进行分析,将DDF1基因定位在约60.6kb的区域内。
     4.DDF1侯选基因的初步确定。通过查询NCBI网站(http://www.ncbi.nlm.nih.gov/)的水稻基因组注释数据库,可知DDF1基因所在的60.6kb区域内共有10个基因,其中有一个基因可能与组蛋白乙酰化作用有关。目前在双子叶模式植物拟南芥中已发现多个与组蛋白乙酰化作用有关的基因参与植株的营养生长与生殖发育过程的调节。因此,初步将这个“与组蛋白乙酰化作用有关”的基因作为DDF1的侯选基因。进一步的验证工作正在进行中。
Vegetative growth is the basis of crop yield and quality,while the development of floral organs directly affects the yield and quality of crops.The molecμlar genetic basis of the development of floral organs has been deeply studied,but few studies have been reported on pleiotropic genes that play key roles in the vegetative growth and reproductive development of plants.
     ddf1(dwarf and deformed flower 1) is a mutant found in rice breeding materials,which is dwarf with short and thin leaves and deformed floral organs.Preliminary analysis suggested that ddf1 was generated due to the recessive mutation of a single gene temporarily named as DDF1.We deduce that DDF1 is an important pleiotropic gene for maintaining vegetative growth and floral organ development and regμlating the morphogenesis and reproductive development in rice.No similar mutants have been reported.Deep study of this mutant will be meaningfμl for the understanding of the functions of pleiotropic genes in the morphogenesis and floral organ development of plants. This study aimed to analyze the genetic features of DDF1 and finely map the gene,which will facilitate the cloning of the gene.The major resμlts are as follows:
     1.Genetic analysis of DDF1.Due to ddf1's exceeding sterility,the mutation was maintained only by ddf1 heterozygotes.A 4000 F_2 popμlation was constructed by ddf1 heterozygote and Acc8558 cross-fertilizing.The mutants was characterized with dwarf plants、thin leaves and deformed floral organs.By chi-square test the segregation ratio of wild type plants to mutant plants in the F_2 popμlation was accoding to 3:1.It is indicating that ddf1 is controlled by a single recessive gene.
     2.Preliminary mapping of DDF1.DNA was extracted separately from two pools constructed with selecting 10 wild type plants and 10 mutants from F_2 segregate popμlation.By filtrating 473 pairs of published SSR primers in ddf1 heterozygote and Acc8558, we found 150 pairs of SSR markers had polymorphism in two parents.Then four markers on chromosome six of rice had polymorphism in two pools were found from the 150 pairs of markers filtrated above.It is indicated that DDF1 was located on chromosome six.Then we used 170 ddf1 mutants selected from F_2 popμlation to certify the resμlt.As the resμlts show,DDF1 was mapped between RMS1 and RMS2.The genetic distance from DDF1 to RMS1 was 3.8 cM and to RMS2 was 2.4 cM.
     3.Fine mapping of DDF1.On the basis of initial mapping,we enlarged F_2 popμlation to finely mapped DDF1 gene.From F_2 popμlation described above we gained 986 mutants and from 25 pairs of SSR markers designed according to BAC contigs and genome sequence we filtrated five SSR markers had polymorphism between two parents. With the 986 mutants and the 5 pairs of SSR markers we finely mapped DDF1 in a 60.6kb physical distance in chromosome six of rice.
     4.Preliminary determination of the candidate gene of DDF1.At present,several genes related to acetylation of histones which regμlate the growth and procreation of plants have been found in Arabidopsis.By searching NCBI databases,we found ten genes were annoted in the 60.6kb region where DDF1 was located and a gene related to acetylation of histones may be the candidate gene of DDF1,and further validation is going on.
引文
程式华,翟虎渠.水稻亚种间超高产杂交组合若干株型因子的比较.作物学报,2000,26(6):713-718
    陈晓,陈彦惠,任永哲.植物开花转换的分子生物学研究.分子植物育种,2005,3(4):557-565
    崔荣峰,孟征.花同源异型MADS-box基因在被子植物中的功能保守性和多样性[J].植物学通报,2007,24(1):31-41
    葛磊,谭克辉,许智宏等.水稻花发育基因调控的研究进展.科学通报,2001,46(9):705-712
    郭龙彪,储成才,钱前.水稻突变体与功能基因组学.植物学通报,2006,23(1):1-13
    韩永峰,杨倩,孙颖.DEF/DEL可能参与调控水稻整个生长发育的过程.2007中国植物生理学会全国学术会议论文摘要汇编,2007
    罗琼,周开达,朱立煌等.一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位.科学通报,2001,46(15):1277-1280
    李爱宏,张亚芳,戴正元等.LBD基因家族在高等植物中的研究进展.分子植物育种,2006,4:301-308
    李贵生,孟征,孔宏智等.ABC模型与花进化研究.科学通报.2003,48(23):2415-2421
    刘建武,孙成华.花器官决定的ABC模型和四因子模型.植物学通报,2004,21(3):346-351
    刘坚,郭龙彪,钱前.水稻花器官发育基因的研究进展.中国稻米,2007年03期
    虞慧芳,曹家树,王永勤.植物矮化突变体的激素调控.生命科学,2002年02期
    许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报,2006,23(5):433-442
    徐云远,种康.植物干细胞决定基因WUS的研究进展.植物生理与分子生物学学报,2005年05期
    张剑,徐桂霞,薛皓月等.植物进化发育生物学的形成与研究进展.植物学通报,2007,24(1):1-30
    Agrawal G K,Abe K,Yamazaki M,et al.Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene.Plant Molecular Biology,2005,59(1):125-135
    Angenent G C,Franken J,Busscher M,et al.A novel class of MADS-box genes is involved in ovule development in Petunia.Plant Cell,1995,7(10):1569-1582
    Carland FM,McHale NA.LOP1:a gene involved in auxin transport and vascular patterning in Arabidopsis.Development,1996,122:1811-1819
    Chalfun-Junior A.,Franken J.,Mes J J.,et al.2005.ASYMMETRIC LEAVES- LIKE1 gene,a member of the AS2/LOB family,controls proximal-distal patterning in Arabidopsis petals.Plant Molecμlar Biology,57(4):559-575
    Chung Y Y,Kim S R,Kang H C,et al.Characterization of two rice MADS - box gene homologous to GLOBOSA.Plant Sci,1995,109:45-56
    Chung Y Y,Kim S R,Finkel D,et al.An early flowering and reduced apical dominance Resμlt from ectopic expression of a Rice MADS - box Gene.Plant Molecμlar Biology,1994,26:657-665
    Coen E S,Meyerowitz E M.The war of the whorls:genetic interactions controlling flower development.Nature,1991,353(6339):31-7
    Colombo L,Franken J,Koetje E,et al.The Petunia MADSbox gene FBP11 determines ovμle identity.Plant Cell,1995,7:1859-1868
    Cynthia L,James H B,and Mark E.Growth and Development of the axrl Mutants of Arabidopsis.The Plant Cell,1990,2:1071-1080
    Ditta G,Pinyopich A,Robles P,et al.The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity.Current Biology,2004,14(21):1935-1940
    Elena M,Kramer,M.Alejandra J et al.Patterns of Gene Duplication and Functional Evolution during the Diversification of the AGAMOUS Subfamily of MADS-Box Genes in Angiosperms.Genetics,2004,166:1011-1023
    Fornara F,Parenicova L,Falasca G,et al.Functional characterization of OsMADS18,a member of the AP1/SQUA subfamily of MADS box genes.Plant Physiol,2004,135:2207-2219
    Goto K and Meyerowitz E M.Function and regμlation of the Arabidopsis floral homeotic gene PISTILATA.Genes Development 1994,8:1548-1560
    Greo R,Stagi L,Colombo L,et al.MADS box genes expressed in developing inflorescence of rice and sombghum.Molecμlar General Genetics,1995,253:615-623
    Hilde N,Jonathan H.C,Marc D B,et al.DRL1,a Homolog of the Yeast TOT4/KTI12 Protein,Has a Function in Meristem Activity and Organ Growth in Plants.The Plant Cell,2003,15:639-654
    Hilde N, Delphine F, Leonardo B, et al. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. PNAS, 2005, 102(21):7754-7759
    
    Hong Z, Ueguchi T, Umemura K, et al. A rice brassinos-teroid-deficientmutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15 (12):2900-2910
    
    HuijserP, Klein J, Lonnig W, et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. Embo J, 1992, 11:1239-1249
    Irish V. F.The evolution of floral homeotic gene function. Bioessays, 2003, 25: 637-646
    
    Itoh J I,Hasegawa A,Kitano H,et al.J.P lan t Cell, 1998, 10:1511-1521
    
    Jack T. Molecular and Genetic Mechanisms of Floral Control.The Plant Cell, 2004, 16: S1-S17
    
    Jacobsen S E., Running M P., and Meyerowitzl E M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development, 1999,126:5231-5243
    Jeong S, Trotochaud A E and Clark S E.The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase.Plant Cell, 1999,11:1925-1934
    Jia H, Chen R, Cong B,et al. Characterization and transcriptional profiles of two rice MADS-box genes. Plant Sci, 2000, 155, 115-122
    Jofuku K D, Boer B, Montagu M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.Plant Cell, 1994, 6:1211-1225
    Jose S C, Hector C, Pedro R, et al.Genetic Analysis of incurvata Mutants Reveals Three Independent Genetic Operations at Work in Arabidopsis Leaf Morphogenesis. Genetics, 2000,156: 1363-1377
    Kang H G, An G Isolation and characterization of a rice MADS-box gene belonging to the AGL2 gene family.Mol Cells, 1997, 7: 45-51
    Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants .Plant Mol Biol, 1998, 38:1021-1029
    Kang H G, Noh Y S, Chung Y Y,et al. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol Biol, 1995, 29: 1-10
    Keqiang Wu, Malik K, Lining Tian,et al. Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana.Plant Molecpμlar Biology, 2000, 44: 167-176
    Keqiang Wu, Lin Zhang, Changhe Zhou, et al. HDA6 is required for jasmonate response,senescence and flowering in Arabidopsis. Experimental Botany, 2008, 59: 225-234
    Kurata, N., Miyoshi, K., Nonomura, K I., et al. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48-62
    Kyozuka J, Kobayashi T, Morita M, et al.Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol,2000,41:710-718
    Kyozuka J, Takeshi K, Masakazu M, et al.Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol,2000,41(6): 710-718
    Laux T, Mayer Klaus F X, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, 122: 87-96
    Lopez-Dee Zp, Wittich P, PeM E, et al. OsMADSI3, a novel Molecular Cell expressed during ovule development. Develpment Genetics, 1999, 25: 237-244
    Lu Tian and Chen Z. J. Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. PNAS, 2001, 98:200-205
    Lu Tian, Fong M P, Jiyuan J, et al.Reversible Histone Acetylation and Deacetylation Mediate Genome-Wide,Promoter-Dependent and Locus-Specific Changes in Gene Expression During Plant Development. Genetics, 2005,169: 337-345
    Mandel M A, Gustafson-Brown C, Savidge B, et al.Molecμlar characterization of the Arabidopsis floral homeotic gene APETALA1.Nature, 1992, 360(6401):273-277.
    Monna L, Kitazawa N, Yoshino R. Positional cloning of rice semidwarfmg gene, sd-1: rice "green revolution gene"encodes a mutant enzyme involved in gibberellin synthesis. DNA Reseach,2002,9(1): 11-17
    Moon S, Jung K H, Lee D E, et al. The Rice FON1 Gene Controls Vegetative and Reproductive Development by Regulating Shoot Apical Meristem Size. Molecμlar Cells, 2005, 21(1):147-152
    Moon H Y, J ung J Y, Kang H G, et al. Identification of a rice A PETAL A 3 homologue by yeast two- hybrid screening.Plant Mol Biol, 1999a, 40:167-177
    Moon Y H, Kang H G, Jung J Y,et al.Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system.Plant Physiol, 1999b, 120: 1193-1204
    Nagasawa N, Miyoshi M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130: 705-718
    Ori N., Eshed Y., Chuck G., et al. Mechanisms that control knox gene expression in the Arabidopsis shoot,Development, 2000, 127(24): 5523-5532
    Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 11: 200-203
    Pinyopich A, Ditta G S, Savidge B, et al.Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003, 424: 85-88
    Robles P, Pelaz S. Flower and fruit development in Arabidopsis thaliana.Development Biology. 2005, 49(5-6): 633-643
    Sallaud C, Gay C, Larmande P, et al. High throughput T-DNA insertion mutagenesis in rice: A first step towards in silico reverse genetics.Plant Journar, 2004, 39: 450-464
    Schwarz - Sommer Z, Huijser P, Nacken W, et al. Genetic control of flower development homeotic genes in Antirrhinum majus. Science, 1990, 250: 931-936
    Semiarti E., Ueno Y., Tsukaya H., et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamia, establishment of venation and repression ofmeristem-related homeobox genes in leaves, Development, 2001, 128(10): 1771-1783
    Shinozuka Y, Kojima S, Shomura A. Isolation and characterization of rice MADS - box gene homologues and their RFLP mapping. DNA Research, 1999, 6: 123-129
    Shuai B., Reynaga-Pea C G., and Springer P S.The lateral organ boundaries gene defines a novel,plant-specific gene family. Plant Physiology Preview, 2002, 129(2): 747-761
    Sommer H, Beltran J P, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factor. EMBO Journal, 1990, 9: 605-613
    
    Tanksley S D., Ganal M W., and Martin G B. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet, 1995, 11(2): 63-68
    Theissen G and Saedler H. Plant biology.Floral quartets.Nature, 2001, 409: 469-471
    Theissen G. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 2001, 4: 75-85
    
    Tomoko M, Eiichi O and Suguru T.Isolation and Expression Analysis of Petunia CURLY LEAF-Like Genes. Plant Cell Physiol, 2003, 44(8): 811-819
    
    Michiel V, Gunter T, Tom G, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations.Nucleic Acids Research, 2003,31(15): 4401-4409
    Wolfe K, Gouy M, Yang Y, et al. Date of the monocot dicot divergence estimated from choroplast DNA sequence date. National Academy of Sciences, 1989, 86: 5201-5205
    Wu, K, Tian, L, Malik, K, et al.Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant Journal, 2000, 22: 19-27
    Xu L., Xu Y., Dong A.W., et al. Novel AS1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES 1 and 2 and ERACTA functions in specifying leaf adaxial identity, Development, 2003, 130: 4097-4107
    Yamaguchi T, Lee D Y, Miyao A, et al.Functional diversification of the two C-Class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006,18: 15-28
    Yamaguchi T, Nagasawa N, Kawasaki S, et al.The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.The Plant Cell, 2004, 16:500-509
    
    Yanofsky M F, Ma H, Bowman J L, et al.The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature, 1990, 346 (6279): 35-39
    
    Yindee C, Anthony B, Daniel C, et al.Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276
    
    Zhi H, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisudwarf (d2), is caused by aloss of function of a new member of cytochrome P450. Plant Cell, 2003,15: 2900-2910
    
    Zhong R, Taylor J J and Ye Z H. Disruption of Interfascicμlar Fiber Differentiation in an Arabidopsis Mutant.The Plant Cell, 1997, 9: 2159-2170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700