用户名: 密码: 验证码:
五元芳香杂环化合物光解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噻吩、呋喃等五元芳香杂环化合物的激发态动力学,受到了国内外科学研究小组的广泛关注。随着光电材料的研究发展,因为聚噻吩通过π共轭体系能很好地完成电子和能量的转移,所以大量用于发光二极管、激光器和场效应晶体管等方面。从此,如何利用外部刺激有选择性控制噻吩聚合物的电子和能量转移成为当前最重要的主题之一。同时噻吩低聚物S_1态的寿命也随着聚合长度的增加而变长,而电子势能面的锥型交叉在超快的内转换、无辐射衰变等方面扮演着重要的角色,因此,研究激发态势能面的锥型交叉可以揭示分子的激发态动力学。
     本文采用共振拉曼光谱技术,结合量子化学计算方法,研究了在环己烷和甲醇溶液中的噻吩,硒吩,呋喃,噻唑等化合物在Frank-Condon区域的结构动力学,并结合密度泛函理论和完全活化空间的自洽场方法(CASSCF)洞察了噻吩,硒吩,呋喃和噻唑的光解离途径,取得了一些有意义的研究成果。
     (1)获得了噻吩在环己烷溶剂中的电子吸收光谱,其最大吸收波长在240nm左右。获得了噻吩在环己烷溶剂中的239.5 nm和266.0 nm共振拉曼光谱。共振拉曼光谱显示,噻吩环的对称伸缩振动(ν_3,1394cm_1、ν_4,1344cm_1),C-H面内的摇摆振动(ν_5,1074cm_1),C_3-C_4伸缩振动+C=C-C_面内弯曲振动(ν_6,1028cm_1),C-S对称伸缩振动+C=C-C面内弯曲振动(ν_7,835cm_1),C-S不对称伸缩振动+C=C-C面内弯曲振动(ν_21,754cm_1)这6个拉曼带的泛频和组合频占据了共振拉曼光谱强度的主要部分。ν_4,ν_21振动模及其组合频占据共振拉曼光谱强度的绝大多数,表明噻吩激发态结构动力学主要沿着C-S不对称伸缩振动和噻吩环的对称伸缩振动这2个活性模展开,而9个活性振动模的同时存在表明其在Frank-Condon区域的光解离短时动力学具有多维性。不对称性模ν_21的共振拉曼强度要比对称性模ν_7的强,预示着S_1态噻吩分子的C-S键键长要发生变化,其中一个增长,一个缩短,这暗示噻吩在S_1态的Frank-Condon区域有可能与某个高激发态Sn发生锥型交叉,并导致开环反应。因此,采用CASSCF方法获得了噻吩S_1、S_2、S_3电子激发态和势能面交叉点CI(S_3/S_1)、CI(S_2/S_1)的电子跃迁能和几何结构,这些结果与噻吩S1态在Frank-C_ondon区域的光解离动力学密切相关。开环光解离反应通道是通过锥型交叉点CI(S_3/S_1)导致C-S键发生断裂被证明在S_1态噻吩超快光解离的反应途径中占据主要地位;通过锥型交叉点CI(S_2/S_1)的内转换反应通道也是噻吩S_1激发态衰变(光反应的)一种途径。
     (2)测得硒吩在环己烷溶剂中的最大吸收带在250nm左右,采用239.5nm和252.7nm的激发光获得其共振拉曼光谱。研究结果显示,硒吩环的对称伸缩振动(ν_3,1416cm_1、ν_4,1345cm_1),C-H面内的摇摆振动(ν_5,1073cm_1),C_3-C_4伸缩振动+C=C-C面内弯曲振动(ν_6,1012cm_1),C-Se对称伸缩振动+C=C-C面内弯曲振动(ν_7,755cm_1),C-Se不对称伸缩振动+C=C-C面内弯曲振动(ν_21,624cm_1)这6个拉曼带的泛频和组合频占据了共振拉曼光谱强度的主要部分。而7个活性振动模的同时存在表明其在Frank-Condon区域的光解离短时动力学具有多维性。通过比较硒吩与噻吩的FT-Raman光谱、共振拉曼光谱和光谱指认我们断定,硒吩在Frank-Condon区域的光解离短时动力学与噻吩非常相似。
     (3)测得呋喃在环己烷溶剂中的最大吸收带在209nm左右,采用217.8nm和208.8nm的激发光获得其共振拉曼光谱,并进行了强度分析。研究结果显示,呋喃在Frank-Condon区域的光解离短时动力学具有多维性。主要沿着C_3-C_4的伸缩振动+C=C-C面内弯曲振动ν_4 (|Δ|=1.01,λ=702 cm_1)和C_2=C_3/C_4=C-5的伸缩振动+C-O-C的面内弯曲振动ν_3 (|Δ|=0.98,λ=712 cm_1)这2个振动模展开。呋喃的共振拉曼光谱没有不对称性模的出现,光谱指认也和噻吩相差很大,这表明呋喃在Frank-Condon区域的光解离短时动力学与噻吩不一样。
     (4)测得噻唑在环己烷和甲醇溶剂中的最大吸收带在230nm左右,采用239.5nm和228.7nm的激发光获得其共振拉曼光谱,并进行了强度分析。研究结果显示,噻唑在Frank-Condon区域的光解离短时动力学具有多维性。主要沿着CH面外摇摆振动ν_15 (|Δ|=1.20,λ=572 cm_1),噻唑环对称伸缩振动ν5 (|Δ|=1.12,λ=864 cm_1)和C-S不对称伸缩振动ν_12 (|Δ|=0.95,λ=341 cm_1)这3个振动模展开。由于氮原子的取代,使得C-S不对称伸缩振动模ν_12的强度增强;在噻唑中,基频ν_12比基频C-S对称伸缩振动模ν_13要强很多,从振动重组能上也能体现出来。这表明C被N取代后除了一些振动模式产生了影响之外,噻唑在Frank-Condon区域的光解离短时动力学特征和噻吩也非常相似。
There has been interest for many years in excited state dynamics of thiophene, furan and other pentaatomic heterocycles because of their role in the pharmaceutical synthesis, resins and organic synthesis, etc. With the photoelectric materials research and development, thiophene oligomers have used extensively in light-emitting diodes, lasers and field-effect transistors because of their excellent electron and energy transfer properties through theπ-conjugation. From then on, how to optically control such molecular wires of thiophene oligomers by external stimuli becomes an important theme. As is now generally recognized, the S_1 state lifetimes of thiophene oligomers increases with the aggregate length. conical intersection of electronic potential energy surfaces(PES) play an central role in ultrafast internal conversion, radiationless decay etc. The information about conical intersection gained from examination of the excited-state PES helps to investigation of the excited-state dynamics.
     In this paper, the short-time photodissociation dynamics of thiophene, furan, selenophene and thiazole in cyclohexane and methanol solution have been investigated by the Resonance Raman spectra in combination with DFT and CASSCF calculation. We also discussed the photodissociation process in the photochemical reactions. Main contributions of the present work are summarized as follows,
     (1) We obtained the absorption spectrum of thiophene in cyclohexane solution which has a charge-transfer(CT) band near 240nm. Resonance Raman spectrums were obtained for thiophene in cyclohexane solution with 239.5nm and 266nm excitation wavelength in resonance with the CT-band absorption spectrum. The results indicate that the Franck-Condon region short-time photodissociation dynamics of thiophene have multidimensional characters with motion predominantly along the nominal C_2=C_3-C_4=C_5 in-plane symmetric stretch modesν_3 (A_1) at 1394 cm_1 andν_4 (A_1) at 1344 cm_1, the nominal C-H in-plane wag modeν_5 (A_1) at 1074 cm_1, the nominal C_3-C_4 stretch +C=C-C bend modeν_6 (A_1) at 1028 cm_1, the nominal C-S in-plane symmetric stretch+C-C=C bend modeν-7 (A_1) at 835 cm_1, the nominal C-S anti-symmetry stretch+C-C=C bend modeν_21 (B_2) at 754 cm_1. The nominal C-S anti-symmetric stretch + C-C=C bend modeν_21 (B_2) at 754 cm_1 possesses much more Raman intensity than the nominal C-S in-plane symmetric stretch + C-C=C bend modeν_7 (A_1) at 835 cm_1.This indicates that thiophene molecule in the S_1 state undergoes large bond length changes along the two C-S bond lengths with one C-S bond becoming much longer while the other becomes somewhat shorter. This kind of short-time dynamics suggests that a ring opening reaction may occur in or nearby the Franck-Condon region due to a curve crossing between S_1 and Sn state.The electronic transition energies, the excited state structures and the conical intersection points CI(S-3/S_1) and CI(S_2/S_1) between the S_1 and the S_2 or S_3 potential energy surfaces of thiophene were determined by using complete active space self-consistent field theory computations. These results were correlated to the Franck–Condon region photodissociation dynamics of thiophene in its S_1 state. The ring opening photodissociation reaction pathway through cleavage of one of the C-S bonds and via a conical intersection point CI(S_3/S_1) was revealed to be the predominant ultrafast reaction channel for thiophene in the S_1 state. The internal conversion pathway via a conical intersection point CI(S_2/S-1) was also found to be another reaction channel for thiophene.
     (2) We obtained the absorption spectrum of selenophene in cyclohexane solution which has a charge-transfer(CT) band near 250nm. Resonance Raman spectrums were also obtained for selenophene in cyclohexane solution with 239.5nm and 252.7nm excitation wavelength in resonance with the CT-band absorption spectrum. The results indicate that the Franck-Condon region short-time photodissociation dynamics of selenophene have multidimensional characters with motion predominantly along the nominal nominal C_2=C_3-C_4=C_5 in-plane symmetric stretch modesν_3 (A_1) at 1416 cm_1 andν_4 (A_1) at 1345 cm_1, the nominal C-H in-plane wag modeν_5 (A_1) at 1073 cm_1, the nominal C_3-C_4 stretch +C=C-C bend modeν_6 (A_1) at 1012 cm_1, the nominal C-Se in-plane symmetric stretch+C-C=C bend modeν_7 (A_1) at 755 cm_1, the nominal C-Se anti-symmetry stretch+C-C=C bend modeν_21 (B-2) at 624 cm_1. FT-Raman spectroscopy, Resonance Raman spectroscopy and spectral assignments of thiophene is similar to selenophene. so we conclude that the Frank-Condon region short-time photodissociation dynamics of selenophene almost completely seems the thiophene.
     (3) We obtained the absorption spectrum of furan in cyclohexane solution which has a charge-transfer band near 209nm. Resonance Raman spectrums were obtained for furan in cyclohexane solution with 217.8nm and 208.8nm excitation wavelength in resonance with CT-band absorption spectrum and Resonance Raman analysis was done. The results indicate that the Franck- Condon region short-time photodissociation dynamics of furan have multidim- ensional characters with the reaction coordinates with the nominal C3-C4 stretch+C=C?C bendν_4 (Δ=1.01,λ=702 cm_1), the nominal C_2=C_3/C_4=C_5 stretch + C-O-C bendν_3 (Δ=0.98,λ=712 cm_1). The asymmetric mode is not appear on the Resonance Raman spectra of furan and spectral assignments of furan is very different from thiophene, for these reason we conclude that the Frank-Condon region short-time photodissociation dynamics of furan is quite different from thiophene.
     (4) We obtained the absorption spectra of thiazole in cyclohexane and methanol solution which has a charge-transfer band near 230nm. Resonance Raman spectrums were obtained for furan in cyclohexane solution with 228.7nm and 239.5nm and in methanol solution with 239.5nm excitation wavelength in resonance with CT-band absorption spectrum and Resonance Raman analysis was done. The results indicate that the Franck- Condon region short-time photodissociation dynamics of thiazole have multidimensional characters with the reaction coordinates or displacements occurring with the nominal CH rockν_15 (Δ=1.20,λ=572 cm_1), the nominal C_2=N_3-C_4=C_5 in-plane symmetric stretchν_5 (Δ=1.12,λ=864 cm_1), the nominal C-S anti-symmetry stretch+C-C=C bendν_12 (Δ=0.95,λ=341 cm_1). As the replacement of nitrogen atoms, the nominal C-S anti-symmetric stretch possesses much more Raman intensity than the nominal C-S in-plane symmetric stretch, similarly the nominal C-S anti-symmetric stretch of thiazole possesses much more Raman intensity than thiophene. We note that the substitution of the C atom by the N atom fewly modulates the Frank-Condon region photodissociation dynamics. Which indicated thiazole and thiophene have the similar photodissociation process in the Frank-Condon region.
引文
[1]花文廷.《杂环化学》[M].第一版.北京:北京大学出版社, 1993:103-104.
    [2] (a) R.A. Jones, E.C. Taylor and A. Weissberger. The chemistry of heterocyclic compounds [M].New York:Wiley, 1990:48 (b)赵雁来,何森泉,徐长德.《杂环化学导论》[M].第一版.河北:高等教育出版社, 1992:1-2.
    [3] Maurizio D’Auria, Vittorio Esposito, and Giacomo Mauriello. Photochemical Reactivity of Aromatic and Heteroaromatic Nitroderivatives in the Presence of Arylalkenes [J]. Tetrahedron; 1996, 52:14253-14272.
    [4] T. A. Skotheim. Handbook of Conducting Polymers [M]. New York: New York University Press, 1986,Vol 1& 2.
    [5] W. R. Salaneck. Conjugated Polymer and Related materials [M]. Oxford: Oxford University Press, 1 993:567.
    [6]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社,2004.
    [7] (a) Ashfold M N R , Baggot J E. Molecular Photodissociation Dynamics [M]. The Royal Society of Chemstry, 1987. (b) Mons M, Dimicoli I. State selective kinetic distribution of photofragments [J].Chem Phys Lett, 1986,131: 298-302. (c) Hwung H, Mostafa A. El-Sayed. Determination of kinetic energy release for direct photodissociation process by one-dimensional TOF photofragment translational spectroscopy [J].Chem Phys Lett, 1990,170:161-166. (c)莫华平.用时间飞行质谱研究亚硝酸甲脂的光解动力学[D],中国科学院大连化学物理研究所,1994.
    [8] Greene C H, Zare R N. Determination of product population and alignment usinglaser-induced fluorescence [J]. J Chem Phys, 1983, 78: 6741-6753. (b)Kummel A C, Sitz G O, Zare R N. Determination of orientation of the ground state using two-photon nonresonant excitation[J]. J Chem Phys, 1988, 88: 6707-6732. (c)Dubs M , Bruhlmann U , Huber J R. Sub-Doppler laser-induced fluorescence measurements of the velocity distribution and rotational alignment of NO photofragments [J]. J Chem Phys, 1986, 84: 3106-3119. (d)Bruhlmann U , Dubs M , Huber J R. Photodissociation of methylnitrite: State distributions, recoil velocity distribution, and alignment effects of the NO(X2 ) photofragment [J]. J Chem Phys ,1987, 86: 1249-1257.
    [9] (a)Yang Chen, Linsen Pei, Jin Jin, Yide Gao, Xingxiao Ma and Congxiang Chen. Laser-induced fluorescence spectroscopy of biacetyl A 1Au(S1)–X 1Ag(S0)) [J]. Chem Phys Lett, 2000,323:125-129. (b)Yang Chen, Linsen Pei, Jin Jin, Yide Gao, Xingxiao Ma, Congxiang Chen. The fluorescence excitation spectra of the A 1Au(S1)–X 1Ag(S0) transition of biacetyl: Determination of the band origin [J]. J Chem Phys, 1999,111: 6650-6651.
    [10] (a)Cong S L , Han K L , Lou N Q. Alignment determination of symmetric top molecule using rotationally resolved LIF [J]. Chem Phys, 1999, 249:183-190. (b)Cong S L , Han K L , Lou N Q. Theory for determining alignment parameters of symmetric top molecule using (n + 1) LIF [J]. J Chem Phys, 2000,113: 9429-9442.
    [11] (a)Whittle E, Dows D A, Pimentel G C. Matrix Isolation Method for the Experimental Study of Unstable Species [J]. J Chem Phys,1954, 22:1943-1945. (b)Nelson L Y, Pimentel G C. Infrared detection of xenon dichloride [J]. Inorg Chem, 1967, 6: 1758-1759.
    [12] (a)Zhou M F, Andrews L, Li J, Bursten B E. Reaction of Laser-Ablated Uranium Atoms with CO: Infrared Spectra of the CUO, CUO-, OUCCO, ( 2-C2)UO2, and U(CO)x (x = 1-6) Molecules in Solid Neon [J]. J Am Chem Soc, 1999, 121: 9712-9721. (b)Zhou M F, Andrews L, Bauschlicher J C W. Spectroscopic and Theoretical Investigations of Vibrational Frequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions [J]. Chem Rev, 2001, 101:1931-1961. (c)Zhou M F, Zhao Y Y , Gong Y, Li Jun. Formation and Characterization of the XeOO+ Cation in Solid Argon [J]. J Am Chem Soc, 2006,128:2504-2505.
    [13]锁志勇,魏先文,徐正,刘德军,余智,张呁,李德重.两种新的时间分辨光谱技术[J].无机化学学报, 2000, 3: 404-410.
    [14] (a)Rosker M, Dantus M, Zewail A H. Femtosecond Clocking of the Chemical Bond [J]. Science, 1988, 241: 1200-1202. (b)Su J T, Zewail A. H. Solvation Ultrafast Dynamics of Reactions. 14. Molecular Dynamics and ab Initio Studies of Charge-Transfer Reactions of Iodine in Benzene Clusters [J]. J Phys Chem A, 1998,102:4082-4099. (c)Zhong D, Bernhardt T M, Zewail A H. Femtosecond Real-Time Probing of Reactions. 24. Time, Velocity, and Orientation Mapping of the Dynamics of Dative Bonding in Bimolecular Electron Transfer Reactions [J]. J Phys Chem A, 1999, 103: 10093-10117.
    [15] Zheng Shunxuan . Laser Raman Spectroscopy , Shanghai : Shanghai Science and Technology Press , 1982: 99-128 .
    [16] (a)Lee S Y, Heller E J. Time-dependent theory of Raman scattering [J]. J Chem Phys, 1979, 71:4777-4788. (b)Heller E J, Sundberg R L, Tannor D J. Simple aspects of Raman scattering [J]. J Phys Chem, 1982,86: 1822-1833.
    [17] (a)Xuming Zheng, Phillips D L. Effect of geometrical conformation on the short-time photodissociation dynamics of 1-iodopropane in the A-band absorption [J]. J Chem Phys, 1998, 108: 5772-5783. (b)Xuming Zheng, Wei-Hai Fang, Phillips D L. Transient resonance Raman spectroscopy and density functional theory investigation of iso-polyhalomethanes containing bromine and/or iodine atoms [J]. J Chem Phys, 2000,113:10934-10946. (c)Phillips D L, Wei-Hai Fang, Xuming Zheng. Isodiiodomethane Is the Methylene Transfer Agent in Cyclopropanation Reactions with Olefins Using Ultraviolet Photolysis of Diiodomethane in Solutions: A Density Functional Theory Investigation of the Reactions of Isodiiodomethane, Iodomethyl Radical, and Iodomethyl Cation with Ethylene [J]. J Am Chem Soc, 2001, 123: 4197- 4203.
    [18] (a) M. Rosker, M. Dantus, A. H. Zewail Femtosecond clocking of the chemical bond [J]. Science, 1988, 241(4870): 1200-1202. (b) J. T. Su, A. H. Zewail Solvation ultrafast dynamics of reactions. 14. molecular dynamics and ab initio studies of charge-transfer reactions of iodine in benzene clusters [J]. J Phys Chem A, 1998, 102(23): 4082-4099.
    [19] D. Zhong, T. M.Bernhardt, A.H.Zewail Femtosecond real-time probing of reactions. 24. time, velocity, and orientation mapping of the dynamics of dative bonding in bimolecular electron transfer reactions [J]. J. Phys. Chem. A, 1999, 103(49): 10093-10117.
    [20] D. Grebner, M. Helbig, S. Rentsch. Size-Dependent properties of oligothiophenes bypicosecond time-resolved spectroscopy [J]. J. Phys. Chem, 1995, 99:16991-16998.
    [21] H. Chosrovian, S. Rentsch, D. Grebner, D.U. Dahm, E. Birckner and H. Naarmann. Time-resolved fluorescence studies on thiophene oligomers in solution [J]. Synth. Met. (1993), 60:23-26
    [22] R.S.Becker, J.Seixas de Melo, A.L.Macanita and F.Elisei. Comprehensive Evaluation of the Absorption, Photophysical, Energy Transfer, Structural, and Theoretical Properties ofα?Oligothiophenes with One to Seven Rings [J]. J. Phys. Chem, 1996, 100:18683-18695.
    [23] R. Rossi, M. Ciofalo, A. Carpita, G. Ponterini, Singlet—triplet intersystem crossing in 2,2′:5′,2″-terthiophene and some of its derivatives [J]. J. Photochem.Photobiol. A , 1993,70:59-67.
    [24] R.A.J. Janssen, L. Smilowitz, N.S. Sariciftci and D. Moses, Triplet-state photoexcitations of oligothiophene films and solutions [J]. J. Chem. Phys. 1994, 101:1787-1798.
    [25] S. Rentsch, J. P. Yang, W. Paa, E. Birckner, J. Schiedt and R. Weinkauf. Size dependence of triplet and singlet states of a-oligothiophenesPhys. [J]. Chem. Chem. Phys.,1999, 1: 1707-1714
    [26] K. R. Asmis, Dissertation, University of Freiburg, 1996
    [27] E.H. van Veen. Tripletπ→π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy [J].Chem. Phys. Lett. 1976, 41:535-539.
    [28] L. Serrano-Andrés, M. Merchán, M. Fülscher and B.O. Roos. A theoretical study of the electronic spectrum of thiophene [J]. Chem. Phys. Lett. 1993, 211:125-134.
    [29] H. k?ppel E.V. Gromov A.B. Trofimov Multi-mode–multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion [J]. Chem Phys, 2004, 34:35-49.
    [30] Maurizio D’Auria. Ab initio study of the photochemical isomerization of thiophene derivatives [J]. J.of Photochem. and Photobio. A: Chemistry., 2002, 149:31-37.
    [31] Fei Qi, Osman Sorkhabi, Abbas H. Rizvi, and Arthur G. Suits. 193 nm Photodissociation of Thiophene Probed Using Synchrotron Radiation[J]. J. Phys. Chem. A 1999, 103:8351-8358.
    [32] (a)张文雨,丁万见,刘若庄.噻吩光解反应机理的理论研究[J].化学学报2008,66(5): 497-504. (b) S.L.N.G. Krishnamachari and T.V. Venkitachalam. A new transient absorption spectrum observed in the flash photolysis of thiophene [J]. Chem.Phys. Lett., 1978,55:116-118. (c) C.W. Hsu, C.L. Liao, Z.X. Ma, and C. Y. Ng Direct Identification of Photofragment Structures Formed in the 193 nm Photodissociation of Thiophene [J].J. Phys. Chem. 1995, 99:1760-1767.
    [33] Wolfgang Paa, Ji-Ping Yang, Matthias Helbig, Joachim Hein, Sabine Rentsch.Femtosecond time-resolved measurements of terthiophene:fast singlet–triplet intersystem crossing [J]. Chem.Phys. Lett.,1998, 292:607–614.
    [34]王艳霞,陈益山,叶松. 2-甲基噻吩光异构化成3-甲基噻吩的理论研究[J].高等学校化学学报, 2005, 26:747-750.
    [35] Hailin zhu; jian liu, Xuming Zheng and David Lee Phillips Resonance Raman study of the A-band short-time photodissociation dynamics of 2-iodothiophene [J].J. Chem. Phys., 2006, 125:1-9.
    [36] R. Weinkauf L. Lehr E. W. Schlag S. Salzmann C. M. Marian Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory [J]. Phys. Chem. Chem. Phys., 2008,10:393-404
    [37] Susanne Salzmann Martin Kleinschmidt J?rg Tatchen Rainer Weinkauf and Christel M. Marian Excited states of thiophene: ring opening as deactivation mechanism [J]. Phys. Chem. Chem. Phys., 2008,10:380-392
    [38] Osman Sorkhabi, Fei Qi, Abbas H. Rizvi, and Arthur G. Suits. Ultraviolet photodissociation of furan probed by tunable synchrotron radiation [J]. J. Chem. Phys., 1999,111:100-107.
    [39] W. A. Rendall, A. Clement, M. Torres, and 0. P. Strausz Dewar Furan and Dewar Thiophene: Low-Temperature Matrix Photolysis of Furan and Thiophene [J]. J. Am. Chem. Soc.,1986, 108:1692-1693.
    [40] Maurizio D’Auria Ab Initio Study on the Photochemical Isomerization of Furan Derivatives [J]. J. Org. Chem. 2000, 65: 2494-2498.
    [41] Nemanja Gavrilov Susanne Salzmann Christel M. Marian Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene [J].Chem. Phys., 2008, 349: 269–277.
    [42] (a)E. V. Gromov, A. B. Trofimov, and N. M. Vitkovskaya Theoretical study of the low-lying excited singlet states of furan [J]. J Chem Phys. 2003,119(2):737-753.(b) Rudolf Burcl, Roger D. Amos, Nicholas C. Handy Study of excited states of furan and pyrrole bytime-dependent density functional theory [J]. Chem. Phys. Lett., 2002, 355: 8–18.(c) Michael H. PalmerIsobel C. Walker Charles C. Ballard Martyn F. Guest The electronic states of furan studied by VUV absorption,near-threshold electron energy-loss spectroscopy and ab initio multi-reference configure [J].Chem. Phys. 1995, 192:111-125.
    [43] E. V. Gromov, A. B. Trofimov, and N. M. Vitkovskaya Theoretical study of excitations in furan: Spectra and molecular dynamics [J]. J Chem Phys. 2004,121(10):4585-4598.
    [44] WANG YanXia YE Song Theoretical Study on Photoisomerization of 2-M ethylfuran to 3-M ethylfuran [J].Chinese.J.Struct.Chem., 2006,25(6):681-688.
    [45] M.H. Palmer, I.C. Walker and M.F. Guest. The electronic states of pyrrole studied by optical VUV absorption, near-threshold electron energy-loss (EEL) spectroscopy and ab initio multi-reference configuration interaction calculations [J]. Chem. Phys. 1998, 238:179-199.
    [46] R. McDiarmid , X. Xing. On the energetics of the lower excited states of N-methylpyrrole [J]. J. Chem. Phys. 1996, 105:867-873.
    [47] P. Celani and H.J. Werner, Analytical energy gradients for internally contracted second-order multireference perturbation theory [J]. J. Chem. Phys., 2003, 119:5044-5057.
    [48] A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux and C. Jouvet, Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules [J]. Phys. Chem. Chem. Phys., 2002, 4:1093– 1100.
    [49] D.A.Blank, S.W.North and Y.T.Lee, The ultraviolet photodissociation dynamics of pyrrole [J]. Chem. Phys., 1994, 187:35-47.
    [50] J. Wei, A. Kuczmann, J. Riedel, F. Renth and F. Temps, Photofragment velocity map imaging of H atom elimination in the first excited state of pyrrole [J]. Phys. Chem. Chem. Phys. 2003, 5:315-320.
    [51] Valerie Vallet, Zhenggang Lan, Susanta Mahapatra, A.L. Sobolewski and Wolfgang Domcke Time-dependent quantum wave-packet description of the 1πσ* photochemistry of pyrrole Faraday Discuss., 2004, 127, 283–293.
    [52] A. L. Sobolewski and W. Domcke, Conical intersections induced by repulsive 1πσ* states in planar organic molecules: malonaldehyde, pyrrole and chlorobenzene as photochemical model systems [J].Chem. Phys., 2000, 259:181-191.
    [53] A.L.Sobolewski, W.Domcke Ab initio investigations on the photophysics of indole [J]. Chem.Phys. Lett., 1999, 315:293–298.
    [54] Michael H. Palmer The electronic states of thiazole studied by VUV absorption spectroscopy and ab initio configuration interaction methods [J].Chem. Phys., 344 (2008) 21–34.
    [55] Maurizio D’Auria Ab initio study on the photochemical isomerization of thiazole derivatives [J]. Tetrahedron 58 (2002) 8037–8042.
    [1] Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects [J]. Rev Mod Phys,1989,61: 689-746.
    [2]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社,2004.
    [3] Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-bodyGreen’s-function approaches [J]. Rev Mod Phys , 2002, 74: 601-659.
    [4] Ismail-Beigi S, Louie S G. Excited-State Forces within a First-Principles Green's Function Formalism [J]. Phys Rev Lett , 2003, 90: 076401-076404.
    [5] Becke, A. Density functional calculations of molecular bond energies [J]. J Chem Phys, 1986, 84: 4524-4529.
    [6] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev B, 1988, 37: 785-789.
    [7] Frisch M J, et al. Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA, 2003.
    [8] Peuckert V.A new approximation method for electron systems [J].J Phys C: Solid States Phys, 1978,11:4945-4956.
    [9] Zangwill A, Soven P. Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases [J].Phys Rev A, 1980,21:1561-1572.
    [10] Runge E, Grass E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys Rev Lett, 1984, 52:997-1000.
    [11] Burke K, Grass E K U. In Density Functionals:Theory and Applications.Eds.:Joubert D.Springer:Berlin,1998.
    [12] Grass E K U, Kohn W, [J].Adv Quant Chem, 1990,21:255.
    [13] Grass E K U, Dobson F J, Petersilka M. Density Functional Theory,Springer,1996.
    [14] Dobson J, Vignale G, Das M P.Electronic Density Functional Theory:An approach tothe Quantum Many-Body Problem,Plenum,1997.
    [15]徐光宪,黎乐民,王德民,陈敏伯《量子化学》[M],科学出版社,1989.
    [16] Klene M, Robb M A, Frisch M J,et al. Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF [J].J Chem Phys, 2000,113:5653-5665.
    [17] Olsen J, Roos B O, Jorgensen P,et al. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces[J]. J Chem Phys, 1988, 89:2185-2192.
    [18] (a) Mead C A, Truhlar D G. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei [J]. J Chem Phys, 1979,70:2284-2296. (b) Keating S P, Mead C A. Conical intersections in a system of four identical nuclei [J]. J Chem Phys, 1985, 82: 5102-5117. (c) Keating S P,Mead C A. Toward a general theory of conical intersections in systems of identical nuclei [J]. J Chem Phys, 1987,86: 2152-2160.
    [19] (a) Zimmerman, E. Molecular Orbital Correlation Diagrams, Mobius Systems, and Factors Controlling Ground- and Excited-State Reactions. II [J].J Am Chem Soc, 1966, 88 :1566-1567.(b)Desouter-Lecomte M, Lorquet J C. Nonadiabatic interactions in unimolecular decay. IV. Transition probability as a function of the Massey parameter [J]. JChem Phys, 1977, 71 : 4391-4403.(c) Herzberg G. The Electronic Spectra of Polyatomic Molecules Van Nostrand, Princeton, 1966.(d) Celani P, Bernardi F, Olivucci M, Robb M A. Excited-state reaction pathways for s-cis buta-1,3-diene [J].J Chem Phys, 1995, 102 :5733-5743.
    [20] (a) Wilsey S, Bearpark M J, Bernardi F, Olivucci M, Robb M A. Mechanism of the Oxadi--methane and [1,3]-Acyl Sigmatropic Rearrangements ofβ, -Enones: A Theoretical Study [J].J Am Chem Soc,1996,118:176-184.(b) Reguero M, Olivucci M, Bernardi F, Robb M A. Excited-State Potential Surface Crossings in Acrolein: A Model for Understanding the Photochemistry and Photophysics of .alpha.,.beta.-Enones [J].J Am Chem Soc, 1994, 116:2103-2114.(c)Palmer I J, Ragazos L N, Bernardi F, Olivucci M, Robb M A. An MC-SCF Study of the (Photochemical) Paterno-Buchi Reaction [J].J Am Chem Soc, 1994, 116:2121-2132.(d) Palmer L J, Ragazos L N, Bernardi F ,Olivucci M, Robb M A. An MC-SCF study of the S1 and S2 photochemical reactions of benzene [J].J Am Chem Soc, 1993,115:673-682.(e)Celani P, Ottani S, Olivucci M, Bernardi F, Robb M A. What Happens during the Picosecond Lifetime of 2A1 Cyclohexa-1,3-diene? A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion [J].J Am Chem Soc, 1994,116:10141-10151.(f)Celani P, Garavelli M, Ottani S, Bemardi F, Robb M A, Olivucci M. Molecular "Trigger" for the Radiationless Deactivation of Photoexcited Conjugated Hydrocarbons [J].J Am Chem Soc,1995, 117:11584-11585.
    [21] (a)Lee S Y, Heller E J. Time-dependent theory of Raman scattering [J]. J Chem Phys, 1979, 71:4777-4788.(b) Heller E J, Sundberg R L, Tannor D J. Simple aspects of Raman scattering[J]. J Phys Chem, 1982, 86: 1822-1833.
    [22] (a)Myers A B, Mathies R A. In Biological Applications of Raman Spectroscopy [M]. Spiro,T. G., Ed.; Wiley: New York, 1987; Vol. 2. (b)Myers A B, Rizzo T R, Eds. In LaserTechniques in Chemistry [M]. Wiley: New York, 1995.
    [1]李少鹏,吴光明,郑旭明. I2-环己烯复合物的共振拉曼光谱和密度泛函理论计算研究[J].高等学校化学学报, 2004, 25: 1495-1498.
    [2] O. Trulson Mark and A. Mathies Richard. Raman cross section measurements in the visible and ultraviolet using an integrating cavity: Application to benzene, cyclohexane, and cacodylate [J]. J Chem Phys, 1986, 84: 2068-2074.
    [1] G. L. Bendazzoli, F.Bertinelli and P. Palmieri. A new assignment of the uv spectrum of thiophene. Ab initio configuration interaction energies and the single crystal uv spectrum [J].J. Chem. Phys., 1978,69, 5077-5081.
    [2] A.A.El-Azhary, R.H.Hilal. Vibrational analysis of the spectra of furan and thiophene[J]. Spectrochimica acta part A, 1997, 53:1365-1373.
    [3] Jie Yang, Juan Li, and Yuxiang Mo The vibrational structures of furan, pyrrole, and thiophene cations studied by zero kinetic energy photoelectron spectroscopy[J]. J. Chem.Phys., 2006,125: 174313-1―174313-7.
    [4] Karol Pasterny, Roman Wrzalik, Teobald Kupka and Grazyna Pasterna. Theoretical and experimental vibrational studies on liquid thiophene and its acetonitrile solution [J]. Journal of Molecular Structure, 2002, 614:297–304.
    [5] Teobald Kupka, Roman Wrzalik, Grazyna Pasterna and Karol Pasterny. Theoretical DFT and experimental Raman and NMR studies on thiophene, 3-methylthiophene and selenophene[J]. Journal of Molecular Structure, 2002, 616:17–32.
    [6] W. M. Kwok and D. L. Phillips, Solvation and solvent effects on the short-time photodissociation dynamics of CH2I2 from resonance Raman spectroscopy [J].J. Chem. Phys., 1996,104, 2529-2540.
    [7] Dennis P. Strommen. Specific Values of the Depolarization Ratio in Rarnan Spectroscopy [J].Journal of Chemical Education, 1992, 69:803-807.
    [8] Molecules. Derek A. Long《The Raman Effect: A Unified Treatment of the Theory of Raman Scattering》[M]. John Wiley & Sons Ltd, 2002:247-251.
    [9]喻远琴,林珂,于锋,周晓国,刘世林,马兴孝.用CARS技术确定拉曼退偏比的一种数据处理新方法[J].物理学报, 2007, 56(05):2699-2703.
    [10] R. Weinkauf L. Lehr E. W. Schlag S. Salzmann C. M. Marian Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory [J]. Phys. Chem. Chem. Phys., 2008,10:393-404.
    [11] Susanne Salzmann Martin Kleinschmidt J?rg Tatchen Rainer Weinkauf and Christel M. Marian Excited states of thiophene: ring opening as deactivation mechanism [J]. Phys. Chem. Chem. Phys., 2008,10:380-392.
    [12] H. k?ppel E.V. Gromov A.B. Trofimov Multi-mode–multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion [J]. Chem Phys, 2004, 34:35-49.
    [13] DiLonardo, G.; Galloni, G.; Trombetti, A.; Zauli, C.; Electronic spectrum of thiophen and some deuterated thiophens J. Chem. Soc. Faraday II .1972, 68, 2009-2014.
    [14] Varsanyi, G.; Nyulaszi, L.; Veszpremi, T.; Narisawa, T. Vibronic analysis and symmetry of the lowest energy ultraviolet transition of thiophen J. Chem. Soc. Perkin II. 1982, 761-765.
    [15] Bendazzoli, G. L.; Bertinelli, F.; Palmieri, P. A new assignment of the uv spectrum of thiophene. Ab initio configuration interaction energies and the single crystal uv spectrum J. Chem. Phys., 1978, 69, 5077-5081.
    [16] (a)Nyulaszi, L.; Veszpremi, T. Rydberg Bands in the Near UV Spectrum of Thiophene and its Derivatives [J]. J. Mol. Struct. 1986, 140:253-259.(b)Nyulaszi, L.; Veszpremi, T.;π→π* Bands in the Near UV Spectra of Substituted Thiophenes[J]. J. Mol. Struct. 1986, 140:353-357.(c)Nyulaszi, L.; Veszpremi, T.; Interpretation of the Near UV Spectrum of Thiophene by the CNDO/S Method[J]. Kem. K?zl. 1988, 66, 42-47. (d)Nyulaszi, L.; Veszpremi, T.,Low-lying Rydberg-States in Five-Membered Heterocycles[J]. Chem. Scripta 1988, 28, 331-332.
    [17] Igarashi, N.; Tajiri, A.; Hatano, M. The Magnetic Circular Dichroism of the Conjugated O- and S-Heterocycles Bull. Chem. Soc. Jpn. 1981, 54, 1511-1516
    [18] Norden, B.; Hakansson, R.; Pedersen, P. B.; Thulstrup, E. W.; The magnetic circular dichroism of five-membered ring heterocycles Chemical Physics 1978, 33, 355-366.
    [19] W.M.Flicker, O. A. Mosher and A. Kuppermann. Electron impact investigation of electronic excitations in furan, thiophene, and pyrrole [J]. J. Chem. Phys. 1976,64: 1315-1321.
    [20] Wayne M. Flicker, Oren A. Mosher, and Aron Kuppermann Triplet states of furan, thiophene, and pyrrole Chemical Physics Letters 1976,38:489-492
    [21] E. H. Van Veen Tripletπ→π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy 1976,41:535-539.
    [22] Luis Serrano-Andrés, Manuela Merchán, Markus Fülscher and Bj?rn O. Roos. A theoretical study of the electronic spectrum of thiophene[J].Chem. Phys. Lett., 1993, 211:125-134.
    [23] Michael H. Palmer Isobel C. Walker Martyn F. Guest The electronic states of thiophene studied by optical (VUV)absorption, near-threshold electron energy-loss (EEL) spectroscopy and ab initio multi-reference configurationinteraction calculations [J].Chemical Physics 1999, 241:275–296.
    [24] E. J. Beiting, K. J. Zeringue and R. E. Stickel. Absorption spectra of thiophene between 225 and 246 nm at elevated temperatures [J]. Spectrochim. Acta,Part A, 1985, 41, 1413-1418.
    [25]张文雨,丁万见,刘若庄.噻吩光解反应机理的理论研究[J].化学学报2008,66(5):497-504.
    [26] S.L.N.G. Krishnamachari and T.V. Venkitachalam. A new transient absorption spectrum observed in the flash photolysis of thiophene[J]. Chem.Phys. Lett., 1978, 55:116-118.
    [27] Fei Qi, Osman Sorkhabi, Abbas H. Rizvi, and Arthur G. Suits. 193 nm Photodissociation of Thiophene Probed Using Synchrotron Radiation[J]. J. Phys.Chem. A 1999, 103:8351-8358.
    [28] C.W. Hsu, C.L. Liao, Z.X. Ma, and C. Y. Ng Direct Identification of Photofragment Structures Formed in the 193 nm Photodissociation of Thiophene [J].J. Phys. Chem. 1995, 99:1760-1767.
    [29]王艳霞,陈益山,叶松. 2-甲基噻吩光异构化成3-甲基噻吩的理论研究[J].高等学校化学学报, 2005, 26:747-750.
    [30] Hailin zhu; jian liu, Xuming Zheng and David Lee Phillips Resonance Raman study of the A-band short-time photodissociation dynamics of 2-iodothiophene [J].J. Chem. Phys., 2006, 125:1-9.
    [1] Josef Pola, Zdenek Bastl, Jan Subrt, Akihiko Ouchi. Chemical vapour deposition of selenium and tellurium films by UV laser photolysis of selenophene and tellurophene [J]. Appl. Organometal. Chem. 2000, 14:715–720.
    [2] A. Trombetti and C. Zauli, Molecular Spectra and Structure of Selenophen [J]. J. Chem. Soc. (A), 1967, 1106-1111.
    [3] I Powis, I L Zaytseva, A B Trofimov, J Schirmer, D M P Holland,AW Potts and L Karlsson A study of the valence shell electronic structure and photoionization dynamics of selenophene [J]. J. Phys. B: At. Mol. Opt. Phys. 2007, 40:2019–2041.
    [4] Teobald Kupka, Roman Wrzalik, Grazyna Pasterna and Karol Pasterny. Theoretical DFT and experimental Raman and NMR studies on thiophene, 3-methylthiophene and selenophene [J]. Journal of Molecular Structure, 2002, 616:17–32.
    [5] Michael Seth, Jochen Autschbach, and Tom Ziegler. Calculation of theβTerm of Magnetic Circular Dichroism. A Time-Dependent Density Functional Theory Approach [J]. J. Chem. Theory.Comput; 2007,3: 434-447.
    [1] Michael Seth, Jochen Autschbach, and Tom Ziegler. Calculation of theβTerm of Magnetic Circular Dichroism. A Time-Dependent Density Functional Theory Approach [J]. J. Chem. Theory.Comput; 2007,3: 434-447.
    [2] Jie Yang, Juan Li, and Yuxiang Mo The vibrational structures of furan, pyrrole, and thiophene cations studied by zero kinetic energy photoelectron spectroscopy[J]. J. Chem. Phys., 2006,125: 174313-1―174313-7.
    [3] Manuel Montejo, Amparo Navarro, Gordon J. Kearley, Juana Vazquez,?andJuan Jesus Lopez-Gonzalez.Intermolecular Charge Transfer and Hydrogen Bonding in Solid Furan[J]. J. AM. CHEM. SOC.,2004, 126(46):15087-15095.
    [4] A.A.El-Azhary, R.H.Hilal. Vibrational analysis of the spectra of furan and thiophene [J]. Spectrochimica acta part A, 1997, 53:1365-1373.
    [5] Ferenc Billes, Heinz B?hlig, Monika Ackermann and Matthias Kudra. A vibrational spectroscopic study on furan and its hydrated derivatives [J]. Journal of Molecular Structure 2004, 672:1–16.
    [6] L.W. Pickett. A Vibrational Analysis of the Absorption Spectrum of Furan in the Schumann Region [J]. J. Chem. Phys.; 1940, 8:293-296.
    [7] W.C. Price and A.D. Walsh;The Absorption Spectra of the Cyclic Dienes in the Vacuum Ultra-Violet [J]. Proc. R. Soc. London. Ser. A 1941, 179:201-214.
    [8] K. Watanabe and T. Nakeyama. Absorption and Photoionization Coefficients of Furan Vapor [J]. J. Chem. Phys. 1958, 29 :48-50.
    [9] E. H. Van Veen Tripletπ→π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy Chemical Physics Letters1976, 41:3 535-539
    [10] M.H. Palmer, I.C. Walker, C.C. Ballard, M.F. Guest, The electronic states of furan studied by VUV absorption,near-threshold electron energy-loss spectroscopy and ab initio multi-reference configuration interaction calculations Chem. Phys. 1995, 192:111-125
    [11] J. L. Roebber; D. P. Gerrity; R. Hemley and V. Vaida. Electronic spectrum of furan from 2200 to 1950 ? [J]. Chemical Physics Letters; 1980, 75:104-106.
    [12] H. k?ppel E.V. Gromov A.B. Trofimov Multi-mode–multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion [J]. Chem Phys, 2004, 34:35-49.
    [13] Michael Seth, Jochen Autschbach and Tom Ziegler. Calculation of theβTerm of Magnetic Circular Dichroism. A Time-Dependent Density Functional Theory Approach [J]. J. Chem. Theory Comput. 2007, 3:434-447.
    [14] (a) L. D. Ziegler, B. S. Hudson Resonance Raman scattering of ethylene: Evidence for a twisted geometry in the V state [J]. J. Chem. Phys., 1983, 79(3): 1197-1202. (b) R. J. Sension, L. Mayne, B. Hudson Far ultraviolet resonance Raman scattering. Highly excited torsional levels of ethylene [J]. J. Am. Chem. Soc., 1987, 109(16): 5036-5038. (c) R. J. Sension, B. S. Hudson Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene [J]. J. Chem. Phys. 1989, 90(3): 1377-1389.
    [15] P.-C. Gao, H.-G. Wang, K.-M. Pei, X. Zheng A distorted geometry of methyl xanthate anion in S3 state—Resonance Raman and ab initio studies[J]. Chem. Phys. Lett., 2007, 445(4-6): 173–178.
    [16] Nemanja Gavrilov Susanne Salzmann Christel M. Marian Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene [J].Chem. Phys., 2008, 349: 269–277.
    [17] (a)E. V. Gromov, A. B. Trofimov, and N. M. Vitkovskaya. Theoretical study of thelow-lying excited singlet states of furan [J]. J Chem Phys. 2003,119(2):737-753. (b) Rudolf Burcl, Roger D. Amos, Nicholas C. Handy . Study of excited states of furan and pyrrole by time-dependent density functional theory [J]. Chem. Phys. Lett., 2002, 355: 8–18. (c) Michael H. PalmerIsobel C. Walker Charles C. Ballard Martyn F. Guest The electronic states of furan studied by VUV absorption,near-threshold electron energy-loss spectroscopy and ab initio multi-reference configure [J].Chem. Phys. 1995, 192:111-125.
    [18] Nemanja Gavrilov Susanne Salzmann Christel M. Marian Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene [J].Chem. Phys., 2008, 349: 269–277.
    [19] Maurizio D’Auria. Ab Initio Study on the Photochemical Isomerization of Furan Derivatives [J]. J. Org. Chem. 2000, 65: 2494-2498.
    [20] WANG YanXia; YE Song. Theoretical Study on Photoisomerization of 2-M ethylfuran to 3-M ethylfuran [J].Chinese.J.Struct.Chem., 2006,25(6):681-688.
    [1] Michael H. Palmer. The electronic states of thiazole studied by VUV absorption spectroscopy and ab initio configuration interaction methods [J]. Chemical Physics; 2008, 344:21–34.
    [2] F. Hegelund; R. W.Larsen; M.H. Palmer. The vibrational spectrum of thiazole between 600 and 1400 cm-1 revisited: A combined high-resolution infrared and theoretical study [J].Journal of Molecular Spectroscopy; 2007, 244:63–78.
    [3] Songhee Han; Tae Yeon Kang; Sunyoung Choi; Kyo-Won Choi; Sun Jong Baek; Sungyul Lee and Sang Kyu Kim. One-photon ionization spectroscopy of jet-cooled oxazole andthiazole: the role of oxygen and sulfur in the p-conjugation of heterocyclic compounds [J]. Phys. Chem. Chem. Phys., 2008, 10:3883–3887.
    [4] Edyta Podstawka; Andrzej Kudelski; Tomasz K. Olszewski and Bogdan Boduszek Surface-Enhanced Raman Scattering Studies on the Interaction of Phosphonate Derivatives of Imidazole, Thiazole, and Pyridine with a Silver Electrode in Aqueous Solution [J]. J. Phys. Chem. B 2009, 113:10035–10042.
    [5] Maurizio D’Auria. Ab initio study on the photochemical isomerization of thiazole derivatives [J]. Tetrahedron; 2002, 58:8037–8042.
    [6] Andrzej L. Sobolewski; Wolfgang Domcke. Conical intersections induced by repulsive 1πσ* states in planar organic molecules: malonaldehyde, pyrrole and chlorobenzene as photochemical model systems [J]. Chemical Physics; 2000, 259:181-191.
    [7] Maurizio Muniz-Miranda. SERS investigation on five-membered heterocyclic compounds: isoxazole, oxazole and thiazole [J]. Vibrational Spectroscopy; 1999, 19:227–232.
    [8] Dheeraj K. Singh; Sunil K. Srivastava; Animesh K. Ojha; B.P.A.sthana. Vibrational study of thiophene and its salvation in two polar solvents, DMSO and methanol by Raman spectroscopy combined with ab initio and DFT calculations [J].Journal of Molecular Structure; 2008, 892:384-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700