用户名: 密码: 验证码:
静态库仑应力触发计算参数敏感性分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们常用地震产生的静态库仑应力变化解释地震的空间迁移和余震的空间分布规律,但是,在静态库仑应力计算时,却面临着室内试验数据和观测资料无法对计算所涉及的参数进行足够约束的困难。参数取值的不确定性会直接影响到静态库仑应力的计算结果。因此,有必要对静态库仑应力计算的参数敏感性和实际应用做更全面的研究。
     在分析地震触发的静态库仑应力计算的不确定性研究中,本论文以研究资料十分丰富的汶川地震为例,首先根据川滇地区的断裂活动数据构建了研究区的接收断层矩阵,并以此作为投影断层面,计算了研究区的2D静态库仑应力变化图像,作为分析比较的基本模型,然后依次改变基本模型中的计算参数,计算结果直观的揭示了不同计算模型和参数选取对汶川地震产生的静态库仑应力场计算的影响。分析得出:重力、接收断层位置和走向的影响较小,而其他参数的不同选取均会对静态库仑应力变化量值和符号造成不同程度的影响,对地震破裂面周边的影响尤其明显,计算时的参数敏感性分析不可忽略。
     在分析主震产生的静态库仑应力变化对余震分布的影响时,采用两种方式计算了汶川地震对余震的触发效应,1.计算主震在余震的最优走滑破裂面上的静态库仑应力变化,2.采用不同地震位错模型和等效摩擦系数,计算主震在余震节平面上产生的静态库仑应力变化。通过统计处于静态库仑应力增加区域的余震占余震总数的比例,得到:余震有一半以上被主震产生的静态库仑应力触发,触发率最大84%,余震的触发率随着等效摩擦系数的增加而增大,符合汶川逆冲型地震断层破裂面具有较大等效摩擦系数的破裂机制。
     在静态库仑应力快速产出应用研究中,及时计算了2010年4月玉树7.1级地震产生的最优库仑应力变化和静态库仑应力在震源区活动断裂上的分布。结果表明:玉树地震使断层破裂面西北端和东南端出现应力增加,使甘孜-玉树断裂西北段和东南段、清水河断裂中段、杂孕-楚玛尔河断裂中段、杂多-上拉秀断裂西北段、扎那曲-着晓断裂中段、字嘎寺-德钦断裂西北和东南段应力增加。计算结果能为此区域地震危险性分析提供一定参考。
Static Coulomb stress change induced by earthquake slip is used frequently to explain earthquake activities and aftershocks distribution. However, some parameters for the Coulomb stress calculation are unable to be well constrained from laboratory experiments and field observations. Different parameters may directly affect the calculation results of static Coulomb stress. Therefore, it is necessary to do a more comprehensive study on the uncertainty and application of static Coulomb stress change triggering.
     To investigate uncertainty of static Coulomb stress change induced by earthquake, this study takes the well-studied Wenchuan earthquake as an example. We first build the receiver fault matrices of the study area, with smooth interpolation of fault geometry and rake between the Sichuan and Yunnan`s major active faults data, and take the matrices as a projection plane. Then we calculate the 2D image of static Coulomb stress change of the study areas as a basic model to compare and analysis. To investigate how the parameters affect the calculation results, we change the parameters in turn through modeling and directly compare the results of different calculation parameters. We find that gravity, receiver faults position and strike have little influence on coseismic Coulomb stress change calculation, but other parameters can change the value and sign of the results in various degrees especially around the earthquake rupture plane. Therefore the uncertainty of the static Coulomb stress change induced by earthquake should be taken into consideration in the earthquake hazard analysis.
     To analyze the influence of the static Coulomb stress change induced by the main shocks on the aftershock distribution, we adopt two ways for quantifying the static Coulomb stress change induced by Wenchuan earthquake associated to its aftershock distribution. We first calculate the static Coulomb stress change on the optimally oriented receiver fault plane; then further calculate the static Coulomb stress change on each aftershock nodal planes with different slip model and apparent fault friction. Through counting the proportion of aftershocks in the stress increased areas to the whole, we find that more than half of the aftershocks were triggered by static Coulomb stress change induced by the main shock with maximum triggered rate 84%. The triggered rate is proportional to the apparent fault friction, which is consistent with the Wenchuan earthquake`s thrust mechanism that usually accompanies with a large apparent friction value.
     Using the Coulomb stress change as a fast output tool, we compute the Coulomb stress change induced by the 14 April 2010 Ms7.1 Yushu earthquake on optimally oriented faults and its neighborhood faults. Our result shows that the Coulomb stress has increased on the northwest and southeast end of the rapture fault. The earthquake also increased on the northwest and southeast of Ganzi-Yushu, Ziga temple-Deqin, the central segment of Qingshuihe, Zayun-Chumaer, Zhalaqu-Zhexiao and the northwest of Zaduo-Shanglaxiu fault. The calculation results can help to refine the seismic hazard analysis of the region.
引文
安美其、丁立丰、王海忠等,2004,龙门山断裂带的性质和活动性研究,大地测量与地球动力学,24(2),115~119。
    曹娟娟、刘百篪、闻学泽,2003,西秦岭北缘断裂带特征地震平均复发间隔的确定和地震危险性评价,地震研究,26(4),372~381。
    陈棋福、黄金莉、高原等,2005,未来强震活动危险的地震学分析,中国大陆强震趋势预测研究(2006年度),中国地震局地震预测研究所编,北京:地震出版社,108~124。
    陈运泰、林邦慧、林中洋等,1975,根据地面形变的观测研究1966年邢台地震的震源过程,地球物理学报,18(3),164~182。
    陈运泰研究小组,2010,2010年4月14日青海玉树地震震源机制和破裂过程快报(第四版), http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/_content/10_04/17/1271488288058.html。
    邓起东、张培震、冉勇康等,2002,中国活动构造基本特征,中国科学D辑:地球科学,32(12),1020~1030。
    丁中一、贾晋康、王仁,1983,潮汐应力对地震的触发作用,地震学报,5(2),172~184。
    傅征祥、刘桂萍、陈棋福,2001,青藏高原北缘海原、古浪、昌马大地震间相互作用的动力学分析,地震地质,23(1),35~42。
    郭启良、王成虎、马洪生等,2009,汶川MS8.0级大震前后的水压致裂原地应力测量,地球物理学报,52(5),1395~1401。
    何宏林、池田安隆、何玉林等,2008,新生的大凉山断裂带-鲜水河-小江断裂系中段的裁弯取直,中国科学D辑:地球科学,38(5),564~574。
    胡小刚、郝晓光,2009,强台风对汶川大地震和昆仑山大地震“震前扰动”影响的分析,地球物理学报,52(5),1363~1375。
    黄福明、王廷镊,1980,倾斜断层错动产生的应力场,地震学报,2(1),1~20。
    黄福明、王廷锡,1983,多段断层均匀滑动的应力分布特征,地球物理学报,26(增刊),678~692。
    黄圣睦、董瑞英,2006,巴基斯坦曼塞赫拉718级地震对中国大陆大震趋势影响的初步研究,四川地震,119,7~12。
    黄伟、周荣军,2000,四川玉农希断裂的全新世活动与1975年康定六巴6.2级地震,中国地震,16(1),53~59。
    黄媛、吴建平、张田中,2008,汶川8.0级大地震及其余震序列重新定位研究,中国科学D辑:地球科学,38(10):1242~1249。
    李陈侠、徐锡伟、闻学泽等,2009,东昆仑断裂东段玛沁-玛曲段几何结构特征,地震地质,31(3),441~458。
    李永林、高旭,2000,喜马拉雅弧边界作用力的变化对中国内陆应力场的影响,地震,20(3),37~42。
    陆明勇、郑文衡、胡志奇,2006,动态应力作用与地震机制的初步研究,地球物理学报,49(1),170~179。
    罗福忠、曲延军、王坚,2003,1996年11月19日新疆和田喀喇昆仑山口7.1级地震,内陆地震,17(1),33~38。
    潘懋、梁海华、蔡永恩等,1994,中国川西地区鲜水河断裂和则木河断裂几何学、运动学特征及震活动性对比研究,中国地震,10(1),28~37。
    单斌、熊熊、郑勇等,2009,2008年5月12日Mw7.9汶川地震导致的周边断层应力变化,中国科学D辑:地球科学,39(5),537~545。
    沈正康、万永革、甘卫军等,2003,东昆仑断裂带大地震之间的粘弹性应力触发研究,地球物理学报,46(6),786~795。
    石耀霖、曹建玲,2010,库仑应力计算及应用过程中若干问题的讨论——以汶川地震为例,地球物理学报,53(1),102~110。
    唐荣昌、黄祖智,1995,四川活动断裂带的基本特征,地震地质,17(4),391~396。
    田勤俭、刁桂苓、郝平等,2009,汶川8.0级地震及余震破裂的地质构造特征,29(1),141~148。
    王连捷、周春景、孙东生等,2008,汶川5.12地震引起的库仑应力变化及其对周边地震活动的影响,地质力学学报,14(3),193~120。
    王卫民、赵连锋、李娟等,2008,四川汶川8.0级地震震源过程,地球物理学报,51(5),1403~1410。
    王卫民、赵连锋、姚振兴,2010,2010年4月14日玉树7.1级地震震源破裂过程初步结果, http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/content/10_04/14/1271250817270.html。
    王伟涛、贾东、李传友等,2008,四川龙泉山断裂带变形特征及其活动性初步研究,地震地质,30(4),969~977。
    王阎昭、王恩宁、叶建青等,2008,基于GPS资料约束反演川滇地区主要断裂现今活动速率,中国科学D辑:地球科学,38(5),582~597。
    万永革、沈正康、盛书中等,2009,2008年汶川大地震对周围断层的影响,地震学报,31(2),128~139。
    万永革、沈正康、曾跃华等,2007,青藏高原东北部的库仑应力积累演化对大地震发生的影响,地震学报,29(2),115~129。
    万永革、沈正康、曾跃华等,2008,唐山地震序列应力触发的粘弹性力学模型研究,地震学报,30(6),581~593。
    万永革、吴忠良、周公威等,2002,地震静态应力触发模型的全球检验,地震学报,24(3),302~316。
    闻学泽,1999,中国大陆活动断裂的段破裂地震复发行为,21(4),411~418。
    闻学泽、杜平山、龙德雄,2000,安宁河断裂带小相岭段古地震的新证据及最晚事件的年代,地震地质,22(1),1~8。
    闻学泽、徐锡伟、郑荣章等,2003,甘孜-玉树断裂的平均滑动速率与近代大地震破裂,中国科学D辑:地球科学,33(增刊),200~208。
    吴小平、虎雄林、Bouchon M等,2007,云南澜沧-耿马Ms7.6地震的完全库仑破裂应力变化与后续地震的动态、静态应力触发,中国科学D辑:地球科学,37(6),746~752。
    吴小平、黄雍、胡家富等,2008,汶川Ms8.0巨震产生的完全库仑破裂应力变化及其强余震群,地震研究,31(4),317~323。
    徐果明、周惠兰,1982,地震学原理,北京:科学出版社:244~283。
    徐纪人、赵志新、石川有三,2008,中国大陆地壳应力场与构造运动区域特征研究,地球物理学报,51(3),770~781。
    徐锡伟、闻学泽、陈桂华等,2008,巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义,中国科学D辑:地球科学,38(5),529~542。
    徐锡伟、闻学泽、叶建青等,2008,汶川Ms8.0地震地表破裂带及其发震构造,地震地质,30(3),598~628。
    徐锡伟、张培震、闻学泽等,2005,川西及其邻近地区活动构造基本特征与强震复发模型,地震地质,27(3),447~461。
    尹祥础,1985,固体力学,北京:地震出版社:12~15。
    张国宏、单新建、李卫东,2008,汶川Ms8.0地震库仑破裂应力变化及断层危险性初步研究,地震地质,30(4),935~943。
    张国民,汪素云,李丽等,2002,中国大陆地震震源深度及其构造含义,科学通报,47(9),663~668。
    张怀、吴忠良、张东宁等,2008,虚拟川滇-基于千万网格并行有限元计算的区域强震演化过程数值模拟设计和构建,中国科学D辑:地球科学,39(3),260~270。
    张培震、邓起东、张国民等,2003,中国大陆的强震活动与活动地块,中国科学D辑:地球科学,33(增刊),12~33。
    张培震、徐锡伟、闻学泽等,2008,2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因,地球物理学报,51(4),1066~1073。
    张勇、冯万鹏、许力生等,2008,2008年汶川大地震的时空破裂过程,中国科学D辑:地球科学,38(10),1186~1194。
    赵翠萍、陈章立,周连庆等,2009,汶川Mw8.0级地震震源破裂过程研究:分段特征,科学通报,54:3475~3482。
    郑勇、马宏生、吕坚等,2009,汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系,中国科学D辑:地球科学,39,413~426。
    周荣军、何玉林、马声浩等,1999,四川小金抚边河断裂的晚第四纪活动特征,地震研究,22(4),377~381。
    周荣军、马声浩、蔡长星,1996,甘孜-玉树断裂带的晚第四纪活动特征,中国地震,12(3),250~260。
    Aki K, Richards P G, 1980, Quantitative Seismology, 2nd edition, Sausalito, California: University Science Books.
    Allen C R, Luo Z, Qian H, et al., 1991, Field study of a highly active fault zone: The Xianshuihe fault of south-west China, Geol Soc Am Bull, 103(9), 1178~1199.
    Avouac J P, Ayoub F, Leprince S, et al., 2006, The 2005 Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis, Earth Planet Sc Lett, 249, 514~528.
    Bassin C, Laske G, Masters G, 2000, The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897.
    Bouchon M, Campillo M, Cotton F, 1998, Stress field associated with the rupture of the 1992 Landers, California, earthquake and its implications concerning the fault strength at the onset of the earthquake, J Geophys Res, 103(B9), 21091~21097.
    Braslau D, Lieber P, 1968, Three-dimensional fields due to a Volterra dislocation embedded in a layered half-space: analytical representation of a seismic mechanism, Bull Seism Soc Am, 58, 613~628.
    Burchfiel B C, Royden L H, van de Hilst R D, et al., 2008, A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People′s Republic of China, GSA Today, 18(7), 4~11.
    Burchfiel B C, Zhiliang, Chen, et al.,1995, Tectonics of the Longmen Shan and Adjacent Regions, Central China',International Geology Review,37(8), 661~735,
    Chen S F, Wilson C J L, Deng Q D, et al., 1994, Active faulting and block movement associated with large earthquake in the Min Shan and Longmen Mountains,northeastern Tibetan Plateau, J Geophys Res, 99, 24025~24038.
    Chinnery M A, 1961, The deformation of the ground surface faults, Bull Seism Soc Am, 50, 355~372.
    Chinnery M A, 1963, The stress changes that accompany strike slip faulting, Bull Seism Soc Amer, 53(1), 921~932.
    Das S, Scholz C, 1981, Off-fault aftershock clusters caused by shear stress increase, Bull Seism Soc Amer, 71, 1669~1675.
    Deng J, Sykes L R, 1997a, Evolution of the stress field in southern California and triggering of moderate size earthquake: A 200-year perspective, J Geophys Res, 102, 9859~9886.
    Deng J, Sykes L R, 1997b, Stress evolution in southern California and triggering of moderate-, small-, and micro-size earthquake, J Geophys Res, 102, 24411~24435.
    Dieterich J, 1994, A constitutive law for rate of earthquake production and its application to earthquake clustering, J Geophys Res, 99, 2601~2618.
    Dieterich J, Cayol V, Okubo P, 2000, The use of eathquake rate changes as a stress meter at Kilauea volcano, Naure, 408, 457~460.
    Gomberg J, Beeler N, Blanpied M, 2000, On rate state and coulomb failure models, J Geophys Res, 105(B4), 7857~7871.
    Hardebeck J L, Nazareth J J, Hauksson E, 1998, The static stress change triggering model: Constraints from two southern California aftershock sequence, J Geophys Res, 103(24), 347~358.
    Harris R A, 1998, Introduction to special section: Stress triggers, Stress shadows, and implications for seismic hazard, J Geophys Res, 103(B10), 24347~24358.
    Heaton T H, 1975, Tidal triggering of earthquakes, Geophys J R Astr Soc, 43, 307~323.
    Ji C, Hayes G, 2008, Preliminary result of the May 12, 2008 Mw7.9 eastern Sichuan, http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/finite_fault.php.
    Kagan Y Y, Jackson D D, 1998, Spatial aftershock distribution: Effect of normal stress, J Geophys Res, 103, 24453~24467.
    Kilb D, Gomberg J, Bodin P, 2000, Triggering of earthquake aftershocks by dynamic stresses, Nature, 408, 570~574.
    Kilb D, Gomberg J, Bodin P, 2002, Aftershock triggering by complete coulomb stress changes, J Geophys Res, 107, 2060, 14PP.
    King G C P, Stein R S, Lin J, 1994, Static stress change and the trigger of earthquake, Bull Seismol Soc Am, 84(3), 935~953.
    Kirby E, Whipple K X, Burchfiel B C, et al., 2000, Neotectonics of the Minshan, China: Implication for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau, Geol Soc Am Bull, 112(3), 375~393.
    Lienkaemper J J, Galehouse J S, Simpson R W, 2001, Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake, Geophysical reaserch letters, 28(11), 2265~2268.
    Lin J, Stein R S, 2004, Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike slip faults, J Geophys Res, 109, B02303.
    Love A E H, 1927, A Treatise on the Mathematical Theory of elasticity, Bull Seism Soc Amer, 61, 1433~1440.
    Mansinha L, Smylie D E, 1971, The displacement fields of inclined faults, Bull Seism Soc Amer, 61, 1433~1440.
    McCloskey J, Nalbant S S, Steacy S, 2005, Earthquake risk from coseismic stress, Nature, 434, 291.
    Mindlin R D, 1936, Force at a point in the interior of a semi-infinite solid, Physics, 7, 195~202.
    Nishimura N, Yagi Y, 2008, Rupture process for May 12, 2008 Sichuan earthquake (Ver. 2), http://www.geol.tsukuba.ac.jp/~nisimura/20080512/.
    Okada Y, 1992, Internal deformation due to shear and tensile faults in a half space, Bull Seismol Soc Am, 82, 1018~1040.
    Parsons T, Ji C, Kirby E, 2008, Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature, 454, 509~510.
    Press F, 1965, Displacements, strains and tilts at teleseismic distance, J Geophys Res, 70, 2395~2412.
    Reasenberg P A, Simpson R W, 1992, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687~1690.
    Rundle J B, 1980a, Numerical evaluation of a static elastic gravitational deformation of a layered half-space by point couple sources, Report of Sandia National Laboratory, Albuquerque, NM, SAND, 80, 20~48.
    Rundle J B, 1980b, Static elastic gravitational deformation of a layered half space by point couple sources, J Geophys Res, 85, 5355~5363.
    Rundle J B, 1981, Vertical displacements from a rectangular fault in layered elastic-gravitational media, J Phys Earth, 29, 173~186.
    Rundle J B, 1982, Viscoelastic gravitational deformation by a rectangular thrust fault in a layered Earth, J Geophys Res, 87, 7787~7796.
    Shlien S, 1972, Earthquake tide correction, Geophys J R Astr Soc, 28, 27~34.
    Shen Z K, Sun J, Zhang P, et al., 2009, Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake, Nature, 2(10), 718~724.
    Sladen A, 2008, Preliminary Result 05/12/2008 (Mw7.9), East Sichuan, http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html.
    Steacy S, Gomberg J, Cocco M., 2005, Indtroduction to special section: stress transfer, earthquake triggering,and time dependent seismic hazard, J Geophys Res, 110, B05S01.
    Steacy S, Marsan D, Nalbant S, et al., 2004, Sensitivity of static stress calculations to the earthquake slip distribution, J Geophys Res, 109, B04303.
    Stein R S, 1999, The role of stress transfer in earthquake occurrence, Nature, 402, 605~609.
    Stein R S, Barka A A, Dieterich J H, 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering, Geophys J Int, 128, 594~604.
    Stein R S, Lisowski M, 1983, The 1979 Homestead Valley earthquake sequence, California: Control of aftershocks and postseismic deformation, J Geophys Res, 88, 6477~6490.
    Stekette J A, 1958a, On volterra`s dislocation in a semi-infinite elastic medium, Can J Phys, 36, 192~205.
    Stekette J A, 1958b, Some Geophysical applications of the elasticity theory of dislocations, Can J Phys, 36, 1168~1197.
    Toda S J, Lin J, Meghraoui M, et al., 2008, 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems, Geophys Res Lett, 35, L17305.
    Toda S J, Stein R S, Richards D K, et al., 2005, Forecasting the evolution of seismicity in southern California Animations built on earthquake stress transfer, GeophysRes Lett, 110, B05S16.
    Turcotte D L, Schubert G., 1982, Geodynamics Applications Of Continuum Physics To Geological Problems,New York, John Wiley Sons, 343~346.
    Velasco A A, Hernandez, Parsons T, et al., 2008, Global ubiquity of dynamic earthquake triggering, Nature, 1, 375~379.
    Waldhauser F, Ellsworth W, 2000, A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull Sceism Soc Am, 90(6), 1353~1368.
    Walter T R, Wang R, et al., 2007, Volcanic activity influenced by tectonic earthquakes: Static and dynamic stress triggering at Mt.Merapi, Geophysical Research Letters, 34(5), L05304.
    Wang R J, 1999, A Simple Orthonormalization method for stable and efficient computation of green‵s functions, Bull Seism Soc Am, 89(3), 733~741.
    Wang R J, 2005, The dislocation theory: a consistent way for including the gravity effect in(visco)elastic plane-earth models, Geophys J Int, 161, 191~196.
    Wang R J, Martin F L, Roth F, 2003, Computation of deformation induced by earthquakes in a multilayerd elastic crust-FORTRAN programs EDGRN/EDCMP, Computers & Geosciences, 29, 195~207.
    Wang W H, 2000, Static stress transfer and aftershock triggering by the 1999 Chi-Chi earthquake in Taiwan, TAO, 11(3), 631~642.
    Wang W H, Chen C, 2001, Static stress transferred by the 1999 Chi-Chi,Taiwan,earthquake: Effects on the stability of the surrounding faults systems and aftershock triggering with a 3D fault-slip model, Bull Seis Amer, 91(5), 1041~1052.
    Wells D L, Coppersmith K J, 1994, New empirical relationships among magnitude, rupture area and surface displacement, Bull Seism Soc Amer, 84, 974~1002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700