用户名: 密码: 验证码:
有限单元法在跨断层水准变化机理研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,人们早就注意到中强地震的发生常常伴随着显著的地壳变形。中、美、俄等国都十分重视利用大地测量观测技术监测地壳运动状态。断层属于地壳形变的薄弱地带,对构造应力场变化最敏感,在捕捉强地震孕育信息中扮演着十分重要的角色。跨断层水准测量作为获取断层形变信息的最主要手段之一,其异常现象常常被看作地震前兆信息的一个非常重要指标。1975年海城7.3级地震预报成功很大程度上依赖于包括距震中200km的金县台观测到的跨断层异常变化等在内的前兆异常。因此,定性定量地解读跨断层水准变化机理不仅有助于人们加深对地震孕育过程中地表形变、断层活动规律的认识,而且为进行野外异常落实、未来震情判断提供重要的参考。这也是实现由地震经验预报到物理性地震预报转型的一次重要尝试。
     基于上述思路,本文利用有限单元法重点开展了以下研究工作:
     一、首都圈地区跨断层水准测量监测能力评估。以首都圈地区布设在不同断层上的24处跨断层水准观测为研究对象,通过建立不同地壳分层结构、含不同倾角断层的三维非线性有限元模型,研究断层倾角和走向对断层上下盘垂向差异性运动的变化特征,从理论上探讨跨断层水准观测在何种情况下与区域应力场应力增强相关的信息最显著,对导致测点监测能力差异的可能物理机理加以探讨和分析;同时结合震例研究及R值震兆信度评分结果,对首都圈地区跨断层水准测量的整体监测能力进行初步评价。
     二、环境变化对跨断层水准观测结果的数值模拟。以2007年八宝山跨断层测点水准测量资料异常变化为例,根据首都圈地质构造环境、震源机制解、大地测量以及观测场地调研等相关资料,建立三维有限元模型,探讨和解释了八宝山测点跨断层水准异常变化的机理。
     通过数值模拟和综合分析,论文得到以下几点认识:
     (1)当区域应力场应力增强时,对于倾角介于30°~70°的断层,跨断层水准变化幅度相对较大,异常效果比较明显,当倾角接近90°时,跨断层水准变化幅度趋近零,信息展露最小。
     (2)对于相同倾角的断层,当其走向与断层两侧水平位移矢量差方向接近垂直时,跨断层水准变化较明显,测点越容易监测到断层的活动,从而更加有效的捕捉断层活动的异常现象。
     (3)总体而言,首都圈的跨断层水准测量的布设具备较强的地震监测能力。数值模拟结果表明:监测效能比较好的跨断层水准测点主要包括紫荆关、德胜口、小水峪、燕家台、大灰厂、八宝山、张山营、狼山等。以上数值模拟结果均与震例总结和R值评分结果具有很好的一致性。
     (4)未来对跨断层水准测点进行选址时,应当考虑断层倾角和走向对跨断层水准监测能力的影响,建议将跨断层水准测点尽量布设于倾角介于20°~80°之间且走向与区域构造运动总体方向近垂直的断层上。
     (5)场地变化时质量迁移对于跨断层水准的影响很小,同时对断层周围最大剪应力的分布没有太大影响。相比而言,质量迁移导致的观测场地岩体渗水条件改变,通过影响断层两侧破裂带介质性质,可能导致地表垂直形变场和跨断层水准值相对明显的扰动,并有可能导致断层附近的应力场的重新分布。此外,就出露地表的八宝山断层,大范围、长期的降雨对其测点跨断层水准观测是有比较显著的影响的。
     (6) 2007年5月至7月跨断层测量异常引起的机理主要可能归结为两方面,一是降雨影响,二是土石开方导致的渗水条件改变的影响,而场地附近的质量迁移(载荷卸载的重力塌陷作用)对跨断层水准观测结果几乎没有影响。
People acknowledged the accompanied crustal deformation during the pregnancy and occurrence of strong earthquakes for a long time. In China, America, Russia, much emphasis has been paid to the obtainment of crustal deformation using geodetic measurement and observational techniques. Fault, deemed as the weak, flexible belt of crust, is most sensitive to the variation of tectonic stress, and thus plays an extremely crucial role in detecting the earthquake precursory information. As one of the main approaches to attain geomorphologic information, the anomaly of cross-fault leveling recording is always regarded as one important indicator for the possible occurrence of imminent earthquakes. The successful prediction of Ms 7.3 Haicheng Earthquake in China attributes much of its accuracy to the obtainment and acknowledge of cross-fault measurement anomaly. Therefore, qualitative and quantitatively understanding of the mechanics of cross-fault leveling change not only boost people’s comprehension of the complex relationships between earthquake and fault behavior, but also provide useful insight for the discretion of cross-fault leveling anomaly and the assessment of the likelihood of future earthquakes, which could also be considered as one valuable endeavor to convert statistical and empirical earthquake prediction to physically predicting.
     In this dissertation, in order to address the appeal above, we firstly established three dimensional finite element models that involved different fault angles and vertical inhomogeneity to study the impact patterns of fault dip and strike on cross-fault leveling monitoring, using the twenty-four cross-fault leveling stations scattered over different faults in the capital area as research objects. Then combined cross-leveling data analysis, earthquake case study, and R-value assessment, we obtained the preliminary evaluation of cross-fault level monitoring effectiveness in capital area.
     Moreover, we quantitatively studied the effects of monitoring site condition alteration on cross-fault leveling. Using Babaoshan cross-fault leveling variation as an illustration, we quantitatively estimate the impact of monitoring environment change on cross-fault leveling records using three-dimensional finite element model that takes into account the Capital’s geological structure, focal mechanism solutions, geodetic measurement, and field investigation, and then explained the possible cause for the anomaly in cross-fault leveling change.
     Our results illustrate that:
     (1) cross-fault leveling sites located across fault with dip between 30°~70°have relatively more conspicuous cross-fault leveling change in case of tectonic stress accumulation, stronger monitoring effectiveness. While dips of monitored fault have an upright angle, the cross-fault leveling change approximates to zero;
     (2) to those sites located across fault with similar dip, the cross-fault leveling would demonstrate a more evident change when the fault strike were perpendicular to crustal general motion and thus possess relatively stronger monitoring effectiveness in terms of earthquake prediction;
     (3) corroborated with the results from earthquake case study, and R-value assessment, cross-fault leveling in the capital area is believed to possess adequate monitoring capacity in terms of earthquake prediction in general. Some sites with satisfactory monitoring capacity include Zijinguan, Deshengkou, Xiaoshuiyu, Yanjiatai, Dahuichang, Babaoshan, Zhangshanying, Langshan etc;
     (4) the prospective cross-fault leveling stations are recommended to be established to faults with dip between 20°~80°and strike perpendicular to crustal general motion for stronger monitoring effectiveness in terms of earthquake prediction;
     (5) the gravity collapse, caused by mass loss, bears little effects on cross-fault leveling as well as the layout of shallow stress in surface. While the fluid penetration condition alteration resulted from the same course is proved to have more influences on leveling change and surface stress change based on numerical calculation. The large-scale, lasting precipitation is simulated to cause apparent adjustment in cross-faults leveling for surface-emerged faults like Babaoshan fault;
     (7) the anomaly in cross-leveling change in Babaoshan site from May to July in 2007 are attributable for two possible factors: lubricating effects from precipitation, and pore penetration condition change due to mass loss, while the mere gravity collapse (mass unloading) are not one factor for its leveling anomaly.
引文
邓起东.活动断裂研究的进展与方向[M].北京:地震出版社,1991.
    闻学泽.活动断裂地震潜势的定量评价[M].北京:地震出版社,1996.
    李兴才.断层的震前滑动对唐山地震发生的影响[J].地震学报,1992,14(3):304–308.
    周硕愚.断层形变测量与地震预报[J].地壳形变与地震,1994,14(4):90–97.
    薄万举,杨国华,郭迁良,等.地壳形变与地震预测研究[M].北京:地震出版社,2001.
    谢觉民.形变台点对大震的前兆的显示能力[A].国家地震局科技监测司.地震监测与预报方
    法清理成果汇编[C].北京:地震出版扯,1990.32–41.
    薄万举,郭良迁.地质构造与大地形变的综合研究[A].刘连柱.减灾论坛[C].香港:欧亚经济出版社,2000.13–22.
    张红艳,谢富仁.首都圈地区跨断层形变观测与地壳应力场[J].地震地质,2007,29(4):706–714.
    郭迁良,薄万举,杜雪松,等.华北地区断层形变异常与地震活动[J].地震,2004,24(3):42–50.
    高忠宁,蒋成恩,戴梁焕,等.大同一阳高6.1级地震断层位移测量前兆异常特征[J].地震,1990(4):66–74.
    焦青,刘耀伟,杨选辉,等.文安5.1级地震前兆变化特征分析[J].大地测量与地球动力学,2007,27(6):96–99.
    高忠宁,龚复华.由断层活动特征探讨地震活动的前兆信息——首都圈三次Ms6.0地震的启示[A].国家地震局地壳应力研究所.地壳构造与地壳应力文集[C].北京:地震出版社.2001.128–135.
    施顺英,张燕.基于跨断层形变异常预测云南地震的试验[J].大地测量与地球动力学,2007,27(5):83–87.
    高文学,马瑾.首都圈地震地质环境与地震灾害[M].北京:地震出版社,1993.
    地震中短期前兆特征与预测方法研究[M].北京:地震出版社,2005.
    陈琪福,郑大林.中国震例(1995–1996)[M].北京:地震出版社,2002.
    茂木清夫.日本的地震预报[M].庄灿涛等译.北京:地震出版社, 1986.
    江在森,丁平,王双绪,等.中国西部大地形变监测与地震预测[M].北京:地震出版社,2001
    高忠宁,龚复华,由断层活动特征探讨地震活动的前兆信息——首都圈三次Ms6。0级地震的启示,地壳构造与地壳应力文集,2001(14),128-135
    施顺英,张燕,基于跨断层形变异常预测云安地震的试验[J],大地测量与地球动力学,2007,27(5)83-87
    吴邦素.跨断层形变测量中的干扰因素和机制的讨论EJ].中国地震,1988.4(1):53~6
    蒋靖祥,尹光华,温和平等.新疆黑孜跨断层形变测量资料异常分析.西北地震学报.2002,24 (1),24~45.
    蒋靖祥,王在华,温和平,. 2003年昭苏MS6.0地震定点形变异常初步分析[J].地震.2005,25(2), 83 ~90.
    王秀文,宋美琴山西近期形变短期异常的调查和分析[J],山西地震,2004,117(2):1-4
    陈德福,陈京,杨星,滇西永胜定点形变监测到的多次重现的震兆异常[J],大地测量与地球动力学,2008,28(3):21-26
    王双绪张希张四新,甘宁青地区现今构造形变异常与地震[J].大地测量与地球动力学, 2002, 22(4):44-48
    苏琴,朱航,杨永林.耿达短水准异常核实报告[R].2007,
    焦青,杨选辉,许丽卿.汶川8.0级地震前后龙门山断裂活动特征浅析[J].大地测量与地球动力学,2008, 28(4): 7-11
    徐杰,汪良谋,方仲景,等.北京八宝山断裂和黄庄—高丽营断裂构造活动性的初步分析[J].华北地震科学,1992,10(3):1—11.
    焦青,邱泽华,范国胜.北京地区八宝山—黄庄—高丽营断裂的活动与地震[J].大地测量与地球动力学,2005,25(4):50—54
    车兆宏,巩日沐,刘善华,等.北京黄庄—高丽营断层、八宝山断层中段活动性综合研究[J].中国地震,1997,13(4):330—337
    车兆宏,范燕.北京黄庄—高丽营断层、八宝山断层现今活动追踪研究[J].地震,2003,23(3):97—104
    黄埔琼,陈顒,白常清等.八宝山断层的变形行为与降雨及地下水的关系[J].地震学报, 2005, 27(6): 637-646
    陆明勇.地壳形变与地下水相互作用及“双力源”前兆观点[J].大地测量与地球动力学,2006,26(1):76-83
    徐锡伟,吴卫民,张先康等.首都圈地区地壳最新构造变动与地震[M].科学出版社,2002
    赖院根,刘启元,陈九辉等.首都圈地区横波分裂与地壳应力场特征[J].地球物理学报,2006,49(1):189 196
    水利水电科学研究院等,岩石力学参数手册[M].武汉:水利电力出版社,1991
    嘉世旭,张先康,方盛明等,华北裂陷盆地不同块体地壳结构及演化研究,地学前缘,2001,8(2),259-266
    李钦祖.华北地壳应力场的基本特征.地球物理学报[J],l980,23(4):376—387
    李钦祖,靳雅敏,于新昌.华北地区的震源机制与地壳应力场[J].地震学报.1982,4(1):55—61
    徐锡伟,吴卫民,张先康等.首都圈地区地壳最新构造变动与地震[M].科学出版社,2002
    车兆宏,赵承坤,刘天海.首都圈区域应变场研究[J].地壳形变与地震,1994, 14(1):32-37
    许绍燮.地震预报能力评分[A] .国家地震局可以监测司编.地震预报方法实用化研究文集(地震学专集)[C].北京:学术书刊出版社,1989.586–590.
    焦青,范国胜.首都圈地区跨断层位移流动观测资料的地震预报效能[A].国家地震局地壳应力研究所.地壳构造与地壳应力文集[C].北京:地震出版社.2003.93–98.
    王仁.有限单元等数值方法在我国地球科学中的应用和发展[J].地球物理学报,1994,37(增刊):128-138.
    王妙月,底青云,张美根.地震孕育、发生、发展动态过程的三维有限元数值模拟[J].地球物理学报,1999,42(2):218- 227.
    王爱国,袁道阳,梁明剑.兰州盆地最大潜在地震变形数值模拟[J].西北地震学报,2008,30(3):232~238.
    章纯.中国东部地区地震活动与构造应力场关系的有限元数值模拟[J].西北地震学报,2007,29(3):230-234.
    张彬,杨选辉,陆远忠.地震动态应力触发研究进展[J].西北地震学报,2008,30(3):298-303.
    马胜利.模拟断层带摩擦滑动性状与变形特征[J].中国地震,1986,2(2):72-78.
    王仁,何国琦,殷有泉.华北地区地震迁移规律的数学模拟[J].地震学报,1980,2(1):32–42.
    王仁,孙苟英,蔡永恩.华北地区近700年地震序列的数学模拟[J].中国科学(B辑),1982,8:745–753.
    殷有泉,张宏.模拟地震的应变软化的数学模型地球物理学报[J].1982,25(5):414–423.
    王继存,续春荣.唐山地震断层破J坏及其力学过程的数值模拟地震地质[J].1989,11(4):71–76.
    陆远忠,叶金铎,蒋淳.中国强震前兆地震活动图像机理的三维数值模拟研究.地球物理学报,2007,5o(2):499 508
    陈连旺,陆远忠,张杰等.华北地区三维构造应力场[J].地震学报,1999,21(2):140–149.
    陈连旺,陆远忠,郭若眉等.华北地区断层运动与三维构造应力场的演化[J].地震学报,2001,23(4):249–361.
    陈连旺,陆远忠,刘杰等.1966年邢台地震引起的华北地区应力场动态演化过程的三维粘弹性模拟[J].地震学报,2001,23(5):480–491.
    陈化然,等.川滇地区应力场演化与强震间相互作用的三维有限元模拟[J].地震学报,2004,26(6):567–575.
    李平,等.辽宁及邻区地壳构造应力场及其与地震活动关系的三维有限元数值模拟研究[J],地震学报,2001,23(1):24-35.
    刘峡,傅容珊,杨国华.用GPS资料研究华北地区形变场和构造应力场[J]大地测量与地球动力学,2006,26(3):33–39.
    李红,陈连旺,李红江.广州地区活动断裂的数值模拟[J].大地测量与地球动力学,2008,28(2):39–44.
    王凯英,马瑾.川滇地区断层相互作用的地震活动证据及有限元模拟[J].地震地质,2004,26(2):259–272.
    王凯英.断-块模型中走滑型地震应力触发研究—以青藏高原北部几次强震为例[J].地球物理学报,2009,52(7):1776–1781.
    白武明,林邦慧,陈祖安. 1976年唐山大震发生对华北地区各地块运动与变形影响的数值模拟研究[J].中国科学(D),2003,33(增刊):99–107.
    蔡永恩,何涛,王仁.1976年唐山地震震源动力过程的数值模拟[J].1999,21(5):469–477.
    张瑞青,魏富胜,乔成斌.用(DDA+FEM)方法数值模拟1 975年海城、1 999年岫岩地震发生的过程[J].地震学报2005,27(3):163–170.
    陈祖安,林邦慧,白武明等. 1997年玛尼地震对青藏川滇地区构造块体系统稳定性影响的三维DDA+FEM方法数值模拟[J].地球物理学报,2008,51(5):1422–1430.
    陈祖安,林邦慧,白武明等.2008年汶川8.0级地震孕震机理研究[J].地球物理学报,2009,52(2):408–417.
    Scholz C H. The Mechanics of Earthquakes and Faulting[M]. 1990. Cambridge University Press Jaeger JC, Cook NW. Fundamentals of rock mechanics[M], Methuen & Co. London, 1976
    Liu M and Yang Y. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling[J]. J.Geophys.Res., 2003,108 (8):2361. doi:10.1029/2002JB002248.
    Melosh H Jand Raefsky A.A simple and efficient method for introducing faults into finite element computations,Bull.Seism.Soc.Am.1981,71(5):1391–1400.
    Melosh H J and Williams C. A Mechanics of graben formation in crustal rocks:A finite element analysis[J].J.Geophys.Res.,1989,94(B10):13961–13973.
    Jungels P H. Models of tectonic processes associated with earthquakes[ D].Pasadena: CaliforniaInstitute Technology, California,1973.
    Jungels P H and Frazier G A.Finite element analysis of the residual displacements for an earthquake rupture:source parameters for the San Fernando earthquake,J.Geophys.Res.1973,78:5062–5083.
    Sibson R H.Fault rocks and fault mechanisms[J].J.Geol.1977,133:191–213.
    Strehlau J.A discussion of the depth extent of rupture in large continental earthquakes [J]. Geophys.Monogr.,1986,37:131–145.
    Dieterich J H. Earthquake on faults with rate and state–dependent friction[J].Tectonophysics,1992, 11:115–134.
    Gomberg J.Beeler N M. Earthquake triggering by transient and static deformation[J].J Geophys Res,1998,103(B10):24411–24426.
    Yoshioka S and Tokunaga Y O. Numerical Simulation of Displacement and Stress Fields Associated with the 1993 Kushiro-oki, Japan, Earthquake. Pure appl. geophys. 1998,152:443–464.
    Hearn E H. What can GPS data tell us about the dynamics of post-seismic deformation[J].Geophys.J.Int.,2003,155:753–777.
    Sheu S Y and Shieh C F. Viscoelastic–afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, 1999 Chi-Chi (Taiwan) earthquake[J]. Geophys.J.Int., 2004,159(3):1112–1124.
    Buiter J.H, Govers Rob, Wortel M.J. A modeling study of vertical displacements at convergent plate margins[J]. Geophys. J. Int. 2001(147):415–427.
    Hu Y, et al.Three–dimensionalviscoelastic finite element model for postseismic deformation of the great 1960 Chilean earthquake[J], J.Geophys.Res.109 2004,doi:10.1029/2004JB003163.
    Hyodo M K and Hirahara. A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan[J]. Earth Planets Space, 2003(55):667–675.
    Zhao S, et al.3–D finite element modelling of deformation and stress associated with faulting:effect of inhomogeneous crustal structures[J]. Geophys.J.Int.,2004,157:629–644.
    Dixon T J. Decaix F .Farina K.Seismic cycle and rheological effects on estimation of present-day slip rates for the Agua Blanca and San Miguel-Vallecitos faults, northern Baja California, Mexico[J]. J. Geophys. Res. 2002, 107(B10), 2226, doi:10.1029/2000JB000099. Aagaard B T, Hall J F and Heaton T H.Characterization of near-source ground motions with earth-quake simulations[J].Earthquake Spectra,2001,17(2):177–207.Andrews D J,Test of two methods for faulting in finite-difference calculations[J].Bull. Seism. Soc. Am., 1999,89: 931–937.
    Goodman R E, Taylor R L,and Brekke T L. A model for the mechanics of jointed rock[ J]. Soil Mech. and Found. Proc, 1968, 94: 637–658.
    Hallquist D and John O.LS--DYNA3D Theoretical Manual [M], Livermore: Software Technology Corporation, 1994.
    Cescotto S and Charilier R.Frictional Contact Finite Elements Based on Mixed Variational Principles[J]. International Journal for Numercial Method in Engineering, 1992(36):1681–1701.
    Peric D and Owen D R.Computational Model for 3--D Contact Problems with Friction Based on the Penalty Method[J]. International Journal for Numercial Method in Engineering, 1992,35:1289–1309.
    Parsons T. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis[J]. J.Geophys.Res.,2002,107(B8): 2162, doi:10.1029/2001JB001051.
    Parsons T. Tectonic stressing in California modeled from GPS observations, J. Geophys. Res.,2006, 111, B03407, doi:10.1029/2005JB003946.
    Masterlark T.Finite element model predictions of static deformation from dislocation sources in a subduction zone:Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions[J] J.Geophys.Res.,2003, 108,B112540, doi:10.1029/2002JB002296,.
    Ellis S et al.Simplified models of theAlpine Fault seismic cycle: Stress transfer in the mid-crust. Geophy.J.Int.,2006, doi: 10.1111/j.1365-246X.2006.02917.x.
    Ganas A and Parsons T. Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift[J]. J. Geophys. Res.2009, 114,B06404, doi:10.1029/2008JB005599.
    Shi G H. Discontinuous deform ation analysis: a new numerical model for the statics and dynamics of block systems[D].Berkeley:Department of Cilvil Engineering,University of California, 1988.
    Liu L. Modeling aseismic fault slips and block deformation in northern china by DDA[A]. Proc of the First International Forumon Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[C].Albuquerque:TSI Press.1996,373–383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700