用户名: 密码: 验证码:
铜陵天马山硫金矿区及其外围成矿作用与找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用成矿系统和多因复成成矿的理论和方法,探索天马山硫金矿床及其外围地区的矿床地质地球化学、控矿构造系统及构造地球化学特征,以确定该矿床的成矿模式和找矿靶位优选,取得以下成果:
     (1)利用美国陆地卫星LANDSAT-7ETM数据,对铜陵地区约1500 km2范围的泥化、铁化和混合蚀变异常信息进行了提取。根据遥感蚀变的分布特征,结合成矿地质条件分析,在铜陵地区圈定找矿远景区11处。
     (2)野外地质调查表明,天马山和黄狮涝矿床岩层节理的特点相似,其中走向295°-320°的横节理特别发育。据天马山赋矿岩层中2组共轭剪节理产状得出的控矿断裂系统形成的应力场的分布为,σ1(最大主压应力):290°∠70°;σ2(中间主应力):130°∠20°;σ3(最小主压应力):38°∠7°。在该应力场作用下,天马山矿床主要容矿构造呈张性正断层性质,反映了天马山地区在燕山期构造活动的特点。
     (3)铜陵矿集区矿石硫同位素组成以富重硫为特征,硫的来源主要与海水硫及地层中膏盐硫的热还原有关,反映了区域性热水沉积作用的存在。铜陵地区矿床铅同位素样品主要集中分布在造山带和上地壳铅同位素演化线附近,显示铅的来源与造山带环境有关,并有大量来自上地壳的浅源铅参与。氢氧同位素分析显示,天马山及其外围地区成矿流体具混合流体特征,大气水、地下水及变质水参与明显。
     (4)天马山及其外围地区铜、金成矿具有层控性、变化性及多世代性特征,成矿作用主要经历石炭纪海底热水沉积成矿作用和燕山期岩浆—热液成矿作用2个关键的成矿地质事件。早期矿体的诱导作用和热液对流系统中成矿金属元素及硫、碳等物质的大规模的循环是成矿的关键。
     (5)利用空间分析方法和信息统计单元方法对天马山及其外围地区进行了数字矿床空间信息成矿预测模型的研究。根据预测单元计算结果,结合地质分析,圈定了14个找矿靶区。
     (6)据天马山—黄狮涝测区构造地球化学异常空间分布,结合多元统计分析,判断测区内金矿的最佳近矿成矿指示元素组合为Au-Ag-As,矿体旁侧及外围成矿指示元素组合为Sb-Hg。测区内铜矿的最佳近矿成矿指示元素组合为Cu-Mo-Bi。结合地质分析,在天马山—黄狮涝测区共圈定找矿靶位5处。
According to the theory and method of ore forming system and polygenetic compound mineralization, this thesis tries to investigate geology and geochemistry, ore-controlling structural system, tectono-geochemistry, and remote sensing geology so as to establish the mineralizing model and find out prefered targets for Tianmashan sulphur-gold deposit and the neighboar area, with the resulths as follows:
     (1)The LANDSAT-7ETM's remote sensing data are used to extract the information of the argillization, ferrugination and mixture alteration anomaly in the 1500 km2 area in Tongling. Eleven prospecting areas were outlined based on the distribution characteristics' alteration and minerogenetic conditions.
     (2)It is shown, from field survey, that the features of cleavages in the host roucs are similar in Tianmashan and Huangshilao deposit. Charaterised by good development of the transverse joints with strike 295-320°. The distribution stress field of ore-controlling fault system, obtained from 2 sets of conjugate shear joints in the ore-hosted rocles in Tianmashan:σ1(Maximum major pressure stress):290°∠70°;σ2(intermediate principal stress): 130°∠20°;σ3(Minimum major pressure stress):38°∠7°.Because of this pressure stress, the main ore structures of Tianmashan deposit is strike-slip tensile normal faults, indicating the feature of the Tianmashan's tectonism feature during Yanshan Period.
     (3)The sulfur isotope of the ores is rich in S34 in Tongling ore concentration area. There are some relation between the genesis of sulfur and those for general sea waters as well as the thermal recovery of gypsum-bearing sulfur in stratum. All of these indicate the presense of terrestrial hot water sedimentation. The Pb isotope of samples are distributed along the the boundaries of upper crustal and orogenic fields showing that the source of Pb is related to the orogenic belt's environment, and part of Pb coming from supracrust participates in this process. The analyses of isotopic characteristics of H and O display that the metallogenic fluid has the characteristic of mixed liquid, and the meteoric water, groundwater, metamorphic water involved obviously.
     (4)The Cu and Au mineralizing in Tianmashan and its neighbor area shows the characteristic, of layer-control, variability and multi-generation. The metallogenesis has experienced submarine hot water deposition in Carboniferous and magmatic-hydrother deposition in the period of Yanshan. The metallogenetic key that the induction of early orebody and the large-scale circulation of metallic elements as well as S, C in thermal fluid system.
     (5)The methods of spatial analysis and information statistics, are used to build a forecasting model of mineralizing with information of digital deposit space for Tianmashan and its neighbor area. According to the calculating results of predicting unit and analysis of geology,14 targets areas are proposed.
     (6)Based on the spatial distribution of tectono-geochemical anomalies in testing zone of Tianmashan and Huangshilao and multivariate statistical analysis, it is suggested that the best mineralizing indicator element combination is Au-Ag-As for gold near the orebody in testing zone,the best mineralizing indicator element combination is Sb-Hg for gold beside the orebody and its neighbor area, and that the best mineralizing indicator element combination is Cu-Mo-Bi for copper near the orebody in testing zone. According to the information mentioned above and analysis of geology,5 areas targets in the testing zone air localised.
引文
[1]曹瑜,胡光道,杨志峰等.基于GIS有利成矿信息的综合[J].武汉大学学报—信息科学版,2003,28(2):167-176.
    [2]常印佛,刘学圭.关于层控式矽卡岩型矿床—以安徽省内下扬子坳陷中一些矿床为例.矿产地质,1983,2(1):11-20.
    [3]常印佛,刘湘培,吴言昌.1991.长江中下游铁铜成矿带.北京:地质出版社,1991:1-379.
    [4]常印佛.论中—下扬子“一盖多底”格局与演化[J].火山地质与矿产,1996,17(1):1-15.
    [5]常印佛等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998:252-272.
    [6]陈帮国,刘经华,徐兆文等.安徽大团山层状铜矿床地质特征及成因探讨.江苏地质,2007,31(3):206-211.
    [7]陈春仔,金友渔.分形理论在成矿预测中的应用[J].矿产与地质,1997,11(60):272-276.
    [8]陈国达.多因复成矿床并从地壳演化规律看其形成机理[J].大地构造与成矿学,1982,6(1):1-55.
    [9]陈国达.成矿构造研究法[M].北京:地质出版社,1983:59-376.
    [10]陈林杰,吴多元等.铜陵地区成岩成矿背景探讨[J].安徽地质,2007,17(1):18-21.
    [11]陈石羡.地理信息系统在金属矿产预测中的应用[J].地质找矿论丛,1998,13(1):74-83.
    [12]陈永清,夏庆霖.应用地质异常单元圈定矿产资源体潜在地段[J].地球科学—中国地质大学学报,1999,24(5):459-463.
    [13]成秋明.多维分形理论和地球化学元素分布规律[J].地球科学,2000,25(3):311-318.
    [14]成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学,2004,29(6):733-743.
    [15]池顺都,赵鹏大.应用GIS圈定找矿可行地段和有利地段—以云南元江地区大红山群铜矿床预测为例[J].地球科学—中国地质大学学报,1998,23(2):125-128.
    [16]储国正,李东旭等.安徽铜陵地区成矿控制因素的探讨[J].安徽地质,1995,5(1):47-58.
    [17]储国正,王训诚,周育才等.安徽铜陵地区铜金矿化关系及其成因初探.贵金属地质,2000,9(2):73-77.
    [18]储国正等.安徽铜陵鸡冠石银_金_矿床地质地球化学特征[J].地质地球化学,2000,28(3):31-40.
    [19]邓军,王庆飞,黄定华等.铜陵矿集区燕山期地壳浅部成矿流体活动的构造控矿[J].矿床地质,2004,23(3):399-404.
    [20]D.S.巴尔克.火成岩[M].北京:地质出版社,1992:253-259.
    [21]杜杨松,李学军.安徽铜陵典型矿区岩石包体研究及其岩浆—成矿作用过程探讨[J].高校地质学报,1997,3(2):171-182.
    [22]杜杨松,秦新龙,田世洪.安徽铜陵铜官山矿区中生代岩浆—热液过程:来自岩石包体及其寄主岩的证据[J].岩石学报,2004,20(2):339-350.
    [23]杜杨松.安徽铜陵铜官山矿区中生代侵入岩的形成过程_岩浆底侵_同化混染和分离结晶[J].现代地质,2007,21(1):71-77.
    [24]富士谷等.长江中、下游成矿带石炭纪海底火山喷发—沉积黄铁矿型矿床的地质特征[J].南京大学学报(自然科学),1977,(4):43-67.
    [25]G.福尔.同位素地质学原理[M].北京:科学出版社,1983:351.
    [26]高庚等.安徽铜陵朝山金矿床地质特征及成因研究[J].地质找矿论丛,2006,21(3):162-167.
    [27]顾连兴等.论长江中、下游中石炭世海底块状硫化物矿床[J],地质学报,1986,60(2):176-188.
    [28]顾连兴,徐克勤.论大陆地壳拗陷带中的华南型块状硫化物矿床[J].矿床地质,1988,5(2):16-27.
    [29]顾连兴等.下扬子威宁期断裂拗陷、火山活动及块状硫化物成矿作用—答黄志诚《安徽铜陵新桥黄龙组沉积期海底火山喷发—沉积质疑》一文[J].高校地质学报,1999,5(2):228-231.
    [30]韩发,孙海田.Sedex型矿床成矿系统[J].地学前缘,1999,6(1):139-142.
    [31]韩东昱,龚庆杰,向运川.区域数据化探处理的几种分形方法[J].地质通报,2004,23(7):714-719.
    [32]何金祥,余国珍,朱雅林等.安徽铜陵黄狮涝山金矿床地质特征及成因.矿床地质,1994,13(3):201-211.
    [33]H.L.Barnes主编.热液矿床地球化学[M].北京:地质出版社,1987:1-276.
    [34]胡受奚,周顺之,刘孝善等.矿床学(上册)[M].北京:地质出版社,1982.
    [35]胡受奚,徐金方.华北地台花岗岩和地层中金含量与金成矿的关系[J].高校地质学报,1998,4(2):121-126.
    [36]华东地质勘查局812队,1990
    [37]黄崇轲等.中国铜矿床(上册)[M].北京:地质出版社,2001:283-286.
    [38]黄顺生,徐兆文,顾连兴等.安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制 探讨[J].高校地质学报,2004,10(2):217-226.
    [39]黄许陈,储国正.铜陵狮子山矿田多位一体(多楼层)模式[J].矿产地质,1993,12(30):221-252.
    [40]黄志诚.安徽铜陵新桥黄龙组沉积期海底火山喷发—沉积质疑[J].高校地质学报,1999,5(10):110-112.
    [41]姜章平,陈邦国,陆现彩等.与冬瓜山叠生式层状铜矿有关岩体地质地球化学特征[J].江苏地质,2001,25(20):87-91.
    [42]K.H.乌尔夫.层控矿床与层状矿床(第二卷)[M].北京:地质出版社,1980.
    [43]李红阳,李英杰,杨秋荣等.铜陵矿集区块状硫化物矿床的二元结构特征[J].地质与勘探,2006,42(3):8-11.
    [44]李惠,许政.山东招远大尹格庄金矿床隐伏矿定位预测的叠加晕模式[J].有色金属矿产与勘查,1998,7(3):178-181,185.
    [45]李进文,裴荣富,张德全等.铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义[J].地球学报,2007,28(1):11-22.
    [46]李文达.论扬子型铜矿床及其成因[J].中国地质科学院南京地质矿产研究所所刊,1989,(2):5-18.
    [47]李文达等.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性[J].火山地质与矿产,1997,20(增刊):1-131.
    [48]李新中,赵鹏大,肖克炎等.矿床统计预测单元划分的方法与程序[J].矿床地质,1998,17(4):369-375.
    [49]刘凤山,石准立.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报,1994,13(20):75-80.
    [50]刘建明,刘家军,顾雪祥.沉积笳地中的流体活动及其成矿作用[J].岩石矿物学杂志,1997,16(4):341-352.
    [5l]刘建明,赵善仁,刘伟等.成矿地质流体体系的主要类型[J].地球科学进展,1998,13(2):161-165.
    [52]刘伟.岩浆流体在热液矿床形成中的作用[J].地学前缘,2001,8(3):203-215.
    [53]陆建军,华仁民,徐兆文等.安徽铜陵冬瓜山铜、金矿床两阶段成矿模式[J].高校地质学报,2003,9(4):678-690.
    [54]吕才玉,曹晓生,肖福权.安徽铜官山矿床成矿地质特征及深部成矿预测[J].地质与勘探,2007,43(6):12-16.
    [55]吕才玉,肖福权.铜陵地区深部找矿的初步探讨[J].安徽地质,2008,18(2):110-113.
    [56]吕俊武,夏元法.天马山硫金矿床金的赋存状态及分和规律[J].地质与勘探,2001,37(3):29-31.
    [57]吕庆田,杨竹森,严加永等.长江中下游成矿带深部成矿潜力、找矿思路与初步尝 试——以铜陵矿集区为实例[J].地质学报,2007,81(7):865-881.
    [58]马东升.地壳中流体的大规模流动系统及其成矿意义[J].高校地质学报,1998,4(3):250-261.
    [59]聂桂平等.安徽朝山金矿床矿石含金性和硫同位素研究[J].江苏地质,2007,31(3):200205.
    [60]裴荣富.姻袭成矿与特大型矿床[J].矿床地质,1997,16(1):93-96.
    [61]芮宗瑶,赵一鸣,王龙生等.挥发份在夕卡岩型和斑岩型矿床形成中的作用[J].矿床地质,2003,22(1):141-148.
    [62]申维.分形理论与矿产预测[M].北京:地质出版社,2002:1-68.
    [63]沈喜伦.江苏南部黄龙组底部白云岩的归属问题[J].地层学杂志,1982,04(10).
    [64]石秀华,顾琳,闫永涛.铜官山地区矿床成矿机理与找矿方向[J].安徽地质,2007,17(2):105-108.
    [65]宋叔和,韩发、葛朝华等.火山岩型铜多金属硫化物矿床VCPSD知识模型[M].北京:科学出版社,1994:48-78.
    [66]唐俊华.长江中下游地区层状铜矿床基本特征及成因[J].矿产与地质,2000,14(2):76-80
    [67]田世洪等.安徽铜陵朝山金矿床稳定同位素_稀土元素地球化学研究[J].矿床地质,2004,23(3):365-374.
    [68]田世洪,丁悌平,侯增谦等.安徽铜陵小铜官山铜矿床稀土元素和稳定同位素地球化学研究[J].中国地质,2005,32(4):605-613.
    [69]田世洪,侯增谦,杨竹森等.安徽铜陵马山金硫矿床稀土元素和稳定同位素地球化学研究[J].地质学报,2007,81(7):929-938.
    [70]铜陵有色地勘分公司,1995
    [71]涂光炽等.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,1984:103-269.
    [72]涂光炽等.中国层控矿床地球化学(第二卷)[M].北京:科学出版社,1987:52-222.
    [73]涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性初谈非常规超大型矿床[J].中国科学(D辑),1998,28(增刊):1-6.
    [74]王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988:1-30.
    [75]王日冬,邢立新.矿床蚀变信息的遥感提取方法[J].世界地质,2000,19(4):397-401.
    [76]王文斌,李文达等.论长江中下游地区含铜黄铁矿型矿床成因[J].火山地质与矿产,1994,2(1):25-34.
    [77]王训诚等.安徽铜陵鸡冠石银金矿床稀土元素地球化学特征[J].安徽地质,2000,10(1):51-57.
    [78]王训诚,姜章平等.铜陵地区构造流体体系初探[J].矿产地质,2002,Z1:1045-1047.
    [79]王彦斌,唐索寒,王进辉等.安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据一 燕山晚期成矿作用的证据[J].地质论评,2004,50(5):538-542.
    [80]王银宏.铜陵天马山金硫矿床成矿系统研究[J].地质找矿论丛,2005,20(2):106-110.
    [81]王於天.成矿预测单元的基本概念及其划分方法[J].地质论评,1990,36(6):24-29.
    [82]王自南.天马山硫金矿床地质特征及成矿模式[J].黄金,2005,26(1):15-17.
    [83]吴德文,朱谷昌,张远飞等.多元数据分析与遥感矿化蚀变信息提取模型.国土资源遥感,2006,1:22-25.
    [84]吴红星,陈守余.基于GIS不规则单元划分及其地质信息提取系统[J].云南地质,2002,21(3):308-315.
    [85]夏军,徐家聪.论铜陵半岛[J].地层学杂志,1995,19(1):47-50.
    [86]夏元法.试论天马山硫金矿床的成矿物质来源[J].矿产与地质,1999,13(69):34-38.
    [87]夏元法.关于提高铜陵地区地质找矿的几点认识[J].安徽地质,1999,9(2):119-122.
    [88]肖克炎.试论综合找矿模型[J].地质与勘探,1994,30(1):41-45.
    [89]肖新建,顾连兴等.安徽铜陵狮子山铜—金矿床流体多次沸腾及其与成矿的关系[J].中国科学(D辑),2002,32(3):199-206.
    [90]谢贵明,范继璋.吉林省珲春东部地区金矿综合信息找矿模型及找矿靶区预测[J].黄金科学技术,2000,8(5):20-27.
    [91]谢建成,杨晓勇,Insung Lee2.安徽沿江地区燕山期含铜岩体稀土微量地球化学特征[J].矿物岩石,2008,28(1):72-78.
    [92]谢淑云,鲍征宇.地球化学场的连续多重分形模式[J].地球化学,2002,31(2):191-200.
    [93]谢淑云,鲍征宇.多重分形与地球化学元素的分布规律[J].地质地球化学,2003,31(3):97-102.
    [94]邢凤鸣,徐祥.铜陵地区高钾钙碱系列侵入岩[J].地球化学,1996,25(1):29-38.
    [95]邢凤鸣.安徽沿江地区岩浆成矿带[J].安徽地质,1999,9(4):272-279.
    [96]邢帅,郭金华,徐青.多源异质遥感影像的分形特征分析[J].测绘科学技术学报,2006,23(8):254-257.
    [97]徐九华,谢玉玲,杨竹森等.安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比[J].矿床地质,2004,23(3):344-352.
    [98]徐克勤,朱金初.我国东南部几个断裂拗陷带中沉积(或火山沉积)热液叠加类铁铜矿床成因的探讨[J].福建地质科技情报,1978,(4):1-68.
    [99]徐克勤,朱金初等.论中国东南部几个断裂拗陷带中某些铁铜矿床的成因问题.国际交流地质学术论文集(第二集).北京:地质出版社,1980:49-58.
    [100]徐克勤,王鹤年,周建平等.论华南喷流—沉积矿状硫化物矿床[J].高校地质学报,1996,2(3):241-256.
    [101]徐述平,穆新华.应用构造叠加晕在胶东山后金矿找矿的效果[J].黄金地质,2003,9(4):46-49.
    [102]徐文艺,杨竹森,蒙义峰等.安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移[J].矿床地质,2004,23(3):353-364.
    [103]徐晓春,陆三明,谢巧勤等.铜陵狮子山矿田岩浆岩及金矿床的稀土元素地球化学[J].中国稀土学报,2006,24(5):615-622.
    [104]徐兴旺,蔡新平.隐伏矿床预测理论与方法的研究进展[J].地球科学进展,2000,15(1):76-83.
    [105]徐兆文,方长泉,陆现彩等.与朝山金矿有关岩体地质地球化学特征[J].地质与勘探,2004,40(3):42-46.
    [106]徐兆文,陆现彩,高庚等.铜陵冬瓜山层状铜矿同位素地球化学及成矿机制研究[J].地质论评,2007,53(1):44-51.
    [107]杨茂森,黎清华,杨海巍.分形方法在地球化学异常分析中的运用研究—以胶东矿集区为例[J].地球科学进展,2005,20(7):809-814.
    [108]杨小男,徐兆文,张军等.安徽狮子山矿田南洪冲岩体形成时代及成因机制研究[J].岩石学报,2007,23(6):1543-1551.
    [109]杨竹森,侯增谦,曾普胜等.安徽铜陵矿集区流体系统与成矿作用[J].矿床地质,2002,21:1080-1082.
    [110]仪垂祥.非线性科学及其在地学中的应用[M].北京:气象出版社,1995:
    [111]俞沧海.安徽铜陵天马山硫金矿床物质来源探讨[J].黄金地质,2000,6(1):44-48.
    [112]俞沧海,袁小明.铜陵天马山硫金矿床地质特征及成因探讨[J].矿产与地质,2002,16(2):74-77.
    [113]袁小明.铜官山矿田铜金成矿模式探讨[J].地球学报,2002,23(6):541-546.
    [114]岳文浙等.长江中下游威宁期沉积地质与块状硫化物矿床[M].北京:地质出版社,1993:1-163.
    [115]曾普胜,杨竹森,蒙义峰等.安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿[J].矿床地质,2004,23(3):298-309.
    [116]曾普胜,蒙义峰,杨竹森等.安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩[J].矿床地质,2004,23(3):334-343.
    [117]曾普胜等.安徽铜陵矿集区硅质岩成因及意义[J].地质评论,2004,50(2):153-161.
    [118]曾志刚,秦蕴珊,翟世奎.现代海底热液多金属硫化物的成矿物源:同位素证据[J].矿物岩石地球化学通报,2000,19(4):428-430.
    [119]翟裕生,姚书振等.长江中下游地区铁、铜等成矿规律研究[J].矿床地质,1992,11(1):1-12.
    [120]翟裕生.矿床地质学的发展前景和思维方法[J].地学前缘,1994,1(3-4):1-7.
    [121]翟裕生.地史中成矿演化的趋势和阶段性[J].地学前缘,1997,4(4):197-203.
    [122]翟裕生,邓军,宋鸿林等.同生断层对层控超大型矿床的控制[J].中国科学(D辑),1998,28(3):214-218.
    [123]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13-27.
    [124]翟裕生,王建平,邓军等.成矿系统与矿化网络研究[J].矿床地质,2002,21(2):106-112.
    [125]张均.现代成矿分析的思路、途径、方法[M].武汉:中国地质大学出版社,1994.
    [126]张均,陈守余,张玉香.隐伏矿体定位预测中的几个关键问题[J].贵金属地质,1998,7(4):293-301.
    [127]张乾,潘家永,邵树勋.中国某些金属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238.
    [128]张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604-606.
    [129]张哲儒,毛华海.分形理论与成矿作用[J].地质前缘,2000,7(1):195-204.
    [130]张振飞,胡光道等.矿产预测中空间地质结构的定量类比—单元簇的概念及应用[J].地球科学—中国地质大学学报,1999,24(6):661-665.
    [131]赵鹏大,胡旺亮等.矿床统计预测的理论与实践.武汉:中国地质大学出版社,1983,1-272.
    [132]赵鹏大,陈永清.地质异常矿体定位的基本途径[J].地球科学——中国地质大学学报,1998,23(2):111-114.
    [133]赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价[J].地球科学—中国地质大学学报,1999,24(5):443-448.
    [134]郑明华.关于多源成矿与复成矿床[C].见:矿床学参考书(上册).北京:地质出版社,1985.
    [135]周涛发,岳书仓.长江中下游铜、金矿床成矿流体系统的形成条件及机理[J].北京大学学报(自然科学版),2000,36(5):697-707.
    [136]周永章,刘建明,陈多福.华南古海洋热水沉积作用研究概述及若干认识[J].矿物岩石地球化学通报,2000,19(2):114-118.
    [137]朱雅林.安徽铜官山背斜石炭纪地层中火山岩的发现及其意义[J].地质与勘探,1992,(9):8.
    [138]朱裕生,肖克资等.成矿预测方法[M].北京:地质出版社,1997:1-23.
    [139]B J Drummond, Goleby B R, Goncharov A G, et al.1997. Crustal-scale structures in the Proterozoic Mount Isa inlier of north Australia:Their seismic response and influence on mineralisation[J]. Tectonophysics,288:43~56.
    [140]Calvert A J, Li Y.1999. Seismic reflection imaging over a massive sulfide deposit at the Matagami mining camp, Quebec[J].Geophysics,64:24~32.
    [141]F.Sabins Floyd,1999,Remotesensing for mineral exploration[J].Ore Geology Reviews,14:157~183.
    [142]G. Doyle Mark, Rodney L. Allen,2003, Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geology Reviews, Vol.23:183~222.
    [143]H. Brikowski Tom.2001,Deep fluid circulation and isotopic alteration in The Geysers geothermal system-profile models[J]. Geothermics,30:333~347.
    [144]J.R.Harris,L.Wilkinson,E.C.Grunsky,2000,Effective use and interpretation of lithogeochemical datain Regional mineral exploration programs:application of Geographic Information Systems(GIS) technology[J].OreGeologyReviews,16:107~143.
    [145]Khin Zawa, S.R. Hunnsa, R.R. Largea, et al.,2003,Microthermometry and chemical composition of fluid inclusions from the Mt Chalmers volcanic-hosted massive sulfide deposits,central Queensland, Australia:implications for ore genesis[J].Chemical Geology, 194:225-244.
    [146]L. Guillou-Frottier, E.B. Burovl, J.-P. Mile'si,2000,Genetic links between ash-flow calderas and associated ore deposits as revealed by large-scale thermo-mechanical modeling[J]. Journal of Volcanology and Geothermal Research,102:339-361.
    [147]Lydon J.H.,1988,Ore deposit model-14,Volcanogenic massive sulfide deposits part2:genetic models[J].Geoscience Canada,15:43~66.
    [148]Mcdougall T. J.,1984, Fluid dynamic implications for massive sulfide deposits of hot saline fluid flowing into a submarine depression from below[J]. Deep Sea Research,31: 145~170.
    [149]M. Fischer, K. RO Her, M. KU ster,et al.,2003,Open fissure mineralization at 2600 m depth in Long Valley Exploratory Well (California):insight into the history of the hydrothermal system [J]. Journal of Volcanology and Geothermal Research,127:347~363.
    [150]M.Kusakabe,Y.Komoda,B.Takano,T. Abiko,2000,Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids:implications for the δ34 S variationsof dissolved bisulfate and elemental sulfur from active crater lakes[J]. Journal of Volcanology and Geothermal Research,97:287~307.
    [151]Pan YM,P Dong.1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews.15:177~242
    [152]R R Large.1992. Australian volcanic_hosted massive sulfides deposits:futures, style and genetic models[J]. Econ. Geol.,87(3):471~510.
    [153]Thompson T. B. et al.,1985, Mineralized vein and breccias of the Cripple Creek Direct Colorado[J].Econ.Geol.,80(6):1669~1688.
    [154]T. Ulrich, S.D.,Golding, B.S. Kamber,et al.,2002,Different mineralization styles in a volcanic-hosted ore deposit:the fluid and isotopic signatures of the Mt Morgan Au-Cu deposit, Australia[J].Ore Geology Reviews,22:61~90.
    [155]Wagner Thomas et al.,2002,Fluid-rock interaction processes related to hydrothermal vein-type mineralization in the Siegerland district, Germany:implications from inorganic and organic alteration patterns. Applied Geochemistry,17:225~243.
    [156]Wagner Thomas et al.,2002,Fluid-rock interaction processes related to hydrothermal vein-type mineralization in the Siegerland district, Germany:implications from inorganic and organic alteration patterns. Applied Geochemistry,17:225~243.
    [157]Y.F. ZHENG, M. SATIR, P. METZ, et al.,1999,Oxygen isotope exchange processes and disequilibrium between calcite and forsterite in an experimental C-O-H fluid [J] Geochimica et Cosmochimica Acta,63:1781~1786.
    [158]Zartman R E,Doe B R.1981, Plumbotectonics-the model[J].Tectonophysics,75(2):135~162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700