用户名: 密码: 验证码:
后交叉韧带断裂对髌骨生物力学影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后交叉韧带(posterior cruciate ligament,PCL)损伤在临床中为常见运动损伤,严重影响膝关节的稳定性。PCL损伤是否对髌骨产生影响,目前尚未有文献报道。本研究采用生物力学测定的方法,将其分为PCL完整组、后内侧束(Posteromedial bundle, PMB)切断组、前外侧束(Anterolateral bundle, ALB)切断组、PCL完全切除组在各角度及各载荷下观察对髌骨上极、下极、内侧、外侧的影响,为PCL损伤是否对髌骨产生影响提供理论依据。
     目的探讨PCL完全断裂和部分断裂对髌骨的生物力学影响。
     方法新鲜成人尸体膝关节标本6具,依PCL完整(6具)、PMB切断(3具)、ALB切断(3具)和PCL完全切断(6具)分别在膝关节0°、30°、60°、90°位轴向加载200~800N,测量髌骨上、下极,髌骨内、外侧关节面的应变并对数据进行统计分析。
     结果1.PCL完整组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨下极为压应变,髌骨上极为拉应变,应变绝对值随载荷增加而增加;60°位时,髌骨上、下极均为拉应变,90°位时,髌骨上极为压应变,髌骨下极为拉应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而增加,各角度间应变值均有统计学差异,P<0.05。2.ALB切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨下极为压应变,髌骨上极为拉应变,应变绝对值随载荷增加而增加;60°及90°位时,髌骨上、下极均为拉应变,应变绝对值随载荷增加而增加:各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05。3.PMB切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时,髌骨上极为拉应变,下极为压应变,髌骨上、下极应变绝对值随载荷增加而增加;60°及90°位时,髌骨上、下极均为拉应变,应变绝对值均随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°、60°、90°位时,髌骨内、外侧均为压应变,30°时应变绝对值随载荷增加先增加后减小,60°、90°时应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05。4.ACL切断组:①膝关节0°位,髌骨上下极、髌骨内外侧应变值均为最小,均无统计学差异,P>0.05。②膝关节屈曲30°位时髌骨下极为压应变、上极为拉应变,60°、90°位时,髌骨上、下极均为拉应变,应变绝对值随载荷增加而增加;各角度间应变均有统计学差异,P<0.05。③30°位时髌骨内侧为拉应变、外侧为压应变,60°、90°位时,髌骨内、外侧均为压应变,应变绝对值随载荷增加而减小,各角度间应变值均有统计学差异,P<0.05。
     结论1、PCL完全切断,在不同载荷和角度下,对髌骨各部的应变均有影响。
     2、前外侧束切断在膝关节屈曲30°、60°、90°位各载荷下可引起髌骨各部生物力学改变。
     3、后内侧束在膝关节屈曲0°、30°位200N、400N载荷下对髌骨各部位应变无影响。
     4、PCL完全断裂,髌骨内侧应变高于髌骨外侧应变,其意义尚需进一步探讨。
The injuries of posterior Curciate Ligament are very common in sport injuries. The injuries mainly effect the stabilization of knee joint. The PCL injury did effect the patella or not is unknown, there is few literature report it. This research intend to use biomechanic method observe the biomechanic change of patella after PCL complete rupture or incomplete rupture, provide the theory evidence of pathological changes in patella after PCL rupture.
     Objective:To investigate the biomechanical influences of partial and total PCL rupture on the patella.
     Methods:6 fresh cadaveric knees from adult human beings were divided into PCL intact group(6 samples)、PMB broken group(3 samples)、ALB broken group(3 samples) and PCL total broken group(6 samples). The knees were applied with 200N-800N axial loading force when they flexed 0°、30°、60°、90°.The strain on the patella was measured and analysed.
     Results:1. In PCL intact group:①In 0°position, the strain of all 4 test place of patellar were the smallest, and the differences among the parts were not significant (P>0.05).②In 30°positions, the inferior of patellar was compressive strain, the superior of patellar was tensile strain, the absolute value of strain was increased with the load increased. In 60° positions, the strain of inferior and superior of patellar were tensile strain, the absolute value of strain was increased with the load increased. In90°positions, the superior of patellar was compressive strain, the inferior of patellar was tensile strain, the absolute value of strain was increased with the load increased.The differences among the parts were all significant (P<0.05).③In 30°、60°、90°positions, the medial and lateral of patellar were compressive strain, the absolute value of strain was increased with the load increased. The differences among the parts were all significant (P<0.05).2. In ALB broken group:①In 0°position, the strain of all 4 test place of patellar were the smallest, and the differences among the parts were not significant (P>0.05).②In 30°positions, the superior of patellar was tensile strain, the inferior of patellar was compressive strain, the absolute value of strain on the superior and inferior of patellar was increased with the load increased. In 60°and 90°positions, the superior and inferior of patellar was tensile strain, and the absolute value of strain was increased with the load increased. The differences among the parts were all significant (P<0.05).③In 30°、60°、90°positions, the medial and lateral of patellar were compressive strain, the absolute value of strain was decreased with the load increased. The differences among the parts were all significant (P<0.05).3. In PMB broken group:①In 0°position, the strain of all 4 test place of patellar were the smallest, and thedifferences among the parts were not significant (P>0.05).②In 30° positions, the strain of superior of patellar were tensile strain, the inferior of patellar was compressive strain, the absolute value of strain on the superior and inferior of patellar was increased with the load increased. In 60°and 90°positions, the superior and inferior of patellar was tensile strain, the absolute value of strain was increased with the load increased. The differences among the parts were all significant (P<0.05).③In 30°、60°、90°positions, the medial and lateral of patellar were compressive strain, In 30°positions, the absolute value of strain was increased in first, then decreased with the load increased. In 60°、90°positions,the absolute value of strain was decreased with the load increased. The differences among the parts were all significant (P<0.05).4. In PCL total broken group:①In 0°position, the strain of all 4 test place of patellar were the smallest, and the differences among the parts were not significant (P>0.05).②In 30°positions, the strain of superior of patellar were tensile strain, the inferior of patellar was compressive strain. In 60°、90°positions, the superior and inferior of patellar were tensile strain, the absolute value of strain was increased with the load increased. The differences among the parts were all significant (P<0.05).③In 30°positions, the strain of medial of patellar were tensile strain, the lateral of patellar was compressive strain. In 60°、90°positions, the medial and lateral of patellar were compressive strain, the absolute value of strain was decreased with the load increased. The differences among the parts were all significant (P<0.05).
     Conclusion:1. PCL total rupture may cause abnormal load on the patellar in all the positions.2. ALB rupture may cause abnormal load on the patellar in 30°、60°、90°positions.3. PMB rupture not cause abnormal biomechanical change on patella in 0°position and 200N、400N loaded in 30°position.4. PCL total rupture can cause the strain of medial of patellar was larger than lateral of patellar, which need to be further explored.
引文
[1]Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries[J]. Arthroscopy,2005,21 (4): 457-461.
    [2]Shelboume KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries. A p rospective study[J]. J SportsMed (Am),1999,27 (3):276-283.
    [3]Harner CD, Xerogeanes JW, Livesay GA, et al. Biomechanical ananlysis of a double-bundle posterior cruciate ligament reconstruction. Am J SportMed,2000,28: 144
    [4]Race A, Amis AA. PCL reconstruction. J Bone Joint Surg (Br),1998,80:173
    [5]Miller MD, Olszewski AD. Posterior cruciate ligament injuries. new treatment options. Am J Knee Surg.1995,8:145-154.
    [6]Janousek AT, Jones DG, Clatworthy M,et al. Posterior cruciate ligament injuries of the knee joint. Sports Med,1999,28:429-441.
    [7]Miller MD, Olszewski AD. Cruciate ligament graft intra-articular distances. Arthroscopy,1997,13:291-295.
    [8]AmisAA, Bull AMJ, Gup te CM, et al. Biomechanics of the PCL and related structures:posterolateral, posteromedial and meniscofemoral ligaments[J]. Knee Surg Sports Traumatol Arthrosc,2003,11(5):271-281.
    [9]ButlerDL, KayMD, StoufferDC. Comparison of material p roperties in fascicle-bone units from human patellar tendon and knee ligaments[J]. J Biomech, 1986,19 (6):425-432.
    [10]Race A, AmisAA. The mechanical p roperties of the two bundles of the human posterior cruciate ligament [J]. J Biomech,1994,27(1):13-24.
    [11]孙磊,宁志杰,田敏,等.急性膝关节后内侧角损伤[J].中国矫形外科杂志,2005,13(20):1528-1531.
    [12]孙磊,宁志杰,田敏,等.膝关节后交叉韧带合并后外侧角损伤[J]中国矫形外 科杂志,2006,14(6):409-412.
    [13]Keller PM, Shelbourne KD, McCarroll JR, et al. Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med,1993,21(1):132-136.
    [14]Chen CH. Surgical treatment of posterior cruciate ligament injury. Chang Gung Med J,2007,30(6):480-492.
    [15]Huberti HH, Ha yes WC. Patellofemoral contact pressure [J]. J Bone Joint Surg, 1984,66A:715-724
    [16]Ahmed A, Burke D, Hyder A. Force analysis of the patellar mechanism. J Orthop Res.1987; 5(1):69-85
    [17]Mow VC,Flatow EL,Ateshian GA. Biomechanics[A].In:Buckwalter JA,Einhorn TA Simon SR(eds).Othopaedic Basic Science[M].Springfield IL,American Academy of Orthopaedic Surgeons 2000.133-146.
    [18]Black burnels, Peel TE. A new method of measuring patellar hight. J Bone Joint Surg,1977,59(A):241
    [19]M chael A H.Storical perspectires of chondromalacia patellae. Orthop Clin North Am,1992,10:517
    [20]Hayes WC, Huberti H, Lewallen D. Patellofemoralcontact pressure and the effects of surgical reconstructive procedures [A]. InEwing J W,editor:Articular cartilage and knee joint function:Basic science and arthroscopy[M],NewYork,1990, RavenPress, pp57-771
    [21]Seedhom BB, Takeda T, Tsubuku M,et al.Mechanical factors and patellof emoral osteoarthritis. [J] Am Rheumat Dis,1997,3:307-316
    [22]Facit RP.et al Disorders of Patellofemoral Joint.Baltimore, Williams,1977:30-50
    [23]Goodfellow JW, Patellofemoral contact area, J Bone Joint Surg.1976:58B(3): 287-260
    [24]周维江,屠开元,徐印坎等,髌股关节生物力学实验研究.第二军医大学学报,1987,8(1):4-8
    [25]Warner JJP, Bowen MK, Deng XH, et al. Articular contact patterns of the normal glenohumeral joint. J Shoulder Elbow Surg,1998,7(4):381-8.
    [26]汪爱媛,卢世璧,马志鹏等.压敏片成像分析系统的研制及生物力学应用.北京生物医学工程,2001,20(4):282-4
    [27]Thambyah A, Goh JCH, Das De S. Contact stresses in the knee joint in deep flexion. Med Eng Phys,2005,27:329-35
    [28]Grelsamer RP,Weinstein CH.Applied biomechanics of the patella [J ].Clin Orthop Rel Res,2001,389:9-14.
    [29]Race A, AmisAA. Loading of the two bundles of the posterior cruciate ligament: an analysis of bundle function in A-P drawer[J]. J Biomech,1996,29 (7):873-879.
    [30]Lee TQ, Yang BY, Sandusky MD, et al. J Rehabil Res Dev,2001,38(5): 463-469.
    [31]Heino BJ, Powers CM. Med Sci Sports Exerc.2002:34(10):1582-1593.
    [32]Li G, Papannagari R, Nha KW, DeFrate LE, Gill TJ, Rubash HE, The coupled motion of the femur and patella during in-vivo weightbearing knee flexion. J Biomech Eng.2007; 129(6):937.
    [1]Chen FS, Rokito A S, Pitman M I. Acute and chronic posterolateral rotatory instability of the knee [J]. J Am Acad Orthop Surg,2000,8 (2):97-110.
    [2]Zhao J, He Y, Wang J. Am J Sports Med,2006; 34(10):1615-1622
    [3]Fanelli GC, Sports Med Arthrosc,2006; 14(1):37-43
    [4]LaPrade RF, Wentorf F. Clin Orthop,2002; 402:110-121
    [5]Cooper JM, McAndrews PT, LaPrade RF. Sports Med Arthrosc,2006; 14(4):213-220
    [6]Bahk MS, Cosgarea AJ. Sport Med Arthrosc,2006; 14(1):12-19
    [7]Noyes F R, Barber-Westin S D,Albright J C. An analysis of the causes of failure in 57 consecutive posterolateral operative procedures[J]. Am J SportsMed, 2006,34(9):1419-1430.
    [8]MaynardMJ, Deng X, Wickiewicz TL, et al. The pop liteofibular ligament. Redisco very of a key element in posterolateral stability[J]. J SportsMed (Am),1996,24 (3):311-316.
    [9]Seebacher J R, Inglis A E,Marshall J L, et al. The structure of the posterolateral aspect of the knee [J].J Bone Joint Surg Am,1982,64(11):536-541.
    [10]Staubli H U, Birrer S. The pop liteus tendon and its fascicles at the pop liteal hiatus:Gross anatomy and functional arthroscop ic evaluation with and without anterior cruciate ligament deficiency[J]. Arthroscopy,1990,6 (3):209-220.
    [11]LaPrade R F, Ly T V,Wentorf F A, et al. The posterolateral attachments of the knee:a qualitative and quantitative morphologic analysis of the fibular collateral ligament, pop liteus tendon, pop liteofibular ligament, and lateral gastrocnemius tendon[J]. Am J SportsMed,2003,31 (6):854-860.
    [12]Shahane SA, Ibbotson C, Strachan R, et al. The pop liteofibular ligament An anatomical study of the posterolateral corner of the knee [J]. J Bone Joint Surg Br,1999,81(4):636-642.
    [13]Harner C D, Hoher J,Vogrin TM, et al. The effects of a popliteusmuscle load on in situ forces in the posterior cruciate ligament and on knee kinematics. A human cadaveric study [J]. Am J SportsMed,1998,26 (5):669-673.
    [14]Anonymous. J Bone Joint Surg Br,2004,86 (supp 13):327.
    [15]宣芸,于春水.弓状韧带的形态特征及其临床意义[J].中国临床解剖学杂志,2003,21 (3):232-234.
    [16]宣芸,于春水.腓韧带的形态特点及功能[J].中国临床解剖学杂志,2003,21(2)150-151.
    [17]Meister BR,Michael,Moyer RA, et al. Am J Sports Med,2000,28(6):869~878.
    [18]Terry GC, LaPrade RF. Am J Sports Med,1996; 24 (6):732-739.
    [19]LaPrade RF, Bollom TS, Wentorf FA, et al. Am J Sports Med,2005; 33(9):1386-1391.
    [20]Sanchez AR, Sugalski MT, LaPrade RF. Sports Med Arthrosc,2006; 14(1):2-11.
    [21]Kapandji IA. Physiologie Articulaire [M]. Maloine,1994.
    [22]Huten D. Conception des p rotheses uniet tricompartimentales a glissement du genou. In: Cahierd, enseignement dela SOFCOT. Concep tion des p rotheses articulaires n。44. Paris:Elsevier, 1993,10(6):94-126.
    [23]Harner CD, Vogrin TM, Hoher J, et al. Am J Sports Med,2000; 28(1):32-39.
    [24]Harner CD, Xerogeanes JW, Livesay GA, et al. Biomechanical ananlysis of a double-bundle posterior cruciate ligament reconstruction. Am J SportMed,2000,28:144
    [25]Race A, Amis AA. PCL reconstruction. J Bone Joint Surg (Br),1998,80:173
    [26]Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries[J]. Arthroscopy,2005,21 (4):457-461.
    [27]Shelboume KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries. A p rospective study[J]. J SportsMed (Am),1999,27 (3):276-283.
    [28]Hagemeister N, Duval N, Yahwa L,et al. Knee,2003; 10 (3):249-256.
    [29]Fanelli GC, Larson RV. Practical management of posterolateral instability of the knee[J]. Arthroscopy.2002; 18 (2 Supp 11):1-8
    [30]孙磊,宁志杰,田敏,等.急性膝关节后内侧角损伤[J].中国矫形外科杂志,2005,13(20):1528-1531.
    [31]孙磊,宁志杰,田敏,等.膝关节后交叉韧带合并后外侧角损伤[J]中国矫形外科杂志,2006,14(6):409-412.
    [32]Veltri DM, Warren RF, Clin Sports Med,1994; 13(3):615-627.
    [33]Veltri DM, Deng XH, Torzilli PA, et al. Am J Sports Med,1996; 24(1):19-27.
    [34]Maynard MJ, Deng X, Wickiewicz TL, et al.Am J Sports Med,1996; 24(3):311-316.
    [35]LaPrade RF, Muench C, Wentorf F, et al. Am J Sports Med,2002; 30(2):233-238.
    [36]Skyhar MJ, Warren RF, Ortiz GJ, et al. J Bone Joint Surg Am,1993; 75(5):694-699.
    [37]Shapiro MS, Freedman EL. Allograft reconstruction of the anterior and posterior cruciate ligaments after traumatic knee dislocation. AmJ Sports Med,1995,23:580
    [38]Mariani PP, Santoriello P, Iannone S, et al. Comparison of surgical treatments for knee dislocation. Am J Knee Surg,1999,12:214
    [39]Fanelli GC, Edson CJ. Arthroscopically assisted combined anterior and posterior cruciate ligament reconstruction in the multiple ligament injured knee:2 to 10 year follow-up. Arthroscopy,2002,18:703
    [40]Ohkoshi Y,Nagasaki S,Shibata N, et al. Two-stage reconstruction with autografts for knee dislocations. Clin Orthop,2002,398:169
    [41]孙康,徐强,王光达.膝关节后外侧角损伤的诊断与治疗.骨与关节损伤杂志,2004,19(1):67
    [42]Stannard J P, Brown SL, Farris RC,et al. The posterolateral corner of the knee:repair versus reconstruction. Am J Sports Med,2005,33:881
    [43]Bottom T, Wentor FA, LaPrade RF,et al. Arthroscopy,2003; 19(6):2-3.
    [44]LaPrade RF, Tso A, Wentorf FA, Am J Sports Med,2004; 32(7):1695-1701.
    [45]Arciero RA. Anatomic posterolateral comer knee reconstruction [J].Arthroscopy,2005,21 (9):1147.
    [46]Stannard JP,Brown SL, Robinson JT, et al.Reconstruction of the posterolateral comer of the knee [J]. Arthroscopy.2005,21 (9):1051-1059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700