用户名: 密码: 验证码:
双喷嘴挡板伺服阀内部流场的数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双喷嘴挡板伺服阀作为电液伺服系统中使用最为广泛的一种伺服阀,是液压伺服控制系统中典型的转换、放大、控制元件,在整个伺服系统中起着关键、核心作用,在现代自动控制系统中得到日益广泛的应用。与射流管伺服阀相比,双喷嘴挡板伺服阀具有结构紧凑、线性度好、死区范围小、速度响应快、运行可靠、平稳等优点,但是同时存在着转化率低、能耗大等缺陷,所以对伺服阀内部流场进行研究,以此为依据来改善伺服阀的性能,具有一定的理论意义与工程实用价值。
     本课题主要完成了三个方面的工作:一是研究了双喷嘴挡板伺服阀的结构特点和性能特性;二是对原型阀进行模拟计算,从流场的角度,获得伺服阀的数学模型以及特性曲线;三是对原型阀中几个关键机构进行结构参数优化,获得了最佳的结构尺寸。
     首先,本论文以双喷嘴挡板伺服阀的前置放大器为研究对象,针对前置级双喷嘴挡板机构流场的分布情况,根据实际伺服阀前置放大器的尺寸,应用Pro/E软件建立三维几何模型,并运用FLUENT前处理软件GAMBIT对模型进行网格的划分。运用计算流体力学方法,采用标准k ?ε双方程湍流模型对原型阀的双喷嘴挡板级内部流场进行了数值仿真,获得原阀的压力场、速度矢量场等分布以及阀的恢复压力和恢复流量,运用二次函数拟合的方法得到了阀的恢复压力以及恢复流量数学模型,并分析了模型内部流道结构对其特性的影响。
     在原型阀模拟计算的基础上,对阀的可变节流孔、固定节流孔和回油节流孔中的几个重要尺寸参数进行优化。采用与原型阀同样的方法对不同模型进行模型计算,获得不同尺寸下的模型特性曲线,最后与理想的特性曲线相比较,确定了最佳的结构尺寸,达到了优化尺寸的目的。
     本论文从流场角度分析,构建了双喷嘴挡板放大器的数学模型,并对其几个重要尺寸进行优化,为双喷嘴挡板伺服阀的数学模型的建立提供了一个思路,并为阀的整体性能优化奠定了基础。
Twin flapper-nozzle servo valve is most widely used in electro hydraulic road system, is the typical component of conversion、amplification and control in hydraulic servo control system, plays a key role in the road system and is widely used in modern automatic control system. Compared to jet pipe servo valve, the servo valve possesses advantages of compact structure、excellent linearity、small dying area、quick response and reliable steady running etc. But low conversion and big energy consumption rate exist in the servo valve, defects such as the performance of the servo valves is improved on basic of analyzing servo valve internal flow field, the research has certain theoretical significance and practical value.
     This subject mainly completes three aspects: Firstly, the structural characteristics and performance characteristics of twin flapper nozzle servo valve are researched; Secondly, the prototype valve is simulated and calculated, from the view of flow field, the mathematical model and characteristic curve of the valve are realized; Thirdly, several key mechanism structural parameters of the prototype valve are optimized, and the optimum structure sizes are obtained.
     Firstly, this paper aims for is researching on twin flapper-nozzle servo valve of pre-amplifier , according to lead class twin flapper nozzle institution’s flow distribution, and according to the actual situation of the pre-amplifier and the sizes of the pre-amplifier, the 3d geometry model of the twin flapper-nozzle servo valve is built by 3d geometry software Pro/E, and the models are meshed by the preprocessor GAMBIT of FLUENT software. Using computational fluid dynamics method, by normative both equation turbulence model, internal flow field of twin flapper-nozzle prototype valve is numerically simulated, then the valve pressure and velocity vector fields distribution and recovery pressure、recovery pressure of valve are obtained, and by quadratic function recovery fitting methods valves pressure and flow of recovery、the mathematic model are obtained, the impact of the model’s structure on the flow characteristics inside is analyzed.
     Then on the basis of the prototype valve simulation, the variable valve orifice, fixed orifice and return oil orifice size of several important parameters are optimized. Using the same method and the prototype valve for different models of the different size calculation models, the models’characteristic curve compared with the ideal characteristic curve, the optimal structure size, at last the optimized dimensions of purpose is reached.
     This paper from the view of flow field analysis, has built the mathematical model of twin flapper nozzle amplifier, several important dimensions for twin flapper nozzle servo valve are optimized. The paper provides a new thinking line for the establishment of the mathematical model, and provides a foundation for an overall performance optimization for valve.
引文
[1]方群,黄增.电液伺服阀的发展过程、研究现状及趋势[J] .机床与液压,2007.11(35):162-165.
    [2]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J] .液压与气动,2005(6):5-8.
    [3]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势[J] .工程机械,2003(6):28-34.
    [4]刘萍,张东速. Fluent软件在矩形喷嘴射流流场种的可视化研究与应用[J] .矿山机械,2006(5):112-114.
    [5]马雨祥,白春华. Fluent在阀体优化中的应用[J] .弹箭与制导学报,2005:280-286.
    [6]赵帅,孙宝元,黄爱芹.基于Fluent的喷嘴挡板机构的仿真实验软[J] .机床与液压,2006(12):189-191.
    [7]王雪红,王桂良.基于Fluent的电液比例阀的数值模拟[J] .机械工程师,2008(6):128-130.
    [8]柳洪芬,高石,王国丽.基于Fluent的复杂通道比例流量的数值模拟[J] .天津理工大学学报,2007.2(23):86-89.
    [9]徐鑫.双喷嘴挡板电液伺服阀建模与仿真研究[J] .机械设计与制造,2008.4(4):59-61.
    [10]天源道.电液伺服阀技术[M] .北京:航空工业出版社,2008:12-24
    [11]江帆,黄鹏.Fluent高级应用与实例分析[M] .北京:清华大学出版社,2008:8-45
    [12]谢峻石,何枫.收缩喷嘴内部流道形线对射流流场的影响[J] .机械开发,2000(4):42-49.
    [13]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟[J].北京科技大学学报,2006.6(6):576-580.
    [14]李小庆,陈柏金.伺服滑阀建模与动态仿真[J].锻压装备与制造技术,2005(4):94-96.
    [15]陈召国,黄琪.双喷嘴挡板电液伺服阀压力特性的研究[J] .工程机械,2005(7):28-32.
    [16]王向周,张先雨,王渝.三级电液伺服阀系统稳定性探讨[J] .液压与气动,2001(7):9-12.
    [17]李楠,高英杰.喷嘴挡板伺服阀性能参数的研究[J] .液压与气动,2008(10):69-73.
    [18]王传礼,丁凡,许贤良. GMA喷嘴挡板电液伺服阀的特性研究[J] .机床与液压,2006(8):69-72.
    [19]姚建庚.直动式电液伺服阀的开发与应用[J] .液压气动渝密封,2004(2):6-10.
    [20]花克勤.电液伺服阀的动态参数寻优[J] .机床与液压,2004(10):147-149.
    [21]王永吉,刘长年.电液伺服阀系统动力机构的参数优化[J] .液压.液力,2004(8):22-27.
    [22]王龙,窦保杰.基于Fluent的轧制吹扫喷嘴的数值模拟[J] .有色设备,2009(1):13-16.
    [23]王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板的控制压力特性[J] .机械工程学报,2005.5(41):127-131.
    [24]曲兴田,杨志刚.基于双压电晶片的喷嘴挡板伺服阀[J] .压电与声光,2005.2(27):27-29.
    [25]周淼磊,田彦涛,杨志刚.一种新型双喷嘴挡板阀控制系统设计[J] .中国机械工程,2004.12(24):2232-2234.
    [26]潘旭东,张丽.基于Fluent软件的滑阀流量特性的数值仿真研究[J] .装备制造技术,2007(9):199-200.
    [27]周玉虎,白志红.直动式电液伺服阀控制系统的建模与仿真研究[J] .机床与液压,2006(11):141-142.
    [28]王传礼.基于GMM转换器喷嘴挡板伺服阀的研究[D] .杭州:浙江大学,2005.5.
    [29]罗亚敏.液压技术中复杂流道流场的数值模拟[D] .秦皇岛:燕山大学,2001.5.
    [30]何枫,谢俊石,杨京龙.喷嘴内部流道形线对射流流场的影响[J] .应力学学报,2001.11(4):114—120.
    [31]杨月花.伺服阀前置级射流流场分析及实验研究[D] .哈尔滨:哈尔滨工业大学,2006.6.
    [32]吴玉魁.喷嘴挡板式压电伺服阀的实验研究[D] .长春:吉林大学,2004.5.
    [33] JC.Jones.Developments in Design of Electrohy draulic Control Valves Form Their Initial Design Concept to Present Day Design and Applications [D].Monash University, Australia, November 1997.
    [34] R.H.Maskrey, W.J.Thayer.ASME Journal of Dynamic Systems Measurement andContro,l June 1978.
    [35] Vasil.ev, O.A.Minin, S.N., Shipovskikh,A.Investigation of the flow structure in nozzleswith a throat section of constant height [J].Fluid Dynamics, 1991, 25 (6): 944-949,0015-4628.
    [36] Katanoda Hiroshi, Miyazato Yoshiaki, MasudaMitsuharu, Matsuo Kazuyasu.Numerical calculation of underexpanded axisymmetric supersonicjet (Effects of nozzle divergence angle and Machnumber on shock cell length) [C].Nippon KikaiGakkai Ronbunshu, BHen/Transactions oftheJapanSociety of Mechanical Engineers, 1995.
    [37] Yang Geunyoung, Choi Mansoo, Lee JoonSik.Experimental study of slot jet impingement cooling on concave surface: Effects of nozzlconfiguration and curvature [J].InternationaJournal of Heat and Mass Transfer, 1999, 4(12): 2199-2209.
    [38] ShinihciYokota.Effect of NonpaarallExit Flow on Round Turbulent Free Jets [J].Int.J.Heat and Fluid Flow, 1989, 10 (2).
    [39] Masashi KASHITANI, Yoshiaki MIYAZATOMitsuharu MASUDA and Kazuyasu MATSUO.Numerical and Experimental Investigations of Supersonic Jets from Sootblower Nozzl[J].JSME International Journal Series B1998, 41 (2): 375-380.
    [40] T.J.barth and D.Jespersen.The Design and Application of Upwind Schemes on UnstructureMeshes [J].AIAA_89_0366.
    [41] J. M. Weiss, J. PMauszewski, and W. ASmith. Implict Solution of the Navier_Stokes Equation on Unstructured Meshes [J]. AIAA97_2103.
    [42] Yakhot, V. etal. Development of Turbulence Models for Shear Flows by Double Expansion Technique [J].Phys.Fulods, 1992, 4(7): 1510-1522.
    [43]袁坤.电液比例方向节流阀数字控制放大器[J] .南昌航空工业学院学报,1999(1):147-149.
    [44]李长安,雷鸣,冯斌.优化理论在伺服阀设计中的应用[J].设计与计算,2005(5):54-55.
    [45]周淼磊,杨志刚,田彦涛,程光明.压电型喷嘴挡板阀及其控制方法的研究[J] .光学精密工程南航空工业学院学报,2007(3):373-377.
    [46]吴正江.水压伺服阀典型阀口流动特性的研究[D].武汉:华中科技大学,2005.4.
    [47]翼宏,魏烈江,方群.射流管伺服阀射流管放大器的流场解析[J].机床与液压,2008(10):119-121.
    [48]韩宁.应用Fluent研究阀门内部流场[D].武汉:武汉大学,2005.5.
    [49]马雨祥,白春华,吴建星.FLUENT在阀体优化中的应用[J].弹箭与制导学报,2005(2):284-287.
    [50]史书林,侯友夫,赵海峰.平动式挡板伺服阀的分析研究[J].机床与液压,2006(9):127-130.
    [51]孙德志.基于FLUENT的不同喷嘴轮廓线形对流出系数影响分析[J].计量技术,2007(12):3-5.
    [52]朱学彪,陈奎生.对与三级电液伺服阀的新型仿真与研究[J].机床与液压,2005(2):97-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700