用户名: 密码: 验证码:
镁粉爆炸特性实验研究及其危险性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁粉是我国镁行业近年最具代表性的镁深加工产品之一,由于镁粉易与氧化剂反应,因此在生产、运输、储存及使用过程中存在火灾爆炸危险性,给镁粉的正常生产带来较大影响。然而,目前关于镁粉火灾爆炸机理方面的基础和实验研究甚少,现有的镁粉爆炸特性参数的测试结果存在不同程度的偏差,且爆炸特性数据不完整,很难进行系统的分析。因此,对镁粉的爆炸特性参数仍需要进一步的实验研究。
     本文首先利用根据ISO标准建立的爆炸测试装置,20L球形爆炸测试装置,Godbert-Greenwald炉等,对不同条件下镁粉的爆炸特性参数进行了测试,并进行了影响因素分析。在空气条件下对中位径为6μm、47μm、104μm、173μm镁粉的爆炸特性参数进行了测试,包括最大爆炸压力、最大压力上升速率、爆炸指数、爆炸下限、粉尘云最低着火温度、粉尘层最低着火温度、最小点火能等;并以中位径47μm的镁粉为代表,在氮气、氩气、二氧化碳等不同气氛条件下对该镁粉的最大爆炸压力、最大压力上升速率与爆炸指数进行了实验测试。最后,在惰化条件下对中位径为6μm、47μm、104μm镁粉的极限氧浓度进行了测试。实验结果表明,镁粉粒径越小,最大爆炸压力、最大爆炸压力上升速率及爆炸指数越大,而爆炸下限浓度、粉尘云最低着火温度、粉尘层最低着火温度和最小点火能则越低。随着镁粉浓度增加,爆炸压力、压力上升速率及爆炸指数先增大后减小,而粉尘云最低着火温度却一直降低;在一定浓度的氮气、氩气、二氧化碳气氛条件下,镁粉的爆炸猛烈度总体上有所减缓,而极限氧浓度则随着粒径的增大呈上升趋势。通过综合比较三种惰性气体对极限氧浓度的影响,氮气对镁粉爆炸的惰化效果最佳。最后,根据镁粉尘层最低着火温度实验观察,提出了由固相燃烧到气相燃烧的镁粉尘层两阶段燃烧模型。
     在上述实验测试的基础上,用Access和Visual Basic.NET工具建立了镁粉爆炸参数数据库,可根据不同的粒径级别实现不同爆炸特性参数的智能查询。
     以镁粉的爆炸特性为基础,结合镁粉的生产工艺,对镁粉生产涉及到的工艺和设备进行了爆炸危险性定性评价。
Magnesium powder was a representative product with high tech in recent years. However, great hazard of fire & explosion exists during producing, transporting, storing, and employing because of its high activity, and had great effect on regular production of magnesium powder However, the descriptions of experimental and theoretical research on magnesium powder are lacking, and the results from some literatures were determined in different experimental configurations, making a systematic data analysis very challenging.
     At first, under several conditions some experiments for various magnesium powder have been done in 20L ball, Godbert-Greenwald (G-G) and other testing rigs which were configured based on international standard, and the factors which affect on the magnesium powder explosion were analyzed. In atmosphere some parameters for four magnesium specimens whose D50 was 6μm,47μm,104μm and 173μm were determined, including Pmax, (dp/dt)max, Kst, MEC, MITC, MITL and MIE. Then, as a representative specimen, Pmax、(dp/dt)max、Kst of magnesium powder whose D50 was 47μm was determined with different concentration of nitrogen, argon, and carbon dioxide. Finally, the MIE and LOC of magnesium powder whose D50 was 6μm,47μm,104μm was determined in this condition with insufficiency of oxygen.
     The results show that with decreasing diameters some parameters are increasing, includingPmax, (dp/dt)max, Kst, and others are decreasing, including MEC, MITC, MITL and MIE. Moreover, some parameters including Pmax, (dp/dt)max, Kst, have a maximal value when an appropriate concentration is ready. Before it, the value of these parameters is increasing with increasing concentration, and is decreasing after it. However, MITC was decreasing during the whole process. In insufficient oxygen due to nitrogen, argon, and carbon dioxide, with increasing diameter the violence Parameters were decreasing in a whole, and LOC was increasing. It is found that nitrogen is the best inert media among three considered gases on the basis of the comprehensive comparison of LOC in insufficient oxygen. Finally, a two-stage model which includes solid and gas phase combustion was found, according to the observation in experiments determining MITL.
     According to experimental results mentioned above, the software for data query was developed with Microsoft Access and Visual Basic.NET.
     Finally, explosion risk of magnesium powder was evaluated according to its characteristic, production technique and productive facility.
引文
1. Hoppe T, Jaeger N, Terry J. Safe Handling of combustible powders during transportation charging, discharging and storage [J], Journal of Loss Prevention in the Process Industries,2000, (13):253-263.
    2.胡双启,张景林.燃烧与爆炸[M],北京:兵器工业出版社,1992:301-312.
    3.赫茨贝格M,凯什多勒K L.粉尘爆炸知识介绍[J],防爆电机,1994,(1):42-51.
    4.庞奇志,黄庆冈.浅谈粉尘爆炸及预防对策[J],劳动保护科学技术,1994,14(1):40-42.
    5.王东岩.我国粉尘爆炸事故原因及预防对策[J],中国安全科学学报,1995,5(3):1-4.
    6.王跃进.谨防粉尘爆炸[J],山东消防,2002,9(8):23.
    7. Guangping Zhen, Wolfgang Leuckel. Effect of ignitors and turbulence on dust explosion [J], Journal of Loss Prevention in the Process Industries,1997,10 (5-6):317-324.
    8.王孝元.工业危险消除与控制技术[M],北京:中国标准出版社,2003:166-168.
    9. Young-Soon Kwon, Alexander A.Gromov, Alexander P. Ilyin, et al. The mechanism of combustion of superfine aluminum powders[J], Combustion and Flame,2003, (133):385-391.
    10. Alexander Gromov, Vladimir Vereshchagin. Study of aluminum nitride formation combustion by superfine aluminum powder combustion in air [J], Journal of the European Ceramic Society,2004, (24):2879-288.
    11. Hertzberg M., Cashdollar K. L., Zlochower I. A., et al. Explosives dust cloud combustion [C], Proc.24thSymp. (Int.) on Combustion, Pittsburgh, USA:the Combustion Institute,1992: 1837-1843.
    12. A. Di Benedetto, P. Russo. Thermo-kinetic modeling of dust explosions [J], Journal of Loss Prevention in the Process Industries,2007, (20):303-309.
    13. Fan B. C., Ding D. M., Tang M. J. An aluminum dust explosion in a spherical closed vessel [C]//Proc. (Suppl.) 5th Int. Coll. Dust Explosion, Pultusk near Warsaw, Poland,1993:21-31.
    14.李延鸿.粉尘爆炸的基本特征[J],科技情报开发与经济,2005,15(14):130-131.
    15.范宝春,丁大玉,溥以康等.球型密闭容器中铝粉爆炸机理的研究[J],爆炸与冲击,1994,14(2):148-155.
    16.徐丰,浦以康,赵烈等.球型封闭容器内一个简单的煤粉燃烧爆炸模型[J],爆炸与冲击,1998,18(2):111-117.
    17.赵江平,王振成.热爆炸理论在粉尘爆炸机理研究中的应用[J],中国安全科学学报,2004,14(5):80-83.
    18. A. Denkevits, S. Dorofeev. Explosibility of fine graphite and tungsten dusts and their mixtures [J], Journal of Loss Prevention in the Process Industries,2006, (19):174-180.
    19.陈网桦,宋述忠,胡毅亭等.铝粉及黑索金粉尘爆炸的特性研究[J],含能材料,2003,11(2):91-93.
    20.汪佩兰,王福海,李盛等.含能材料粉尘爆炸压力及压力上升速率的研究[J],兵工学报,1995,(3):59-63.
    21.任学文,陈立红,郭汉彦.密闭容器内粉尘爆炸压力的分析研究[J],防爆电机,1992,(2):8-11.
    22.吴建星,龚友成,金湘.环境温度对粉尘爆炸参数的影响[J],工业安全与环保,2007,33(11):32-33.
    23.丁大玉,浦以康,袁生学等.铝粉爆炸特性的实验研究[J],爆炸与冲击,1993,13(1):32-40.
    24.浦以康,袁生学,丁大玉等.微细球形铝粉爆炸特性的实验研究[J],爆炸与冲击,1993,13(3):133-204.
    25.邓康清,王光天,王桂兰.超细铝粉的燃烧特性及燃烧模型[J],固体火箭技术,1996,19(1):28-37.
    26.田甜,喻健良.铝粉与黑索金粉尘爆炸特性的对比实验研究[J],辽宁化工,2006,35(1):3-5.
    27. Buksowicz W., Lizut-Skwarek M., Wolanski P. Minimum explosive limit and maximum hazardous mass[J], Biuletyn Informacji Technicznej KGSP,1980, (3-4):27-40.
    28.Piotr Wolanski.粉尘—空气混合物的最小可爆浓度[J],中国安全科学学报,1995,5(3):34-38.
    29.毕天义,徐青芳.对纺织粉尘爆炸主要问题的探讨[J],劳动保护科学技术,1992,(3):42-44.
    30.陈网桦,何其中,饶国宁等.五氯硫酚锌盐粉尘爆炸下限浓度的实验研究[J],中国安全科学学报,2007,(17):104-109.
    31.周从章,张瑞萍,于永芳.关于粉尘云爆炸下限浓度的讨论[J],中国安全科学学报,1995,5(3):39-42.
    32.周从章,曾庆轩,胡秀峰等.工业粉尘云爆炸下限的实验研究[J],火工品,2002,(2):19-21.
    33.尹燕鸣,曾象志,汪佩兰等.含能材料粉尘爆炸下限浓度的实验研究[J],北京理工大学学报,1996,16(1):106-110.
    34. Hensel W. Methods for the determination of the ignition temperature of dust/air mixtures at hot surfaces-a comparison [J], Annual report of the Federal Institute for Materials Research and Testing, 1984:86-88.
    35. Ulrich Krause, Mike Wappler, Sven Radzewitz, et al. On the minimum ignition temperature of dust clouds [C]//Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosion, VolI. Halifax, NS, Canada:Dalhousie University,2006:68-76.
    36. Central office of International Electrotechnical Commission. IEC 1241-2-1-1994. Methods for determining the minimum ignition temperatures of dust. Part 2:Dust cloud in a furnace at a constant temperature [S], Geneva, Switzerland:International Electrotechnical Commission,1994,23-27.
    37. Central office of International Electrotechnical Commission. IEC 1241-2-1-1994. Methods for determining the minimum ignition temperatures of dust. Part 1:Dust layer on a heated surface at a constant temperature [S], Geneva, Switzerland:International Electrotechnical Commission,1994, 11-23.
    38.张瑞萍.对粉尘云最低点火温度概念的几点认识[J],火工品,1998,(1):34-37.
    39.王海福,郑珊,冯顺山等.粉尘云最小点火温度测试实验系统设计[J],中国安全科学学报,2001,11(6):52-54.
    40.吴洁红.固体(粉状)乳化炸药粉尘最低着火温度实验研究[J],煤矿爆破,1997,(1):5-8.
    41.李刚,刘晓燕,钟圣俊等.粮食伴生粉尘最低着火温度的实验研究[J],东北大学学报(自然科学版),2005,26(2):145-147.
    42. Kenneth L, Cash dolar, Kris Chatrathi, et al. Explosible dust concentrations measured in 20L and 1m3 chambers[J], Combustion Sci. and Tech,1992, (87):157-171.
    43. W. Bartknecht.爆炸过程和防护措施[M],北京:化学工业出版社,1985.
    44. M. Nifuku, H. Katoh. Incendiary characteristics of electrostatic discharge for dust and gas explosion [J], Journal of Loss Prevention in the Process Industries,2001, (14):547-551.
    45.李新光,董洪光,S. Radandt等.粉尘云最小点火能测试方法的比较与分析[J],东北大学学报(自然科学版),2004,25(1):44-47.
    46.周树南,汪佩兰.粉尘云最小点火能量的计算辅助测试[J],北京理工大学学报,1997,17(4):514-518.
    47.林大泽,徐天瑞.影响粉尘云最小点火能的因素[J],防爆电机,1989,(2):1-4.
    48.黄兆谦.可燃粉尘云的静电最小点火能及影响因素探讨[J],静电,1992,10(4):48-50.
    49. The Association of German Engineers (VDI), publisher:Dust fires and dust explosions-hazards, assessment, protectivemeasures[S], VDI 2263,1992.
    50.理查德.西维克.粉尘爆炸技术的最新发展[J],中国安全科学学报,1995,5(3):11-20.
    51.靖长财.采用惰化介质防止锅炉制粉系统煤粉爆炸[J],电站辅机,2004,90(3):15-16.
    52.梁树杰,李郁峰,李元宗.电厂筒仓安全防爆控制系统的研制[J],太原理工大学学报,2005,36(2):197-199.
    53.运美生,徐海青,孟庆仲.氮气保护法在微细铝粉生产中的应用[J],武警学院学报,2002,18(4):32-33.
    54. Rolf K. Eckhoff. Partial inert-an additional degree of freedom in dust explosion protection [J], Journal of Loss Prevention in the Process Industries,2004, (17):187-193.
    55. CEN/TC 305/WG 3 N 0085-2004. Guidance on inert for the prevention of explosions (3rd draft) [S], Brussels:European Committee for Standardization,2003.
    56.钟圣俊,S. Radandt,李刚等.惰化设计方法及其在煤粉干燥工艺中的应用[J],东北大学学报(自然科学版),2007,28(1):118-121.
    57. M. Nifuku, S. Koyanaka, H. Ohya, et al. Ignitability characteristics of aluminum and magnesium dusts relating to the shredding processes of industrial wastes[C]//Proceedings of Sixth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, Vol. I, Halifax, NS, Canada:Dalhousie University,2006:77-86.
    58. K J Mintz, M. J. Bray, D. J. Zuliani et a. Inert of fine metallic powders [J], Journal of Loss Prevention in the Process Industries,1996,9 (1):77-80.
    59.李刚,陈宝智,邓煦帆等.设备抗爆极限塑性应变的确定方法[J],东北大学学报(自然科学版),2002,23(7):697-699.
    60. Tamanini F. Scaling parameters for vented gas and dust explosions [J], Journal of Loss Prevention in the Process Industries,2001, (14):455-461.
    61. Rolf K. Eckhoff. Current status and expected future trends in dust explosion research [J], Journal of Loss Prevention in the Process Industries,2005,18:225-237.
    62. NFPA 484-2002. Standard for combustible metals, metal powders, and metal dusts. Chapter 6: Magnesium [S], National Fire Prevention Associations,2002,719-728.
    63.杨少丽.镁铝粉尘泄爆特性的实验研究[D],大连理工大学,2007.
    64. P. E. Moore, R M Freehill. Dust explosion protection-the choices [C]//Proceedings of The 6th International Colloquium on Dust Explosions, Syenyang, P. R. C.:Northeastern University Press, 1994:453-471.
    65.谢波,王克全.工业粉尘爆炸抑制技术研究现状及存在的问题[J],矿业安全与环保,2002,27(1):13-15.
    66. Holbrow P., Lunn G. A., Tyldesley A. Dust explosion protection in linked vessels:guidance for containment and venting [J], Journal of Loss Prevention in the Process Industries,1999, (12): 227-234.
    67. A. L. Breiter et al. Combustion of individual aluminum-magnesium alloy particles in the flame of an oxidizer-fuel mixture [J], Combustion, Explosion, and Shock Waves,1974,7 (12):186-190.
    68. A. B. Ryzhik et al. Conditions of the thermal explosion of disperse magnesium in media with with an insufficiency of oxidizer[J], Combustion, Explosion, and Shock Waves,1978,14(3):394-396.
    69. V. M. Boiko et al. Ignition of gas suspensions of metallic powders in reflected shock waves [J], Combustion, Explosion, and Shock Waves,1989,25 (2):193-199.
    70. Edward L. Dreizin et al. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity[J], Combustion and Flame,1999, (118):262-280.
    71. Edward L. Dreizin et al. Experiments on magnesium aerosol combustion in microgravity [J], Combustion and Flame,2000, (112):20-29.
    72.杨泗霖.防火与防爆[M],北京:北京经济学院出版社,1991,17.
    73.曹泰岳,张为华.轻金属颗粒燃烧理论研究进展[J],推进技术,1996,17(2):82-87.
    74.孙金华,卢平,刘义.空气中悬浮金属微粒子的燃烧特性[J],南京理工大学学报,2005,29(5):582-585.
    75.范宝春.两相系统的燃烧、爆炸和爆轰[M],北京:国防工业出版社,1998:189-190.
    76. U. I. Gol'dshleger et al. Combustion mode and mechanisms of high-temperature oxidation of magnesium in oxygen [J], Combustion, Explosion, and Shock Waves,2004,40 (3):275-284.
    77. Yu. A. Gosteev et al. Numerical study of heat waves excited by oxidation of a magnesium wire [J], Shock Waves,2000, (10):287-294.
    78. Yu. A. Gosteev et al. On the theory of thermal explosion in moving heterogeneous media [J], Shock Waves,2001, (11):141-150.
    79. B. I. Khaikin et al. On the ignition of metal particles [J], Combustion, Explosion, and Shock Waves, 1970,6 (4):412-422.
    80. A. L. Breiter et al. Ignition of suspensions of aluminum-magnesium alloy powders in nitrogen-oxygen media [J], Combustion, Explosion, and Shock Waves,1978,14 (2):258-260.
    81. Rolf K. Eckhoff. Dust explosion prevention in process industries [M], Butterworth Heinemann, ISBN 07506 2007,2,1991:534-586.
    82. Trent S. Ward et al. Experimental methodology and heat transfer model for identification of ignition kinetics of powdered fules [J], International Journal of Heat and Mass Transfer,1999, (49): 4943-4954.
    83.田甜.密闭空间镁铝粉尘爆炸特性的实验研究[D],大连理工大学,2006.
    84. Zhong Shenjun, Wang Zhufang, S. Radandt. Explosion prevention of fine mangnesium powder in a jet pulverization system [C]//CHEN Baozhi, LI Gang. Proceedings of 2006(Shenyang) International Colloquium on Safety Science and Technology, Shenyang, P. R. C.:Liaoning Science and Technology Publishing House,2006:224-230.
    85. American Society for Testing and Materials. ASTM Standard E1515-93. Standard test methods for minimum explosible concentration of combustible dusts[S], Annual Book of ASTM Standards,1993, 14 (2):774-781.
    86. IEC 31H13. Electrical apparatus for use in the presence of combustible dust-Part 1-2:Electrical apparatus protected by enclosures and surface temperature limitation-Selection, installation and maintenance [S].
    87. VDI 2263-1990. Dust fires and dust explosions hazards-assessment-protective measures. Part 1:Test methods for the determination of the safety characteristic of dusts [S], Verein Deutscher Ingenieure, 1990:16-24.
    88. BGN. Determination of the combustion and explosion characteristics of dusts [M], Mannheim: International Section of the ISSA for Machine Safety,1998,20-23.
    89. Nagesh Chawla, Paul R.Amyotte, Michael J. Pegg. A comparison of experimental methods to determine the minimum explosible concentration of dusts [J], fuel,1996, (75):654-658.
    90. European Committee for Standardization. EN 13821-2002. Explosion prevention and protection determination of minimum ignition energy of dust/air mixtures [S], Berlin, Germany:European Standard,2002,12.
    91. IEC 31H38-3. Electrical apparatus for use in the presence of combustible dust-Part2:Test Methods. Section 3:Methods for determining the minimum ignition energy of dust/air mixture [S].
    92. European Committee for Standardization. EN 14034-4-2004. Determination of explosion characteristics of dust clouds[S], Brussels:European Committee for Standardization,2004.
    93.李新光,董洪光,S Radandt等.在三种最小点火能测试装置上对粉尘分散质量的测量[J],东北大学学报(自然科学版),2003,24(8):770-773.
    94.李新光,S Radandt,赫冀成等.哈特曼装置上均方根湍流速度的测量及研究[J],中国粉体技术,1999,5(4):11-14.
    95.李新光,张平,S Radandt等.20 L球形装置上粉尘湍流速度的测量[J],东北大学学报(自然科学版),2003,24(10):952-955.
    96. Erlend Randeberg, Rolf K. Eckhoff. Initiation of dust explosions by electric spark discharges triggered by the explosive dust cloud itself [J], Journal of loss prevention in the process industries,2006, (19): 154-160.
    97. Ch. Proust, A. Accors, L. Dupont. Measuring the violence of dust explosions with the "20 L sphere" and with the standard "ISO 1m3 vessel" systematic comparison and analysis of the discrepancies [J], Journal of Loss Prevention in the Process Industries,2007, (20):599-606.
    98. NFPA 69-2002. Standard on Explosion prevention system [S], National Fire Prevention Associations, 2002.
    99.С.Л.斯杰法纽克.镁冶金学[M],沈阳:东北工学院出版社,1989:162-163.
    100.陈宝智.危险源辨识、控制与评价[M],成都:四川科技出版社,2001.
    101. Jacobson M, Nagy J and Cooper A R. US Bureau of Mines RI5971[R],1962.
    102. Hertertzberg M. A critique of the dust explosibility index:an alternative for estimating explosion probabilities[R], United States Department of the Interior,1987.
    103. IEC 31H (secretariat) 19-1990. Electrical apparatus for use in the presence of ignitable dust:Part 2:Test Methods, sheet2-6:Hazard classification of combustible dusts[S].
    104.邓煦帆.粉尘爆炸危险性分级研究[C]//全国粉尘防爆与治理学术讨论会论文集,天津:1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700