用户名: 密码: 验证码:
多孔SiO_2微球的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔SiO_2微球是一类具有特殊形貌的多孔材料,在吸附与分离、催化剂载体、药物可控释放等领域有广泛的应用前景。实验结合模板法和溶胶-凝胶法,在两个水硅比不同的正硅酸乙酯-乙醇-氨水-水体系中分别制备了普通和中空多孔SiO_2微球,采用扫描电镜、透射电镜、氮气等温吸附、(小角)X射线衍射、红外光谱、差热-热重分析等手段研究各组份含量对多孔微球的形成及所得微球的结构与性能的影响,对微球的形成机理进行了初步探讨,测试并分析了不同结构与孔特性的多孔微球对山梨酸的吸附行为。
     实验在高水硅比体系引入烷基链长不同的阳离子表面活性剂十二、十四和十六烷基三甲基溴化铵为多孔模板,制得表面活性剂/SiO_2复合微球,煅烧去除表面活性剂,得到纳米孔SiO_2微球。研究发现,随表面活性剂烷基链的增长,孔径增大,孔的有序性增强。表面活性剂用量增多,孔容和比表面积也增大。十六烷基三甲基溴化铵用量为0.3mol时所制得微球形貌最好,孔的有序性最高,其比表面积、孔容、孔径分别为909 m2/g、0.5749 ml/g、2.02nm。在低水硅比体系中制备的微球具有纳米微孔,微球表面积、孔容很小;随氨水用量增大,微球的团聚程度减轻;在该体系中引入十六烷基三甲基溴化铵,制得同时具有微孔与介孔的SiO_2微球,但孔是无序的。
     在高水硅比体系中,采用聚苯乙烯(PS)微球和不同阳离子表面活性剂分别为中空部分和纳米孔的模板,先制得PS/表面活性剂/SiO_2复合微球,煅烧去除模板后得到壳上具有介孔的中空SiO_2微球。结果发现,随表面活性剂烷基链长增加,所制中空微球壳厚增加,并且壳上介孔的孔径增大,有序性增强。多次包覆SiO_2可进一步增大中空微球的球壳厚度。在低水硅比体系中,采用PS微球为中空模板,不用任何表面活性剂可制备壳上具有无序纳米微孔的中空SiO_2微球。研究发现,只有氨水用量小于4.5mol时,才能形成中空微球。提高聚苯乙烯微球用量,可增加样品中形成的中空球的数量,增加正硅酸乙酯时,微球破碎减少,表面变粗糙,颗粒间空隙减少。
     研究多孔微球对山梨酸吸附行为发现,微球对山梨酸的吸附能力取决于其孔容与孔径的大小,孔容、孔径越大其吸附能力越强。此外,中空比非中空SiO_2微球的吸附能力显著增大。
Porous silica microspheres are porous materials with special morphology, having great potential applications in many fields, such as catalyst carrier, adsorption and separation, controlled drug delivery and release etc. In this work, normal and hollow porous SiO_2 microspheres were prepared by a combined template route with sol-gel process in two tetraethyl orthosilicate-ethanol-ammonia-water media with distinct water/silica ratios. Factors influencing the formation, structure and properties of the obtained porous SiO_2 microspheres were studied by SEM, TEM, small angle XRD, IR, TG-DTA, etc. The formation mechanism of the porous microspheres is discussed. The adsorption capabilities of sorbic acid of the porous SiO_2 microspheres with different microstructures and pore characteristics were tested and compared.
     In the medium with a high H2O/TEOS ratio, surfactants, including dodecy-, tetradecyl- and cetyl-trimethylammonium bromide were added. Surfactant-silica composite microspheres were prepared and porous SiO_2 microspheres were obtained after the removal of surfactants by calcination. It is shown that the pore size increases and the nanopores become more ordered with increasing alkyl chain length of the surfactants. The pore volume and specific surface area also increases with the amount of surfactants. The microspheres prepared with 0.3mol cetyl-trimethylammonium bromide have the highest ordering and largest specific surface area, pore volume and pore diameter of 909 m2/g, 0.5749 ml/g and 2.02nm, respectively. In the medium with a low H2O/TEOS ratio, microporous silica microspheres with small surface areas and pore volumes were obtained. The aggregation of product is reduced with the increase in addition of ammonia solution. With addition of cetyl-trimethylammonium bromide in this medium, microspheres with combined mesoporous and microporous were prepared, however, the pores are not ordered.
     Hollow mesoporous SiO_2 microspheres were synthesized using polystyrene (PS) beads as core template and dodecy-, tetradecyl- and cetyl-trimethylammonium bromide as porogens. PS-surfactant-silica composite microspheres were formed. Hollow mesoporous SiO_2 microspheres were obtained after the removal of PS and surfactants by calcination. It is found that the thickness of shells and pore diameter increase with increasing the alkyl chain length and amount of surfactants. The thickness of the hollow SiO_2 shells could also be increased by repeated silica coatings. In the medium with a low H2O/TEOS ratio, hollow microporous SiO_2 microspheres were prepared without addition of surfactant via PS templating. Hollows were only templated when the amount of ammonia solution was less than 4.5mol. Increasing the amount of PS can increase hollow spheres among the product. With the increase in amount of TEOS, less hollow microspheres are found broken. The surface of hollow microspheres is more coarse and interparticle voids decrease.
     Tests on adsorption of sorbic acid of the prepared porous silica microspheres show that the adsorption behavior of porous microspheres mainly depends on their pore volumes and pore diameters. The larger the pore volume and pore diameter the microspheres have, the higher the adsorption capability. In addition, hollow porous microspheres exhibit much higher adsorption of sorbic acid than non-hollow ones.
引文
[1]王维龙,杨晓西,方玉堂,等.聚乙二醇/二氧化硅定形相变材料的制备[J].化工学报, 2007, 58(10): 2664-2668.
    [2]罗文彬,林向农,张昭,等.中孔二氧化硅作无机抗菌剂载体的应用[J].湿法冶金, 2003, 22(1): 28-33.
    [3] Sadasivan S, Sukhorukov G B. Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method[J]. Journal of Colloid and Interface Science, 2006(304): 437-441.
    [4] Mcglashan M L. IUPAC manual of symbols and terminology[J]. Pure Appl Chem, 1972(31): 578-638.
    [5] Naik S P, Chiang A S T, Thompson R W, et al. Formation of silicalite-hollow spheres by the self-assembly of nanocrystals[J]. Chemistry of Materials, 2003(15): 787-792.
    [6]刘俊渤,臧玉春,吴景贵,等.纳米二氧化硅的开发与应用[J].长春工业大学学报, 2003, 24(4): 9-12.
    [7] Izutsu H, Mizukami F, Nair P K, et al. Preparation and characterization of porous silica spheres by the sol gel method in the presence of tartaric acid[J]. J Mater Chem, 1997, 7(5): 767-771.
    [8] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micronsize range[J]. Journal of Colloid and Interface Science, 1968(26): 62-69.
    [9] Lecloux A J, Bronckart J, Noville F, et al. Study of the texture of monodisperse silica sphere samples in the nanometer size range[J]. Colloids and Surf, 1986, 19(4): 359-374.
    [10] Grun M, Lauer I, Unger K K, et al. The synthesis of micrometer and submicrometer-size spheres of ordered mesoporous oxide MCM-41[J]. Adv Mater, 1997, 9(3): 254-257.
    [11] Vatuli J C, Schmitt K D, Kresge C T, et al. Development of a formation mechanism for M41s materials[J]. Zeolites and related microporous mater: State of art, 1994(1): 53-60.
    [12] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite materials[J]. Nature, 1994(368): 317-321.
    [13] Asefa T, Maclachian M J, Coombs N, et al. Periodic mesoporous organo silicas with organic groups inside the channel walls[J]. Nature, 1999(402): 867-871.
    [14] Lelong G, Bhattacharyya S, Kline S, et al. Effect of Surfactant Concentration on the Morphology and Texture of MCM-41 Materials[J]. Phys Chem C, 2008, 112(29): 10674-10680.
    [15] Monnier A, Schuth F, Huo Q, et al. Cooperative formation of inorganic-organic Interfaces in the synthesis of silicate mesosructures[J]. Science, 1993(261): 1299-1303.
    [16] Liu J M, Liao S H, et al. Preparation, characterization and catalytic activity of Zr embeddedMSU-V with high thermal and hydrothermal stability[J]. Microporous and Mesoporous Materials, 2006 (95): 306-311.
    [17] Christabel E Fowler, Deepa Khushalani, Stephen Mann. Interfacial synthesis of hollow microspheres of mesostructured silica[J]. Chem Commun, 2001(12): 2001-2006.
    [18] Overbeek G. Calculation of the Electrophoretic Mobility of a Spherical Colloid Particle[J]. Journal of Colloid and Interface Science, 1966, 22(1): 78-99.
    [19] K M Parida, Dharitri Rath. Studies on MCM-41: Effect of sulfate on nitration of phenol[J]. Journal of Molecular Catalysis A: Chemical , 2006(258): 381-387.
    [20] Han S H, Wang H. Synthesis of hollow spherical silica with MCM-41 mesoporous structure[J]. Colloid Polym Sci, 2004(282): 1286-1291.
    [21] Iskandar F, Mikrajuddin, Okuyama K. In situ production of spherical silica particles containing self-organized mesoporous[J]. Nano Lett, 2001, 1(5): 231-234.
    [22] Kazuhisa Yano, Yoshiaki Fukushima. Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethy lammonium halide as a surfactant[J]. J Mater Chem, 2004(14): 1579-1584.
    [23] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular-sieves prepared with liquid crystal templates[J]. J Am Chem Soc, 1992(114): 10834-10843.
    [24] Jin Gui Wang, Feng Li, Hui Jing Zhou, et al. Silica Hollow Spheres with Ordered and Radially Oriented Amino-Functionalized Mesochannels[J]. Chem Mater, 2009, 21(4): 612-620.
    [25] Hong Liu, Zhigang Wang. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene[J]. Journal of Solid State Chemistry, 2009(182): 1726-1732.
    [26] S Benadji, P Eloy. Preparation and characterization of HMS supported 11-molybdo-vanado-phosphoric acid for selective oxidation of propylene[J]. Microporous and Mesoporous Materials, 2010 (130): 103-114.
    [27]陈敏.聚合物/SiO_2有机-无机纳米复合微球的制备与表征[D].上海:复旦大学, 2006.
    [28] Sujandi, Eko Adi Prasetyanto. Synthesis of short-channeled amino-functionalized SBA-15 and its beneficial applications in base catalyzed reactions[J]. Applied Catalysis A: General, 2008(350): 244-251.
    [29] ZhiGuo Shi, YuQi Feng. Synthesis and characterization of hierarchically porous silica microspheres with penetrable macropores and tunable mesopores[J]. Microporous and Mesoporous Materials, 2008(116): 701-704.
    [30] Kosuge K, Sigh P S. Mesoporous silica spheres via 1-alkylamine templating route[J]. Micro Meso Mater, 2001(44): 139-145.
    [31] Li Zhao, Jiaguo Yu. A novel approach for the synthesis of monodispersed porous silica microspheres with high surface area[J]. Journal of Non-Crystalline Solids, 2005(351):3593-3599.
    [32] Boissi C, Martines M. Mechanisms of pore size control in MSU-X mesoporous silica[J]. Chem Mater, 2003(15): 59-62.
    [33]林世军,周春晖,等.介孔分子筛MSU-X合成条件对结构及热稳定性影响的XRD研究[J].高校化学工程学报, 2006, 20(6): 38-44.
    [34] Zhengwei Jin, Xiaodong Wang. A two-step route to synthesis of small-pored and thick-walled SBA-16 type mesoporous silica under mildly acidic conditions[J]. Journal of Colloid and Interface Science, 2007(307): 158-165.
    [35] Huihui Wan, Lin Liu. Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography[J]. Journal of Colloid and Interface Science, 2009(337): 420-426.
    [36]郑修成,袁程远.介孔分子筛SBA-15的合成与表征[J].郑州大学学报(理学版), 2008, 40(1): 101-106.
    [37] Rahul Pal, Debtosh Kundu. Sol-gel synthesis of porous and dense silica microspheres[J]. Journal of Non-Crystalline Solids, 2008(176): 222-231.
    [38] K Zhang, W Wu. Pickering emulsion polymerization: Preparation of polystyrene/nano SiO2 composite microspheres with core-shell structure[J]. Powder Technology, 2003(4): 1-8.
    [39] Hankwon Chang, SoonJoong Kim, Hee-Dong Jang, et al. Pore size-controlled synthesis and characterization of nanostructured silica particles[J]. Ultramicroscopy, 2008(108): 1260-1265.
    [40] T Witoon, M Chareonpanich, J Limtrakul. Synthesis of bimodal porous silica from rice husk ash via sol-gel process using chitosan as template[J]. Materials Letters, 2008(62): 1476-1479.
    [41] Davis S A, Burkett S L, Mendelson N, et al. Bacterial templating of ordered marcostructures in silica and silica surfactant mesophases[J]. Nature, 1997(385): 420-423.
    [42] HongPing Lin, ChungYuan Mou. Structural and Morphological Control of Cationic Surfactant Templated Mesoporous Silica[J]. Acc Chem Res, 2002(35): 927-935.
    [43] Zhou W Z, Thomas J M, Shephard D S, et al. Ordering of ruthenium cluster carbonyls in mesoporous silica[J]. Science, 1998(280): 705-708.
    [44] Yanyong Liu, Kunio Suzuki, Satoshi Hamakawa, et al. Highly active methanol decomposition catalyst derived from Pd-hydrotalcite dispersed on mesoporous silica[J]. Catalysis Letters, 2000(66): 205-213.
    [45] Yu J G, Zhao L, Cheng B. Preparation of monodispersed microporous SiO2 microspheres with high specific surface area using dodecylamine as a hydrolysis catalyst[J]. Journal of Solid State Chemistry, 2006(179): 226-232.
    [46]王君,张密林,丁立国,等.纳米SiO2担载SO42-/TiO2-ZrO2-La2O3超强酸的制备及催化反应研究[J].哈尔滨工程大学学报, 2004, 25(6): 806-808.
    [47]刘蒲.影响铝硅质介孔分子筛孔序因素的实验研究[J].材料导报, 2007, 21(9): 146-149.
    [48] Mahtab Pirouzmand, Mostafa M Amini. Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: Catalysts for oxidation of styrene[J]. Journal of Colloid and Interface Science, 2008(319): 199-205.
    [49] Yaofeng Shao, Lingzhi Wang. Novel synthesis of high hydrothermal stability and long-range order MCM-48 with a convenient method[J]. Microporous and Mesoporous Materials, 2005(86): 314-322.
    [50]兰华春,苑宝玲,李坤林,等. MCM-41中孔分子筛对铜离子吸附性能的研究[J].化工环保, 2005, 25(6): 490-493.
    [51] Feng Li, Davis S. Template mineralization of ordered macroporous chitin-silica composites using acuttlebone-devied organic matrix[J]. Chem Mater, 2002(12): 32-37.
    [52]王彬,毛健,侯廷红,等.焙烧温度对载Ag多孔SiO2抗菌性能的影响[J].材料开发与应用, 2004, 19(5): 22-25.
    [53] Zhang Liming, Zhang Zhichao, Wan Qianhong. Preparation of Porous Magnetic Silica Microspheres and Their Application in Genomic Deoxyribonucleic Acids Extraction[J]. Chin J Anal Chem, 2006, 34(7): 923-926.
    [54] Marco U, Martines. Hexagonal mesoporous silica nanoparticles with large pores and a hierarchical porosity tested for HPLC[J]. C R Chimie, 2005(8): 627-634.
    [55]赵东元,余承忠.功能分子筛的合成设计与生命科学[J].化学世界, 2000(3): 9-14.
    [56] Tolbert S H, Landry C C. Phase transition in mesostructured silica/surfactant composites: Surfactant packing and the role of charge density matching[J]. Chem Mater, 2001(13): 2247-2256.
    [57]朱慎林,赵俊琦,等.磁性介孔氧化硅材料的制备与应用[J].石油化工,2009, 38(8): 811-817.
    [58]张志超,李文斌,等.多孔Fe2O3/SiO2复合磁性微球的合成[J].化学工业与工程, 2004, 21(5): 337-339.
    [59] S E Dapurkar, S K Badamali. Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates[J]. Catalysis Today, 2001(68): 63-68.
    [60] Cannas C, Gatteschi D, Musinu A, et al. Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix[J]. J Phys Chem B, 1998, 102(7): 721-726.
    [61] Xiuyun Chuan, Masanori Hirano, Michio Inagaki, et al. Preparation and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions[J]. Applied Catalysis B: Environmental, 2004(51): 255-260.
    [62]孙瑞雪,李木森,吕宇鹏.空心微球性材料的制备及应用进展[J].材料导报, 2005, 19(10):19-21.
    [63] Yanbo Zhang, Jiaguo Yu. Synthesis of monodispersed porous silica microspheres with high surface area[J]. Journal of Non-Crystalline Solids, 2005(351): 3582-3589.
    [64] Jianfeng Chen, Jiexin Wang. Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate[J]. Inorganic Chemistry Communications, 2004(7): 447-449.
    [65] Yangsu Han, Geeyoung Jeong. Hematite template route to hollow type silica spheres[J]. Journal of Solid State Chemistry, 2007(180): 2978-2985.
    [66] Huber D H W, Jungt M, German A L. Vesicle Templating[J]. Adv Mater, 2000, 12(17): 1291-1294.
    [67] Hans Peter Hentze, Srinivasa R Raghavan, Craig A Kelvey, et al. Silica Hollow Spheres by Templating of Catanionic Vesicles[J]. Langmuir, 2003, 19(4): 1069-1074.
    [68]王登志,殷鹏飞,王声乐.超声喷雾热解法制备Co9S8纳米球壳[J].南京师范大学学报, 2007, 7(3): 52-55.
    [69]陈广大,褚海斌,李雪梅.溶剂热法制备硫化镍空心微球[J].化学学报, 2006, 64(1): 85-88.
    [70] Bruinsma P J, Kim A Y, Liu J, et al. Mesoporous silica synthesized by solvent evaporation: spun fibers and spray dried hollow spheres[J]. Chemistry Materials, 1997(9): 2507-2512.
    [71]杨晓玲,姚珂,朱以华.纳米结构的空腔二氧化硅微球的制备和缓释行为[J].无机材料学报, 2005, 20(6): 1403-1408.
    [72] Yufang Zhu, Jianlin Shi, Hangrong Chen, et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property[J]. Microporous and Mesoporous Materials, 2005(84): 218-222.
    [73] Zhuzhu Li, Shiai Xu. Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release, 2006(111): 81- 88.
    [74] Jianfeng Chen, Jirui Song, Lixiong Wen, et al. Preparation and characterization of agglomerated porous hollow silica supports for olefin polymerization catalyst[J]. Journal of Non-Crystalline Solids, 2007(353): 1030-1036.
    [75] Zhu Y F, Shao L. Fabication of porous hollow silica nanoparticales and their Catalytic Activity [J]. Journal of Controlled Release, 2004(98): 256-263.
    [76] Jianfeng Chen, Sajo P Naik, S P Elangovan. Morphology Control of Mesoporous Silica Particles[J]. J Phys Chem C, 2007(111): 11168-11173.
    [77] Chunyan Song, Chunling Wang, Haiyang Zhu, et al. Preparation, Characterization and Catalytic Activity for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts[J]. Catal Lett, 2008(120): 215-220.
    [78]隋学叶,刘世权,程新,等.中空SiO2微球对重金属Cd(II)的吸附研究[J].济南大学学报(自然科学版), 2006, 20(3): 195-198.
    [79]隋学叶.聚苯乙烯为模板制备中空微球的研究[D].济南:济南大学, 2006.
    [80] Hoe Jin Hah, Jung Soo Kim, Byung Jun Jeon, et al. Simple preparation of monodisperse hollow silica particles without using templates[J]. Chem Commun, 2003(256): 1712-1713.
    [81] Ferenc Lonyi, Jozsef Valyon. A DRIFT spectroscopic study of the N2 adsorption and acidity of H-faujasites[J]. Microporous and Mesoporous Materials, 2003(66): 273-282.
    [82] Youssef Belmabkhout, Abdelhamid Sayari. Adsorptionof CO2 from drygaseson MCM-41 silica at ambient temperature and high pressure[J]. Chemical Engineering Science, 2009(64): 3729-3735.
    [83] Rosario Huesca, Lourdes Diaz. Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites[J]. Separation and Purification Technology, 1999 (15): 163-173.
    [84] F Rouquerol, J Rouquerol. Adsorption by Powders and Porous Solids[J]. Academic Press London, 1990: 18-20.
    [85] Gelacio Aguilar, Lourdes Diaz. Characterization of the porous structure of two naturally occurring materials through N2 adsorption (77 K) and gas chromatographic methods[J]. Colloids and Surfaces, 2001(176): 245-252.
    [86] Xingtao Jia, Wen He. N2 adsorption curve of mesoporous SiO2: A neglected characterization technique[J]. Materials Letters, 2007(61): 4377-4380.
    [87]天津大学物理化学教研室.物理化学(第二版)[M].北京:高等教育出版社, 1988.
    [88] Di Renzo, F Testa. Texture control of micelle templated mesoporoussilicates: the effect of surfactant and alkalinity[J]. Microporous Mesoporous Mater, 1999(28): 437-446.
    [89]裴堃.山梨酸及其盐的防腐作用[J].食品安全, 2008(5): 37-38.
    [90] Yuan J J, Zhou G B, Pu H T. Preparation and properties of Nafion/hollow silica spheres composite membranes[J]. Journal of Membrane Science, 2008(325): 742-748.
    [91]丁雪峰.无机/有机纳米复合材料及中空材料的合成研究[D].吉林:吉林大学, 2005.
    [92]刘世权.有序介孔SiO2微球的制备与表征及介孔中铁的负载[D].济南:山东大学, 2003.
    [93] Kresge C T, Leonowicz, Roth W J. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism[J]. Nature, 1992, 359(22): 710-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700