用户名: 密码: 验证码:
毛竹实生苗对铝毒反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝毒害是酸性土壤中限制植物生长的重要逆境因子。铝毒害主要通过抑制植物根伸长进而抑制植物对水分、养分的吸收最终抑制植物的生长和发育。本研究以毛竹种子和实生苗为材料研究不同铝浓度对毛竹种子发芽率、根长生长以及植物胁迫保护酶SOD、POD和MDA的影响,并通过同为禾本科且已研究较透彻的铝耐性不同的2个水稻品种(敏感型IR1552和耐受型Azucena)对比,确定毛竹的耐铝程度;采用切片染色技术,观察铝在毛竹实生苗根尖分布情况和对细胞的影响。研究结果如下:
     毛竹种子发芽率在铝浓度为200μM时并没有受到显著性抑制,当达到500μM时,开始出现抑制现象,2000μM达到半致死浓度。毛竹种子的耐铝程度低于铝敏感型水稻IR1552。毛竹实生苗在铝胁迫(500μM) 1 d时出现根伸长显著被抑制现象,且3 d内抑制逐步加深,未见恢复。而两种水稻均能在3 d内不同程度的恢复一定生长能力。毛竹实生苗经铝胁迫3 d后SOD活性变化不显著(p=0.1531),两种水稻均为极显著(p均为0)。毛竹的POD活性变化显著(p=0.018),两种水稻均为极显著(IR1552为0.0002,Azucena为0.0084)。相对于两种水稻,0μM浓度下毛竹苗根系中的POD活性和MDA的含量均较高。总体而言,毛竹耐铝程度低于水稻敏感型IR1552。
     而切片染色观察结果表明,毛竹实生苗根尖上的铝主要分布在1-2 mm部位,而且铝在根尖上主要分布在细胞壁等非原生质体中。但是在分生区和伸长区,有部分铝进入到原生质体中,核膜和核内尤其明显。试验结果也显示,铝能诱导毛竹实生苗根尖细胞凋亡,在500μM浓度下毛竹实生苗处理1d即能出现凋亡小体。而且只有当细胞核内出现铝,其后才会出现凋亡小体。
Based on the effects of different aluminum(Al) concentrations on the seed germination, seedling root growth, SOD(superoxide dismutase), POD(peroxidase) and MDA(malondialdehyde) in Moso bamboo, this study was to determine the level of Al tolerance for Moso bamboo through the comparison with two rice varieties IR1552 (Al-sensitive)and Azucena (Al-tolerant). With cytological techniques we observed the distribution of Al in the Moso bamboo seedlings, and the influence of Al on the Moso bamboo. The results are as follows:
     Al concentration of 200μM did not significantly inhibit the seed germination of the Moso bamboo, while 500μM inhibited the germination rate. And the concentration of 2000μM resulted in 50% survival. With 500μM Al, the root growth was inhibited in 1d. The growth did not recover under Al stress within 3 d. While the root growth in IR1552 and Azucena would be more or less recovered within 3d. Under the Al stress for 3 d, the increase of SOD activity in root tips for Moso bamboo was insignificant (p=0.1531), while for IR1552 and Azucena were significant (p=0). The increase of POD activity was significant (p=0.018) for Moso bamboo, highly significant for IR1552 and Azucena. Moso bamboo’s POD activity and MDA content in root tips were higher than those in IR1552. It concluded that Moso bamboo had a lower Al-tolerant level than IR1552 .
     With lumogallion staining and confocal microscopy, the localization of Al in seedling root tips of Phyllostachys pubescens was observed. The results showed that Al was mainly distributed in non-protoplasts, and most of it located in 1~2mm of the root tips. But in the meristematic zone and elongation zone, Al was found in protoplasts, especially in the nucleus. Within a certain range of Al concentrations (0~2000μM), the filtering of Al into root tips would be accelerated as the treated Al concentration increased and/or the treatment prolonged. In addition, Al could induce apoptosis in the root tips of Moso bamboo’s seedlings. When the root tips were under 500μM Al for 24 h, there always appeared apoptotic bodies. Only after the Al appeared in nuclei and the apoptotic bodies would appear.
引文
[1]何龙飞,沈振国,刘友良,王爱勤.植物铝毒害机理的研究[J].广西农业生物科学. 2002, 21(03): 188-194.
    [2] MIYAKE K. The toxic action of soluble aluminium salts upon the growth of the rice plant[J]. Journal of Biological Chemistry. 1916, 25(1): 23.
    [3] KINRAIDE T B, ARNOLD R C, BALIGAR V C. A rapid assay for aluminium phytotoxicity at submicromolar concentrations[J]. Physiol. Plant. 1985, 65(3): 245-250.
    [4] RINCON M, GONZALES R A. Aluminum Partitioning in Intact Roots of Aluminum-Tolerant and Aluminum-Sensitive Wheat (Triticum aestivum L.) Cultivars[J]. Plant Physiol. 1992, 99(3): 1021-1028.
    [5] KOCHIAN L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annual Review of Plant Biology. 1995, 46(1): 237-260.
    [6] SáNCHEZ P A, SALINAS J G. Low input technology for managing Oxisols and Ultisols in tropical America[J]. 1981.
    [7]中国林学会.酸雨与农业[M].北京:中国农业出版社, 1998.
    [8] GUNSéB, POSCHENRIEDER C, BARCELóJ. Water transport properties of roots and root cortical cells in proton-and Al-stressed maize varieties[J]. Plant Physiology. 1997, 113(2): 595.
    [9]张齐生.竹类资源加工的特点及其利用途径的展望[J].中国林业产业. 2004(01).
    [10]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社, 2002.
    [11]徐筱雯,崔会平,吴家胜,金爱武.毛竹林模式施肥生态效应评价[J].浙江林业科技. 2008(01).
    [12] Renyi G.,Guodong L.,Fang Wei,Shunyao Z.,Guoqun L. Iron and aluminum forms of the soil in Moso-bamboo stands under the extensive and integrated culture managements集約的および粗放的経営モウソウチク林における土壌中の鉄とアルミニウムの形態[J]. Bamboo Journal. 2008, 25.
    [13]徐金梅,赵荣军,费本华.我国竹材材性与加工利用研究新进展[J].木材加工机械. 2007(03).
    [14]洪伟,林存炎,吴承祯,宋萍,洪滔,范海兰,陈灿.不同铝毒害对毛竹笋营养品质影响的研究[J].竹子研究汇刊. 2008(01).
    [15] GANESAN K, SANKARANARAYANAN C, BALAKUMAR T. Physiological basis of differential aluminum tolerance in rice genotypes[J]. Communications in soil science and plant analysis. 1993, 24(17-18): 2179-2191.
    [16] ISHIKAWA S, WAGATSUMA T, SASAKI R, OFEI-MANU P. Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species[J]. Soil science and plant nutrition. 2000, 46(3): 751-758.
    [17]陈荣府,沈仁芳.水稻(Oryza sativa L.)铝毒害与耐性机制及铝毒害的缓解作用[J].土壤. 2004, 36(005): 481-491.
    [18]杨卫韵,周春,胡蕾.植物铝毒及耐铝毒机制研究进展[J].金华职业技术学院学报. 2002, 2(003): 29-31.
    [19]沈仁芳.铝在土壤--植物中的行为及植物的适应机制[M].北京:科学出版社, 2008.
    [20] POSCHENRIEDER C, GUNSéB, CORRALES I, BARCELóJ. A glance into aluminum toxicity and resistance in plants[J]. Science of The Total Environment. 2008, 200(1): 1-46.
    [21]韩官运,邓先保,蒋诚,辜夕容.植物铝毒害的产生及防治研究进展[J].福建林业科技. 2007, 34(2): 174-179.
    [22] LLUGANY M, POSCHENRIEDER C, BARCELóJ. Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminium and proton toxicity[J].Physiologia Plantarum. 1995, 93(2): 265-271.
    [23] KINRAIDE T B. Identity of the rhizotoxic aluminium species[J]. Plant and Soil. 1991, 134(1): 167-178.
    [24] SCHIER G A, MCQUATTIE C J. Effect of aluminum on the growth, anatomy, and nutrient content of ectomycorrhizal and nonmycorrhizal eastern white pine seedlings[J]. Canadian journal of forest research(Print). 1995, 25(8): 1252-1262.
    [25] ALVA A K, EDWARDS D G, ASHER C J, BLAMEY F. Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution[J]. Soil Science Society of America Journal. 1986, 50(4): 959.
    [26] GODBOLD D L, KETTNER C. Use of root elongation studies to determine aluminum and lead toxicity in Picea abies seedlings[J]. Journal of plant physiology (Germany). 1991.
    [27] CLAHKSON D T. Metabolic aspects of aluminium toxicity and some possible mechanisms for resistance[C]. Blackwell Scientific Publications, 1969.
    [28] DONCHEVA S, AMENOS M, POSCHENRIEDER C, BARCELO J. Root cell patterning: a primary target for aluminium toxicity in maize[J]. Journal of experimental botany. 2005, 56(414): 1213.
    [29] RYAN P R, DITOMASO J M, KOCHIAN L V. Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap[J]. Journal of Experimental Botany. 1993, 44(2): 437.
    [30] FOY C D. The physiology of plant adaptation to mineral stress.[J]. Iowa State J. Res. 1983, 57(4): 355-391.
    [31] FOY C D, FLEMING A L, BURNS G R, ARMIGER W H. Characterization of differential aluminum tolerance among varieties of wheat and barley[J]. Soil Science Society of America Journal. 1967, 31(4): 513-521.
    [32] CLARKSON D T. The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa[J]. Annals of Botany. 1965, 29(2): 309.
    [33] HORST W J, KLOTZ F. Screening soybean for aluminium tolerance and adaptation to acid soils[J]. Developments in Plant and Soil Sciences (Netherlands). 1990.
    [34] POWELL M J, DAVIES M S, FRANCIS D. The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and a non-tolerant cultivar of Festuca rubra L[J]. New Phytologist. 1986, 102(3): 419-428.
    [35] MATSUMOTO H. Cell biology of aluminum toxicity and tolerance in higher plants[J]. International Review of Cytology. 2000: 1-46.
    [36] SIVAGURU M, HORST W J. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize[J]. Plant Physiology. 1998, 116(1): 155.
    [37] PAN J, ZHU M, CHEN H. Aluminum-induced cell death in root-tip cells of barley.[J]. Environ Exp Bot. 2001, 46(1): 71-79.
    [38] MA J F, SHEN R, NAGAO S, TANIMOTO E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J]. Plant and Cell Physiology. 2004, 45(5): 583.
    [39] CHANG Y C, YAMAMOTO Y, MATSUMOTO H. Accumulation of aluminium in the cell wall pectin in cultured tobacco(Nicotiana tabacum L.) cells treated with a combination of aluminium and iron[J]. Plant Cell and Environment. 1999, 22(8): 1009-1017.
    [40] RENGEL Z, REID R J. Uptake of Al across the plasma membrane of plant cells[J]. Plant and Soil. 1997, 192(1): 31-35.
    [41] SCHMOHL N, PILLING J, FISAHN J, HORST W J. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum[J]. Physiologia Plantarum. 2000, 109(4): 419-427.
    [42] ELEFTHERIOU E P, MOUSTAKAS M, FRAGISKOS N. Aluminate-induced changes in morphology and ultrastructure of Thinopyrum roots[J]. Journal of experimental botany. 1993, 44(2): 427.
    [43] VAN H L, KURAISHI S, SAKURAI N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings[J]. Plant Physiology. 1994, 106(3): 971.
    [44] HORST W J. The role of the apoplast in aluminium toxicity and resistance of higher plants: a review[J]. Zeitschrift für Pflanzenern hrung und Bodenkunde. 1995, 158(5): 419-428.
    [45] TABUCHI A, MATSUMOTO H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J]. Physiologia Plantarum. 2001, 112(3): 353-358.
    [46] TERAOKA T, KANEKO M, MORI S, YOSHIMURA E. Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings[J]. Journal of Plant Physiology. 2002, 159(1): 17-23.
    [47] MAO C, YI K, YANG L, ZHENG B, WU Y, LIU F, WU P. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components[J]. Journal of experimental botany. 2004, 55(394): 137.
    [48] MA J F, SHEN R, NAGAO S, TANIMOTO E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J]. Plant and Cell Physiology. 2004, 45(5): 583.
    [49] KINRAIDE T B. Ion fluxes considered in terms of membrane-surface electrical potentials[J]. Australian Journal of Plant Physiology. 2001, 28(7): 607-618.
    [50] AKESON M A, MUNNS D N, BURAU R G. Adsorption of Al3+ to phosphatidylcholine vesicles[J]. Biochim. Biophys. Acta. 1989, 986: 33-40.
    [51] ZHAO X J, SUCOFF E, STADELMANN E J. Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells[J]. Plant Physiology. 1987, 83(1): 159.
    [52] SUHAYDA C G, HAUG A. Organic acids reduce aluminum toxicity in maize root membranes[J]. Physiol. Plant. 1986, 68(2): 189-195.
    [53] SIVAGURU M, BALUSKA F, VOLKMANN D, FELLE H H, HORST W J. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone[J]. Plant Physiology. 1999, 119(3): 1073.
    [54] SCHWARZEROVA K, ZELENKOVA S, NICK P, OPATRNY Z. Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines[J]. Plant and Cell Physiology. 2002, 43(2): 207.
    [55] RENGEL Z, ELLIOTT D C. Mechanism of aluminum inhibition of net 45Ca2+ uptake by Amaranthus protoplasts[J]. Plant Physiology. 1992, 98(2): 632.
    [56] TAYLOR G J. The physiology of aluminum phytotoxicity[J]. Metal ions in biological systems (USA). 1988.
    [57] PFEFFER P E, TU S I, GERASIMOWICZ W V, CAVANAUGH J R. In Vivo31P NMR Studies of Corn Root Tissue and Its Uptake of Toxic Metals[J]. Plant Physiology. 1986, 80(1): 77.
    [58] HUANG J W, GRUNES D L, KOCHIAN L V. Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex[J]. Planta. 1992, 188(3): 414-421.
    [59] RENGEL Z, ZHANG W H. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome[J]. New Phytologist. 2003, 159(2): 295-314.
    [60] RICHARDS K D, SCHOTT E J, SHARMA Y K, DAVIS K R, GARDNER R C. Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiology. 1998, 116(1): 409.
    [61] MCCABE P F, LEAVER C J. Programmed cell death in cell cultures.[J]. Plant Mol Biol. 2000, 44(3): 359-368.
    [62] de JONG A J, YAKIMOVA E T, KAPCHINA V M, WOLTERING E J. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells[J]. Planta. 2002,214(4): 537-545.
    [63] GUIMARES C A, LINDEN R. Programmed cell death: apoptosis and alternative death styles[J]. Eur J Biochem. 2004, 271: 1638-1650.
    [64] BROKER L E, KRUYT F, GIACCONE G. Cell death independent of caspases: a review[J]. Clinical Cancer Research. 2005, 11(9): 3155.
    [65] KERR J, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. British journal of cancer. 1972, 26(4): 239.
    [66] LAWEN A. Apoptosis-an introduction[J]. Bioessays. 2003, 25(9): 888-896.
    [67] SUAREZ-FERNANDEZ M B, SOLDADO A B, SANZ-MEDEL A, VEGA J A, NOVELLI A, FERNANDEZ-SANCHEZ M T. Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death.[J]. Brain Res. 1999, 835(2): 125-136.
    [68] AREMU D A, MESHITSUKA S. Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect[J]. Brain research. 2005, 1031(2): 284-296.
    [69]潘建伟,陈虹,顾青,朱睦元.环境胁迫诱导的植物细胞程序性死亡[J].遗传. 2002, 24(3): 385-388.
    [70] ZHENG K, PAN J W, YE L, FU Y, PENG H Z, WAN B Y, GU Q, BIAN H W, HAN N, WANG J H, KANG B, PAN J H, SHAO H H, WANG W Z, ZHU M Y. Programmed cell death-involved aluminum toxicity in yeast alleviated by antiapoptotic members with decreased calcium signals.[J]. Plant Physiol. 2007, 143(1): 38-49.
    [71] ZOBEL R W, KINRAIDE T B, BALIGAR V C. Fine root diameters can change in response to changes in nutrient concentrations[J]. Plant and Soil. 2007, 297(1): 243-254.
    [72] MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in plant science. 2001, 6(6): 273-278.
    [73] TICE K R, PARKER D R, DEMASON D A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat[J]. Plant Physiology. 1992, 100(1): 309.
    [74] RYAN P R, DITOMASO J M, KOCHIAN L V. Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap[J]. Journal of Experimental Botany. 1993, 44(2): 437.
    [75] BLAMEY F, EDWARDS D G, ASHER C J. Effects of aluminum, OH: Al and P: Al molar ratios, and ionic strength on soybean root elongation in solution culture[J]. Soil Science. 1983, 136(4): 197.
    [76]林咸永,章永松,罗安程,陶勤南.铝胁迫下不同小麦基因型根际pH的变化、NH+4和NO-3吸收及还原与其耐铝性的关系[J].植物营养与肥料学报. 2002, 8(3).
    [77] DEGENHARDT J, LARSEN P B, HOWELL S H, KOCHIAN L V. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiology. 1998, 117(1): 19.
    [78] POLAK T B, MILA I R, PIHLAR B, MITROVI B. The uptake and speciation of various Al species in the Brassica rapa pekinensis[J]. Phytochemistry. 2001, 57(2): 189-198.
    [79] CLARKSON D T. Interactions between aluminium and phosphorus on root surfaces and cell wall material[J]. Plant and Soil. 1967, 27(3): 347-356.
    [80] MA J F, YAMAMOTO R, NEVINS D J, MATSUMOTO H, BROWN P H. Al binding in the epidermis cell wall inhibits cell elongation of okra hypocotyl[J]. Plant and cell physiology. 1999, 40(5): 549.
    [81] TAYLOR G J, MCDONALD-STEPHENS J L, HUNTER D B, BERTSCH P M, ELMORE D, RENGEL Z, REID R J. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina[J]. Plant Physiology. 2000, 123(3): 987.
    [82] SHEN R F, CHEN R F, MA J F. Buckwheat accumulates aluminum in leaves but not in seeds[J]. Plant and Soil. 2006, 284(1): 265-271.
    [83] WANG P, BI S, MA L, HAN W. Aluminum Tolerance of Two Wheat Cultivars (Brevor and Atlas66) in Relation to Their Rhizosphere pH and Organic Acids Exuded from Roots[J]. J. Agric. Food Chem. 2006, 54(26): 10033-10039.
    [84] RYAN P R, DELHAIZE E, JONES D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Biology. 2001, 52(1): 527-560.
    [85] JORGE R A, ARRUDA P. Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize[J]. Phytochemistry. 1997, 45(4): 675-681.
    [86] LIGABA A, SHEN H, SHIBATA K, YAMAMOTO Y, TANAKAMARU S, MATSUMOTO H. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus)[J]. Physiologia Plantarum. 2004, 120(4): 575-584.
    [87] RYAN P R, DELHAIZE E, RANDALL P J. Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots[J]. Planta. 1995, 196(1): 103-110.
    [88]陈梅,陈亚华,沈振国,沈其荣.外源有机酸对小麦幼苗铝毒的缓解作用[J].植物生理与分子生物学学报. 2003, 29(004): 281-288.
    [89]何龙飞,王爱勤.外源有机酸对小麦铝毒害的缓解效应[J].华北农学报. 2002(0z1): 75-79.
    [90] MA J F, TAKETA S, YANG Z M. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale.[J]. Plant Physiol. 2000, 122(3): 687-694.
    [91] DELHAIZE E, RYAN P R, RANDALL P J. Aluminum tolerance in wheat (Triticum aestivum L.)(II. Aluminum-stimulated excretion of malic acid from root apices)[J]. Plant Physiology. 1993, 103(3): 695.
    [92] LI X F, MA J F, MATSUMOTO H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat[J]. Plant Physiology. 2000, 123(4): 1537.
    [93] RYAN P R, SKERRETT M, FINDLAY G P, DELHAIZE E, TYERMAN S D. Aluminum activates an anion channel in the apical cells of wheat roots.[J]. Proc Natl Acad Sci U S A. 1997, 94(12): 6547-6552.
    [94] ZHANG W H, RYAN P R, TYERMAN S D. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots.[J]. Plant Physiol. 2001, 125(3): 1459-1472.
    [95] JIAN Z S, FENG M J, MATSUMOTO H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips [J]. Plant Physiol. 1998, 117(3): 745-751.
    [96] ZHANG Z Y, CHEN G X, HARRINGTON P B. Detection of trace organic compounds by using ion mobility spectrometry and SIMPLISMA[J]. Guang pu xue yu guang pu fen xi= Guang pu. 2005, 25(9): 1530.
    [97] YANG J L, ZHENG S J, HE Y F, YOU J F, ZHANG L, YU X H. Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots.[J]. Plant Cell Environ. 2006, 29(2): 240-246.
    [98]尤江峰,杨振明.铝胁迫下植物根系的有机酸分泌及其解毒机理[J].植物生理与分子生物学学报. 2005, 31(002): 111-118.
    [99] ZHENG S J, MA J F, MATSUMOTO H. Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress[J]. Physiologia Plantarum. 1998, 103(2): 209-214.
    [100] MIYASAKA S C, BUTA J G, HOWELL R K, FOY C D. Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid[J]. Plant Physiology. 1991, 96(3): 737.
    [101] KOLLMEIER M, DIETRICH P, BAUER C S, HORST W J, HEDRICH R. Aluminum activates acitrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum- sensitive and an aluminum-resistant cultivar.[J]. Plant Physiol. 2001, 126(1): 397-410.
    [102] YANG Z M, NIAN H, SIVAGURU M, TANAKAMARU S, MATSUMOTO H. Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants[J]. Physiologia Plantarum. 2001, 113(1): 64-71.
    [103]刘拥海,俞乐.大豆耐铝性品种差异及其与有机酸的关系[J].广西植物. 2004, 24(6): 554-557.
    [104] DELHAIZE E, HEBB D M, RYAN P R. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux[J]. Plant Physiology. 2001, 125(4): 2059.
    [105] HOEKENGA O A, VISION T J, SHAFF J E, MONFORTE A J, LEE G P, HOWELL S H, KOCHIAN L V. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait.[J]. Plant Physiol. 2003, 132(2): 936-948.
    [106] MAGALHAES J V. Molecular genetic and physiological investigations of aluminum tolerance in sorghum (Sorghum bicolor L. Moench)[J]. Ph D thesis, Cornell Univ. 2002: 192.
    [107] HAYES J E, MA J F. Al-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots[J]. Journal of experimental botany. 2003, 54(388): 1753.
    [108] ZHAO Z, MA J F, SATO K, TAKEDA K. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.)[J]. Planta. 2003, 217(5): 794-800.
    [109] MA J F, ZHENG S J, MATSUMOTO H. Specific secretion of citric acid induced by Al stress in Cassia tora L.[J]. Plant and cell physiology. 1997, 38(9): 1019.
    [110] ZHENG S J, MA J F, MATSUMOTO H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips[J]. Plant Physiology. 1998, 117(3): 745.
    [111] MA Z, MIYASAKA S C. Oxalate exudation by taro in response to Al [J]. Plant Physiol. 1998, 118(3): 861-865.
    [112] BROWNING M, HUTCHINSON T C. The effects of aluminum and calcium on the growth and nutrition of selected ectomycorrhizal fungi of jack pine[J]. Canadian journal of botany. 1991, 69(8): 1691-1699.
    [113] STAMFORD N P, SILVIA R A. Effect of lime and inoculation of Mimosa caesalpiniaefolia in acid soil of the forest zone and semiarid region of pernambuco[J]. Pesquisa Agropecudria Brasileira. 2000, 35(5): 1037-1045.
    [114] MOYER-HENRY K, SILVA I, MACFALL J, JOHANNES E, ALLEN N, GOLDFARB B, RUFTY T. Accumulation and localization of aluminium in root tips of loblolly pine seedlings and the associated ectomycorrhiza Pisolithus tinctorius[J]. Plant Cell and Environment. 2005, 28(2): 111-120.
    [115]陆建良,梁月荣.铝对茶树等植物超氧化物歧化酶的影响[J].茶叶科学. 1997(02): 197-200.
    [116] CAKMAK I, HORST W J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean(Glycine max)[J]. Physiologia Plantarum. 1991, 83(3): 463-468.
    [117]谭贵良,顾明华,杨博,陆申年,黎晓峰.铝胁迫对甘蔗初生根生长及酶活性的效应[J].广西农业生物科学. 2003, 22(004): 271-274.
    [118]杨振德,方小荣.铝对桉树幼苗生长及某些生理特性的影响[J].广西科学. 1996, 3(004): 30-33.
    [119]龚春风,徐根娣,刘鹏.铝对大豆过氧化物酶同工酶谱的影响[J].浙江师范大学学报:自然科学版. 2004, 27(004): 386-391.
    [120]秦瑞君,陈福兴.湘南红壤作物苗期铝中毒的研究[J].植物营养与肥料学报. 1999, 5(001): 50-56.
    [121]廖伯寿,周蓉.花生高产种质的耐铝毒能力评价[J].中国油料作物学报. 2000, 22(001): 38-42.
    [122]刘国栋.铝对植物生长发育的影响[J].湖南农学院学报. 1985, 1: 79-84.
    [123]刘鹏,徐根娣.铝对大豆种子萌发的影响[J].种子. 2003(001): 30-32.
    [124] FAGERIA N K, CARVALHO J. Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars[J]. Plant and Soil. 1982, 69(1): 31-44.
    [125] FAGERIA N K. Influence of aluminum in nutrient solutions on chemical composition in two rice cultivars at different growth stages[J]. Plant and Soil. 1985, 85(3): 423-429.
    [126]邓国富.水稻紫叶性状遗传和基因定位的研究[D].广西大学, 2007.
    [127]马宝慧.水稻(Oryza sativa L.)铝毒害及耐性机理[D].南京农业大学, 2007.
    [128]沈晓莹.水稻抗铝毒害分子机理研究[D].浙江大学, 2002.
    [129]石贵玉.铝对水稻幼苗生长和生理的影响[J].广西植物. 2004, 24(1): 77-80.
    [130] FOY C D. Soil chemical factors limiting plant root growth[J]. Advances in soil sciences (USA). 1992.
    [131]黎晓峰,秦丽凤,李耀燕,顾明华,玉永雄,梁冬玲.不同木豆品种耐铝性的基因型差异及其机理研究[J].生态环境. 2005, 14(05): 690-694.
    [132]赵志刚,丁贵杰,唐敏.酸,铝胁迫对马尾松种子萌发与芽苗生长的影响[J].林业科学研究. 2007, 20(1): 111-115.
    [133]张福锁.环境胁迫与植物育种[M].北京:北京农业大学出版社, 1993: 384-390.
    [134]田仁生,刘厚田.酸化土壤中铝及其植物毒性[J].环境科学. 1989, 11(6): 41-45.
    [135]刘强,龙婉婉,胡萃,方玉生.铝胁迫对油菜种子萌发和幼苗生长的影响[J].种子. 2009(07).
    [136]陈建华,叶灵静,刘鹏.铝对益母草种子萌发的影响[J].种子. 2006, 25(001): 11-13.
    [137]李朝苏,刘鹏,徐根娣,何文彬,朱佳.酸铝浸种对荞麦种子萌发的影响[J].种子. 2004(12).
    [138]黎晓峰.几种禾本科作物对铝的敏感性或耐性[J].广西农业生物科学. 2002, 21(1): 16-21.
    [139] MA J F, SHEN R, ZHAO Z, WISSUWA M, TAKEUCHI Y, EBITANI T, YANO M. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance.[J]. Plant Cell Physiol. 2002, 43(6): 652-659.
    [140]黄业伟,杨丽,张智俊. NaCl胁迫对毛竹种子萌发及幼苗生长的影响[J].种子. 2009, 28(10): 16-18, 22.
    [141]黄业伟,吴妙丹,杨丽,张智俊.毛竹实生苗对不同浓度NaCl溶液的生理响应[J].西北林学院学报. 2010(1): 35-38.
    [142] HOWELER R H, CADAVID L F. Screening of rice cultivars for tolerance to Al-toxicity in nutrient solutions as compared with a field screening method[J]. Agronomy Journal. 1976, 68: 551-555.
    [143]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    [144] SILVA I R, SMYTH T J, RAPER C D, CARTER T E, RUFTY T W. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids[J]. Physiologia Plantarum. 2001, 112(2): 200-210.
    [145]赵胡,郑文教,陈杰.土壤镉污染对大蒜幼苗生长及根系抗氧化系统的影响[J].生态学杂志. 2008(5).
    [146]何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应[J].中国农业科学. 2003, 36(010): 1139-1142.
    [147]李正理.植物组织制片学[M].北京:北京大学出版社, 1996: 15-50.
    [148]章文华,马建锋.荞麦根吸收铝和分泌草酸的部位[J].植物生理学通讯. 2002, 38(001): 9-11.
    [149] JONES D L, BLANCAFLOR E B, KOCHIAN L V, GILROY S. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maizeroots[J]. Plant Cell and Environment. 2006, 29(7): 1309.
    [150] KOPITTKE P M, BLAMEY F, MENZIES N W. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea[J]. Plant and Soil. 2008, 303(1): 217-227.
    [151]王延华,齐建国,Kee L. S.组织细胞化学理论与技术[M].北京:科学出版社, 2005: 158-159.
    [152] SILVA I R, SMYTH T J, MOXLEY D F, CARTER T E, ALLEN N S, RUFTY T W. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy[J]. Plant Physiology. 2000, 123(2): 543.
    [153] NING S B, WANG L, SONG Y C. Programmed cell death in plants—a new emerging research field[J]. Dev Reprod Biol. 1999, 8: 71-100.
    [154] PENNELL R I, LAMB C. Programmed cell death in plants[J]. The Plant Cell. 1997, 9: 1157-1168.
    [155]卢良恕.大麦生理障碍及其预防:酸害及其预防[M].中国大麦学,北京:中国农业出版社, 1995, 404-405.
    [156] HEIM A, LUSTER J, BRUNNER I, FREY B, FROSSARD E. Effects of aluminium treatment on Norway spruce roots: aluminium binding forms, element distribution, and release of organic substances[J]. Plant and Soil. 1999, 216(1): 103-116.
    [157] MA J F. Syndrome of Aluminum Toxicity and Diversity of Aluminum Resistance in Higher Plants[J]. International Review of Cytology. 2007, 400(1): 656-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700