用户名: 密码: 验证码:
大麻织物改性技术对染色及服用性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麻纤维具有很多优异的性能,但是由于其纤维中纤维素含量较低,木质素和半纤维素等纤维素伴生物较多,使大麻织物在染整加工和使用上存在很多困难。本课题在参考了大量其它天然纤维素纤维的加工和改性方法的基础上,对大麻织物进行改性,以期可以改善大麻织物的染色和服用性能。
     本课题采用的原料为纯大麻原坯布,由于前处理工艺的优劣直接影响到织物染色时的染色性能,所以为了获得能够满足后续染色及改性的要求的大麻织物,首先简要的讨论一下大麻织物的前处理工艺。分别采用酸碱煮练和酶煮练两种方法对大麻织物进行煮练。先进行酸煮练处理对大麻纤维中木质素的去除有很好的效果,并且配合碱煮练可以很好的提高大麻织物的毛细效应,并且保持较好的强力。由于生物酶对织物刺痒感的改善较为明显,所以在煮练部分选取了常见的三种纺织用酶对大麻织物进行处理,分别为精炼酶、果胶酶、酵素,也取得了较好的效果。酵素酶与果胶酶复配起来处理后织物的毛细效应由原布的14.5cm上升到现在的17.8cm,织物的抗弯长度从原来的38.6cm下降到27.7cm,抗弯强度也从原来的573N下降到213N,表明织物的毛细效应和柔软度都获得了较大的改善。并且织物的单面压缩性能也获得了较好的改善,织物的毛羽长度从0.604mm下降到0.554mm,分界点处的压力值由1.05cN下降到0.87cN,织物主体压缩硬度由11.2下降到9.8,表明织物的刺痒感也有了很大的改善。
     由于获得较好的白度对于后续的染整加工具有重要的意义,选取双氧水和过氧乙酸两种漂白剂对于大麻织物进行漂白,并分别从影响它们漂白的因素着手找到它们对于大麻织物的较佳的工艺,最后结合两种工艺对大麻织物进行初漂与复漂。相对于双氧水来说,过氧乙酸在漂白大麻织物时,对大麻纤维中木质素的去除较为有效,漂白前后的木质素含量分别为5.284%和4.019%,同样条件下双氧水漂白前后大麻织物的木质素含量为5.284%和4.525%。先进行过氧乙酸漂白再进行双氧水漂白可以使大麻织物在保持一定的强力的前提下,获得较好的白度,它的强降率和白度分别为13%和64.1,可以基本满足染整加工的需要。
     针对大麻织物的染色的不足,在参考其它麻类纤维改性方法的基础上,选取浓碱液、乙二胺/氢氧化钠/尿素水溶液,阳离子改性剂3.氯-2-羟丙基三甲基氯化铵、硫脲/氢氧化钠/尿素、N-甲基氧化吗啉(NMMO)等改性方法对大麻织物进行改性在染料的上染率、色牢度、强力、刺痒感等方面均取得了较好的效果。其中NMMO和阳离子改性后的大麻织物性能较为优异,染色时可获得较好的上染率与比表面得色量,并保持较好的色牢度,其对刺痒感的改善也很明显。
     经过改性后的大麻织物在染色时上染率有了明显的提高,阳离子改性后的织物上染率由41%提高到了54%,提高了13%,然后是NMMO处理的织物和乙二胺改性织物,上染率也都分别提高了12%和11%。从K/S值来说,同时织物也获得了较高的K/S值,其中NNNI改性织物达到10.13,阳离子改性织物也达到了9.98,过浓碱改性即丝光后的染色织物K/S值也达到了8.8。从染色时的匀染性来说,染色织物的匀染性也有所提高,色差DE上可以看出,从原布的2.2都有所下降,其中NMMO改性织物的色差为1.2。再从织物的断裂强力和断裂延伸率来说,虽然经过改性后纤维有所损伤,但是同时改性也使纤维中各组分的分布更加均匀.有利织物强力的增加,所以在总体上来看,织物的强力并没有明显的下降,强降率都保持在13%以内,特别是经过NMMO改性的织物强降率不足1%,而且改性织物的断裂延伸率都普遍提高20%以上。同时改性后的染色织物干湿摩擦牢度和耐洗牢度都达到了4-5级以上。从织物的刺痒感来看,改性后大麻织物的刺痒感有所改善。其中NMMO改性的大麻织物的毛羽长度最短,从原来的0.423mm下降到0.324mm.分界点压力值也从0.98cN下降到0.79cN。
The hemp has many excellent properties. but its content of cellulose fibers is low. content of lignin and hemicellulose are more, so there are many difficulties in the dyeing and finishing of hemp fabric. The subject in reference to the large number of other natural cellulose fiber processing and modification methods. modified the hemp fabric, in order to improve its dyeability and wearability.
     The subject used pure hemp fabric as raw materials. because the effect of the pre-treatment process will directly affect the dyeing performance of the fabric. So in order to meeting the requirements of the hemp fabric of staining and modification, first briefly discuss pretreatment of hemp fabric. In processing of scouring used two methods. acid and alkali scouring and enzyme scouring. Doing acid scouring on the removal of lignin in hemp fibers have a good effect, and with alkali scouring it can improve the capillary effect and maintain good strength of the hemp fabric. As Prickle enzyme to improve the fabric is more obvious, so selected three common enzymes in textile treated the hemp fabric, refined enzyme, pectinase enzyme, cellulose enzyme, and had achieved good results. Pectinase enzyme complexed together with the cellulose enzyme treat with the hemp fabric, the capillary effect of the hemp fabric from 14.5cm up to the present 17.8cm. length of fabric from the original 38.6cm bending down to 27.7cm. flexural strength from the original 573N down to 213N, show that the capillary effect and Rouran fabrics are given a greater degree of improvement. And one side of the fabric getting better compression performance improvement, the bending length of the fabric decreased from 0.604mm to 0.554mm, the pressure at the dividing point decline in value from 1.05cN to 0.87cN, the main compression hardness of the fabric from 11.2 to 9.8.
     Getting the good whiteness is significant to the fabric in the dyeing and finishing processing, selected two kinds of bleaching agent for bleaching of hemp fabric, hydrogen peroxide and peracetic acid bleach. Respectively, from the impact of various factors in bleaching, discussed the two in detail. finally arranged the process of bleaching of the hemp. Relative to hydrogen peroxide, the peracetic acid bleaching of hemp fabric is more effective to the removal of lignin, content of lignin before and after bleaching was 5.284% and 4.019%, and under the same conditions before and after hydrogen peroxide bleaching content of lignin was 5.284% and 4.525%. Finally, frist doing peracetic acid bleaching and next doing marijuana hydrogen peroxide bleaching can maintain a strong fabric and obtain better whiteness, its strength deprssed 13% and whiteness was 64.1, it can basically meet the dyeing and finishing processing needs.
     In reference to other hemp fiber modified methods, established the modified plans of the hemp fabric. By analyzing the uptake rate, color fastness, strength, fabric-evoked prickle, etc. researched the effect of the modification. Modified method selected alkali mercerization, ethylenediamine / sodium hydroxide / urea solution, cationic modifier 3-chloro -2- hydroxypropyl trimethyl ammonium chloride, thiourea / sodium hydroxide urea, N-methyl morpholine oxide (NMMO). all achieved certain results. In these, the properties of the hemp fabric modified by cationic modifier and NMMO are more excellent, they obtained good dyeing rate and better color yield in staining, kept good color fastness, also improved its prickle.
     The dyeing rate of hemp fabric after modification has been significantly improved. The dyeing rate of cationic modification fabric from 41% to 54%. increased by 13%, and then The dyeing rate of the fabric modifided by NMMO and ethylenediamine, increased 12% and 11%. And the K/S value of the fabric also received a higher, which the K/S value of the fabric modified by NMMO and cationic agent respectively reached 10.13 and 9.98. The difference of color DE decreased from 2.2. DE value of fabric modified NMMO was 1.2. Although the fiber modified has been injury, but at the same modification also made each component of the fiber more distribution. it is conducive to the increasing the strength of the fabric. So, the fabric strength was not significantly reduced, the rate of strength droping maintained at 13% or less, special fabrics modified by NMMO rate of strength droping even less than 1%, and the breaking elongation of the fabric had increased above 50%. While the dry and wet rubbing fastness and washing fastness of the modified fabric dyed all had reached 4 to 5 level above. From the prickle view of the fabric. Prickle of hemp fabric modified improved. The hairiness length o(?) hemp fabric modified NMMO is the shortest, from the original 0.423mm down to 0.324mm, the demarcation point pressure decreased from 0.98cN to 0.79cN.
引文
[1]张金燕.大麻纤维的性能研究与产品开发.上海毛麻科技,2008.30(1):30-34
    [2]彭定祥.我国麻类作物生产现状与发展趋势.中国麻业科学,2009,31:72-78
    [3]张芳,曲丽君.大麻纤维脱胶工艺现状与展望.浙江纺织服装职业技术学院学报,2006,6(2):12-16
    [4]孙小寅.管映亭,温桂清.等.大麻纤维的性能及其应用研究.纺织学报,200122(4):3-36
    [5]彭源德.亚麻大麻脱胶技术现状与发展趋势.中国麻业科学,2007,29(增刊89-91
    [6]杨英贤.麻纤维脱胶的现状与对策.山东纺织科技,2005.1:51-54
    [7]刘云,张一平,许瑞超.大麻纤维性能及其纺织品的开发.纺织服装科技,2009.2:841-845
    [8]Madison W. Wood Handbook-Wood as an engineering material. U. S. Departmentof agriculture,Forest Service. Forest Products Laboratory,1999:460-463
    [9]张建春,张华.汉麻纤维的结构性能与加工技术.高分子通报,2008,12:44-51
    [10]殷祥刚,滑钧凯,朱若英.大麻加工技术现状及发展.天津工业大学学报,2003,22(1):13-17
    [11]Suhas PJMC, Carrott MMLR. Lignin-from natural adsorbent to activated carbon: A review. Bioresource Technology.2007,98(12):2301-2312
    [12]IngleN. P.著,张子涛译.大麻未来最有前途的纤维素纤维.国外纺织技术2001,36(3):7-10
    [13]赵铭森,康红梅,孔佳茜.新型大麻产品综合开发利用研究.现代农业科学.2009,16(5):275-276
    [14]董政娥.麻纤维及其纺织品的发展前景.纤维素科学与技术,2003,(9):54-63
    [15]杨红穗,张元明.大麻纺织应用前景及研究现状.纺织学报.1999,8:258-260
    [16]Monties B, Fukushima K. Occurrence, Function and Biosynthesis of Lignins. in: Hofrichter, M. and Steinbuchel, A., editors. Lignin, Humic Substances and Coal, Helsinki, Finland:Wiley-Vch,2001:1-40
    [17]唐爱民,梁文芷.纤维素的功能化.高分子通报,2000,(3):1-9
    [18]杨亚妮.苎麻纤维改性及染色性能的研究.[陕西师范大学硕士学位论文].2007:3-4
    [19]赵欣,高树珍,王大伟.亚麻纺织与染整.北京:中国纺织出版社,2007:5
    [20]C. Cellelstedt, J. Pnlnda. M. Lindfors. Structural and Molecular Properties of Residual birch kraft lignins. WoodChemistry and Technology,1994.14(4):467-82
    [21]M. Allan. Industrial Environmental Control Pulp and Paper Industly. Second edition. Altanta Georgia:Tappi press,1993.(2):288-291,
    [22]J. Basta, L. Hoitinger, P. Lundgren. International Pu1p Bleaching Cofrerence.3. Stockholm.Sweden.1991:25-27
    [23]王菊生,孙铠.染整工艺原理(第二册).纺织工业出版社.1982:68-214
    [24]I. Kawamura.J. Higuchi. Chim biochem lignin cellulose hemicelluloses. Grenoble,1964.17(5):469-474
    [25]贾志华,张元明.亚麻粗纱煮漂工艺的研究进展及发展趋势.中国麻业科学.2007.29(6):349-351
    [26]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: areview. Bioresource Technology.2002,83(1):1-11
    [27]Zhao H, Kwak JH, Zhang ZC, et al. Studyeing cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers.2007,68(2):235-241
    [28]戴永鑫,王海宽,刘逸寒,等.白腐菌对秸秆中木质素生物降解的研究.天津科技大学学报.2007,22(4):24-26
    [29]Stefan Backa, Anders Brolin. Characterisation of Fungal Degraded Birch Wood by FTIR and Py-GC. Holzforschung,2001(55):225-232
    [30]敖利民,郁崇文.基于织物单面压缩性质的织物刺瘁感客观评价.东华大学学报(自然科学版),2007,12(6):756-759
    [31]刘明友,王俊文.表面活性剂与过氧化氢强化氧脱木素工艺的优化.造纸科学与技术,2010,29(1):12-15
    [32]Li, Mohannned;Inslam, M. Nurul. Adapting the Principle of neutral sulphite cooking for modification of textile quality of jute fiber. IndianJ. Fiber text Res. 2000,25(40):298-302
    [33]范鹏程,田静,黄静美,等.花生壳中纤维素和木质素含量的测定方法.重庆科技学院学报,2008,10(5):64-65
    [34]RodriguzeA, JimznezL, Ferre JL. Use ofoxygen in the delignifi-cation and bleaching ofpulps. Appita Journal,2007,60(1):17-22
    [35]中野准三.木质素的化学——基础与应用.高洁,鲍禾,李忠正译.北京:轻工业出版社,1988:330
    [36]岳升采.大麻纤维生物漂白工艺研究.[苏州大学高级教师申请硕士学位论文].2007:19
    [37]管云玲.大麻碱氧一浴一步法短流程脱胶漂白新工艺研究.[青岛大学硕士学位论文].2003:16
    [38]Brogdon Brian N, Dimmel Donald R et al. The influence of the bleachingmedium on chlorine dioxide delignification. Wood chem. Techol,2001.21(2):143-156
    [39]Edward L, Springer. On-site peracids:Tools for bleaching strategies to meetthe cluster rule and conside rations on selecting a mong them. TappiJ,1994.77(6): 103-108
    [40]杨文芳,王蕾.生态漂白剂过醋酸漂白亚麻织物的研究.印染,2002(8):1-4
    [41]王晓明.苎麻织物的过醋酸漂白研究.印染.2004(10):8-11
    [42]J.D.Ricketts.Role of Peracids Revisited for Delignification bleach.Pulp&Paper.1995,(5):89-94
    [43]赵建,石淑兰,胡惠仁.过氧酸预处理时过氧酸与木素的反应机理.纤维素科学与技术,1998,6(3):59-64
    [44]A. L. Torres, M. B. Roncero et al. Effect of a novel enzyme on fibre morphologyduring ECF bleaching of oxygen delignified Eucalyptus kraft pulps. Bioresource Technology,2000,74:135-140
    [45]赵玉萍,王晗,邓丽丽.亚麻织物的过氧化氢和过醋酸漂白.印染.2004.10: 12-13
    [46]刘杰.亚麻粗纱的过氧乙酸漂白工艺研究.针织工业,2007,12:46-48
    [47]刘杰.大豆蛋白复合纤维/亚麻混纺纱的过氧乙酸漂白工艺.天津工业大学学报,2009,28(5):54-56
    [48]Celine Cuissinat,Patrick Navard.Swelling and Dissolution ofCellu-lose Partl:Free Floating Cotton andWood Fibres in N-Methylmor-pholine-N-oxide-WaterMixtures.Macromo.1 Symp,2006,(244): 1-18
    [49]贾丽华,陈朝晖,高洁.亚麻纤维及应用.北京:化学工业出版社,2007:119
    [50]金圣姬,角俊,施亦东,等.乙二胺/尿素/水混合液对苎麻织物结构和性能的影响.印染助剂,2010,27(3):42-44
    [51]王海云,朱永年,储富祥,等.溶解纤维素的溶剂体系研究进展.生物质化学工程,2006,40(3):54-58
    [52]许海霞,李振国,张滇溪,等.纤维素新溶剂的研究进展.合成纤维,2006,9:18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700