用户名: 密码: 验证码:
采空区稳定的可靠度及其影响因素的敏感性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国大多数矿山,留下大量未处理的采空区。采空区的存在,严重影响了矿山的安全生产。因此,对采空区稳定性进行研究是十分必要的。影响采空区稳定性的因素很多,比如顶板暴露面积、矿柱的形状及尺寸、岩体的物理力学性质、岩体中的结构面、采空区赋存的条件、地下水、采矿时的爆破震动等等。这些因素具有复杂性和随机性,其特征是,实际情况往往难以预先知道,或者仅在某种程度上可加以预估而无确切的把握。正是由于这些不确定性因素存在,在采空区的认识中,存在较大困难。本文基于自重应力场(没有考虑构造应力),将数值模拟、敏感性和可靠度分析相结合的方法引入对采空区的稳定性研究工作中,通过研究,取得了一些有意义的成果。
     1、将正交设计和数值模拟相结合,基于多因素、多指标的敏感性分析思想,通过综合分析比较,将影响采空区稳定的各因素进行了排序,最后确定围岩的物理力学参数、采空区高度、顶板暴露面积和采空区埋深这几个因素在进行可靠度分析时应该予以重点考虑。
     2、根据莫尔强度理论,结合数值模拟分析的结果,利用多元线性回归,得出了采空区稳定的极限状态方程,基于蒙特卡洛法和JC法,编制了可靠度的计算程序。两种方法计算可靠度结果一致。
     3、通过对可靠度的敏感性分析,得出埋深和围岩的力学参数是影响采空区稳定的重要因素,其次是采空区形状。
     4、在实际工程中,对于一个具体的矿山而言,埋深和围岩力学参数是相对固定的,但可以控制采空区的形状。根据埋深和围岩力学参数来确定采场结构参数,是保证安全高效采矿的关键,也是保证采空区稳定的一项关键措施。
At present, a large number of untreated mined-out areas have been left in majority mines of China. The mined-out areas influence safety production of mine very seriously. Therefore, the research of the mined-out area stability is very essential. The factors that affect mined-out area stability are many, for instance the exposition area of the roof, the column shape and the size the mine pillar, the physical mechanics nature of rock massif, the rock massif structural plane, the mined-out area tax save time condition, ground water, mining demolition vibration and so on. These factors are complicated and random. Its characteristic is, the actual situation often with difficulty in advance knew, or only to a certain extent may perform to estimate, but not accurate assurance. These uncertainty factors cause the major difficulty in worked-out section understanding. This article based on the dead weight stress field (had not considered that tectonic stress), the method introduction which the numerical simulation, the sensitivity and reliability analysis unifies to the worked-out section investigation into stability work, through the research, has made some meaningful progresses.
     The first, unify the orthogonal design and the numerical simulation, based on the multi-factors, multi objective's sensitive analysis thought that through the generalized analysis comparison, will affect the worked-out section stable various factors to carry on sorting, finally determined that the adjacent formation the physical mechanics parameter, the worked-out section highly, the roof exposition area and worked-out section burying depth these factors when carries on reliability analysis should give the key consideration.
     The second, according to the Mole theory of strength, the union numerical simulation analysis's result, the use multi-dimensional linear regression, has obtained the worked-out section stable limiting condition equation, based on the Monte-Carlo and the JC, has established reliability computational procedure. Two methods computation reliability result is consistent.
     The third, through to reliability sensitive analysis, obtains the burying depth and the adjacent formation mechanics parameter affects the worked-out section stable important attribute, next is the worked-out section shape.
     The fourth, in the actual project, speaking of a concrete mine, the burying depth and the adjacent formation mechanics parameter are relatively fixed, what but may control the worked-out section shape, according to the burying depth and the adjacent formation mechanics parameter determined that the stope design parameter, is the guarantee safe highly effective mining key, also guarantees a worked-out section stable essential measure.
引文
[1]魏东岩.矿山地质灾害分析[J].化工矿产地质.2003,25(2):89-93
    [2]姚建.大宝山地下采空区稳定性分析及处理技术[D].长沙:中南大学,2006
    [3]李夕兵,李地元,赵国彦等.金属矿地下采空区探测、处理与安全评判[J].采矿与安全工程学报.2006,23(1).24-29
    [4]刘星辉,苏国友.邵东县石膏矿采空区地面稳定性评价及地质灾害防治对策[J].矿冶工程.2004,24(1):20-23
    [5]张晓君.影响采空区稳定性的因素敏感性分析[J].矿业研究与开发.2006,26(1):14-16
    [6]罗一忠.大面积采空区失稳的重大危险源辨识[D].长沙:中南大学,2005
    [7]苏永华,方祖烈,高谦.大型地下采空区稳定可靠性分析建模方法探讨[J].中国矿业.1998,7(4):69-72
    [8]张晓君.基于可靠度的采空区稳定性预测[J].矿山压力与顶板管理.2003,20(4):84~85,88
    [9]赵奎,蔡美峰,饶运章等.采空区块体稳定性的模糊随机可靠性研究[J].岩土力学.2003,24(6):987~990
    [10]袁昌明.安全系统工程[M].北京:中国计量出版社,2006
    [11]高大钊.土力学可靠性原理[M].北京:中国建筑工业出版社,1989
    [12]Casagrande, A. Role of The Calculated Risk in Earthwork and Foundation Engineering (The Terzaghi Lecture). ASCE. Vol.91, SM4,1956
    [13]严春风,徐健.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999
    [14]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003
    [15]杨伟军,赵传智.土木工程结构可靠度理论与设计[M].北京:人民交通出版社,2000
    [16]龚文惠,雷红军,陈玉国.基于有限元法的岩土工程可靠度分析[J].华中科技大学学报(城市科学版).2007,24(3):17~20
    [17]侯哲生,李晓,王思敬等.金川二矿某巷道围岩力学参数对变形的敏感性分析[J].岩石力学与工程学报.2005,24(3):406-410
    [18]苗胜军,李长洪,文俊等.基于正交试验设计的滑带土参数敏感性分析[J].中国矿业.2007,16(9):76-79
    [19]李艳华.岩土参数敏感性分析[J].广州建筑.2000,2:34~38
    [20]徐超,叶观宝.应用正交试验设计进行数值模型参数的敏感性分析[J].水文地质工程地质.2004,31(1):95~97
    [21]倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用[J].岩石力学与工程学报.2002,21(7):989~992
    [22]于学馥,郑颖人.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [23]蔡美峰.金属矿山采矿设计优化与地压控制—理论与实践[M].北京:科学出版社,2001
    [24]田显高,陈慧明,陈松树.采空区稳定性的三维有限元模拟[J].矿业研究与开发.2007,27(1):32~34
    [25]李俊平,卢忠瑜ANSYS在采空区稳定性安全评价中的应用[J].中国钼业.2006,30(5):13-17
    [26]郭玉龙,任高峰.三维有限元数值模拟在采空区稳定性评价中的应用[J].西部探矿工程.2005,3:204~206
    [27]张云.有限差分数值模拟在围岩稳定分析中的应用[J].西部探矿工程.2006,11:151-152,155
    [28]武崇福,刘东彦,方志.FLAC3D在采空区稳定性分析中的应用[J].河南理工大学学报(自然科学版).2007,26(2):136~140
    [29]孙国权,李娟,胡杏保.基于FLAC3D程序的采空区稳定性分析[J].金属矿山.2007,2:29-32
    [30]Cundall, P. A. Distinct element models of rock and soil structure. E. T. Brown(ed), Analyti-cal & comp. methods Engrg. Rock Medn,1987,129~163
    [31]Leung, C. F. Rock Mech, Rock Engrg,1990,23:71~89
    [32]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社.1994
    [33]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社.2005
    [34]段瑜.地下采空区灾害危险度的模糊综合评价[D].长沙:中南大学,2005
    [35]郑永学.矿山岩体力学[M].北京:冶金工业出版社.1988
    [36]高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社.1988
    [37]关成立.基于敏感性及可靠性的边坡稳定性研究[D].昆明:昆明理工大学,2006
    [38]李世辉.隧道围岩稳定系统分析[M].北京:中国铁道出版社,1991
    [39]光耀华.岩石力学参数概率统计的几个问题[J].红水河.1995,14(1):37~41
    [40]宫凤强,邓建,李夕兵.岩石力学随机参数的统计方法及研究现状综述[J].山西建筑.2005,31(15):1~2
    [41]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    [42]Han Ping Hong, Niels C. Lind. Approximate reliability analysis using normal polynomial and simulation results [J]. Structural Safety,1996,18(4):329~339
    [43]徐军,雷用,郑颖人.岩土参数概率分布推断的模糊Bayes方法探讨[J].岩土力学.2000,21(4):394~396
    [44]徐超,杨林德.随机变量拟合优度检验和分布参数Bayes估计[J].同济大学学报.1998,26(3):340-344
    [45]苏永华,何满潮,孙晓明.大子样岩石参数统计方法[J].岩土工程学报.2001,23(1):117-119
    [46]李夕兵,宫凤强.岩土力学参数概率分布的推断方法研究综述[J].长沙理工大学学报(自然科学版).2007,4(1):1-8
    [47]盛聚,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社.2001
    [48]胡巍巍,潘健.基于推广贝叶斯法的岩土参数估计及基础设计[J].汕头大学学报(自然科学版).2008,23(1):70-76
    [49]吴世伟.结构可靠度分析[M].北京:人民交通出版社.1990
    [50]徐钟济.蒙特卡洛方法[M].上海:上海科学技术出版社.1985
    [51]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社.1996
    [52]杨伟军.土木工程结构可靠度理论与设计[M].北京:人民交通出版社2000
    [53]刘宁.工程随机力学及可靠性理论中的若干问题(下)[J].河海大学学报.2000,28(1):1-7
    [54]周麟.房柱采矿法采场顶板的可靠性分析[J].金属矿山,1998,259(1):17-20
    [55]Antonio MD Skarmeta F G, Martin F. A fuzzy clustering-based rapid prototyping for fuzzy rele-based modeling. IEEE Trans FS,1997,2 (5):223~227
    [56]Steenkamp, Jan-Benedict E. M., Ter Hofstede, Frenkel. International market segmentation: issues and perspectives. International Journal of Research in Marketing.2002,19 (3): 185-213
    [57]J. C. Bezdek. Fuzzy mathematics in patten classification. Ph.D. Thesis, Cornell University, USA,1973:126~28
    [58]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社.2005
    [59]张莉.C/C++程序设计教程[M].北京:清华大学出版社.2004
    [60]湘沪科技.C/C++函数库查询辞典[M].北京:中国铁道出版社.2005
    [61]Itasca Consulting Group, Inc. FLAC (Fast Lagrangian Analysis of Continua) User Manuals, Version 5.0, Minneapolis, Minnesota,2005.5
    [62]Olson, S. M., T. D. Stark, W. H. Walton and G. Castro. "1907 Static Liquefaction Flow Failure of the North Dike of Wachusett Dam, " Journal of Geotechnical and Geoenvironmental Engineering,2000,126(12),1184~1193
    [63]隋鹏程,陈宝智,隋旭.安全原理[M].北京:化学工业出版社.2005
    [64]蔡美峰.岩石力学与工程[M].北京:科学出版社.2002
    [65]侯克鹏.矿山地压控制理论与实践[M].昆明:云南科技出版社.2004
    [66]解世俊.金属矿床地下开采[M].北京:冶金工业出版社.1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700