用户名: 密码: 验证码:
磷酸镧包覆氧化铝复合可加工陶瓷裂纹扩展机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高可加工陶瓷的性能,我们对LaPO4/Al2O3复合陶瓷进行结构设计,使LaPO4均匀的分布在陶瓷基体中,减少他的团聚,这样会在减少LaPO4用量的同时,大大增加LaPO4/Al2O3之间的弱界面;这样能使其具有较好的加工性能,同时保持良好的力学性能。
     我们首先用非均匀成核法合成了LaPO4包覆α-Al2O3粉体。通过XRD来检测该粉体的物相组成,煅烧之前的包覆粉体中含有α-Al2O3和无定型的LaPO4两种物质。而煅烧后的LaPO4包覆α-Al2O3粉体是明显的单斜相LaPO4和α-Al2O3,这也更加验证了煅烧之前的包覆粉体中无定型的LaPO4的存在。在LaPO4含量不变的情况下,用包覆方法制备的LaPO4/Al2O3复合陶瓷的相对密度、断裂韧性较用传统方法制备的LaPO4/Al2O3复合陶瓷均得到了提高,而硬度和抗弯强度有所下降,但是可加工指数也得到了较大提高。通过断口形貌分析,我们可以清晰的看到LaPO4是层状结构,材料发生断裂时LaPO4晶粒发生的层片状或台阶状剥离,断口的表面有很明显的氧化铝晶粒拔出的痕迹,说明材料的断裂形式是以沿晶断裂为主。LaPO4/Al2O3复合陶瓷材料加工过程中,LaPO4的这种层片状结构会发生沿层片方向的解理,这样只会产生很浅的裂纹层,而不是穿晶断裂留下的深的裂纹层。这样包覆LaPO4/Al2O3复合陶瓷即提高了材料可加工性,同时又能留下较少的加工损伤。我们对包覆LaPO4/Al2O3复合陶瓷进行了裂纹扩展行为的研究。复合陶瓷的强度和压痕载荷的之间的斜率为-0.26,说明其具有裂纹阻力曲线效应。Kr由4.153MPa·m1/2增加到4.281MPa·m1/2,在后期又略有下降.当材料裂纹扩展时,两个晶面会产生相对的位移,裂纹在凸凹不平的晶粒相互挤压,就产生了自锁现象,提高了裂纹扩展的阻力。当裂纹扩展至长氧化铝晶粒时,其扩展的路径将会发生明显地变化,产生桥连,两个相对裂纹面之间距离的增大势必会受到氧化铝晶粒的抑制,从而提高了材料的裂纹扩展阻力,材料性能得到提高。由于界面效应或热错配产生的内应力的影响,特别是内应力的不均匀性和界面裂纹的相互作用,在主裂纹尖端产生微裂纹时,微裂纹会与主应力轴垂直,随后微裂纹间又可能形成连接,发生裂纹偏转。这会增加裂纹扩展的路径,消耗大量的裂纹扩展能。
     我们建立压痕试验的力学模型,根据力学模型我们可以得到应力场中任一点的应力状态,同时可以进行分析陶瓷材料压痕裂纹的形成过程。根据公式我们得出常规方法制备的LaPO4/Al2O3复合陶瓷材料产生裂纹的临界压力为1.3N,包覆方法制备的LaPO4/Al2O3复合陶瓷材料产生裂纹的临界压力为3.2N;包覆方法制备的LaPO4/Al2O3陶瓷复合材料的起始裂纹长度为3.46μm,常规方法制备的LaPO4/Al2O3复合陶瓷材料的起始裂纹长度为2.14μm。
     同时我们分析了ZTA陶瓷和LaPO4/Al2O3复合陶瓷的增韧机理。ZTA陶瓷以相变增韧为主。LaPO4/Al2O3复合陶瓷的增韧机理是:在压力作用下,会在界面处产生大量的微裂纹这时会吸收大量的弹性应变能;同时裂纹在扩展过程中,由于张应力作用下,延伸后形成的较大微裂纹将与主裂纹汇合,导致主裂纹的扩展路径发生扭曲和分叉,使裂纹的扩展路径更加曲折,这样吸收更多的弹性应变能,从而使材料断裂韧性的大大提高。
In order to improve the performance of machinable ceramics, we treated LaPO4/Al2O3 composite ceramic with structure design, made LaPO4 evenly distributed in the ceramic matrix to cut down its reunion. This could reduce the amount LaPO4, greatly increase the poor interface between LaPO4/Al2O3. So give it a good processing performance, while maintaining good mechanical properties.
     First, we used the non-homogeneous nucleation synthesized coated LaPO4/Al2O3 powder. To detect the phase composition of powder by XRD, there wereα-Al2O3 and amorphous LaPO4 existed in powder without calcined. The calcined powder is obvious monoclinic LaPO4 andα-Al2O3; this fully proved that the amorphous LaPO4 existed before burning. This would only produce a very shallow crack layer
     In the case of certain content LaPO4, the coated LaPO4/Al2O3 composite ceramic in relative density, fracture toughness have been improved than those using traditional methods, while the hardness and bending strength decreased, but the processability index has also been greatly enhanced. We can clearly see the LaPO4 is layered structure by fracture surface analysis materials. When the rupture occurred, the grains were lamellar or step-like detachment. The fracture surface showed that the alumina grains were pulled out. The traces showed that the fracture form is intergranular fracture. In the LaPO4/Al2O3 composite ceramic materials processing, this layered structure LaPO4 cleavage occurred along the lamellar direction. Rather than the deep layer left by transgranular fracture cracks. The coated LaPO4/Al2O3 ceramic composite materials improved the processing, while leaving less processing damage.
     We have studied crack propagation behavior of coated LaPO4/Al2O3 composite ceramic. The slope of composite ceramic was-0.26 between strength and indentation load, indicating it have crack resistance curve effect. Kr increase from 4.153MPa·m1/2 to 4.281 MPa·m1/2, and slight decreased in the latter part. When the material cracks propagated, the two planes would have a relative displacement, Cracks compressed between the uneven grains, they produced a self-locking, and enhanced resistance to crack propagation. When the crack extended to the alumina grains, the extension path would be obvious to change, resulting in bridging. The two crack surfaces would be restrained by the alumina grains, thereby increased the material crack propagation resistance, improved material properties. As the interface effect or the impact of internal stress generated by heat mismatch, in particular the interactions of heterogeneity of internal stress and interfacial crack, when in the main crack tip generated microcracks, microcracks perpendicular with the principal stress axes, and then microcracks may be connected between one another, crack deflection occurred. This will increase the crack propagation path; consumed a large amount of crack propagation.
     We established the mechanical model of indentation tests; according to the mechanical model we could get the stress field at any point. Meanwhile we can analysis the formation of indentation cracks of ceramic materials. According to the formula we got the critical pressure of LaPO4/Al2O3 composite ceramic materials prepared by the conventional method was 1.3 N, the critical pressure of ones prepared by the coating method was 3.2 N; the initial crack length of LaPO4/Al2O3 composite ceramic material prepared by the coating method was 3.46μm, the initial crack length of ones prepared by the conventional method was 2.14μm.
     We analyzed toughening mechanism of ZTA ceramics and LaPO4/Al2O3 composite ceramic materials. ZTA ceramics was phase transformation toughening. The toughening mechanism of LaPO4/Al2O3 composite ceramic materials:under the pressure, materials would produce a large number of microcracks at the interface, and absorbed a large amount of elastic strain energy. Meanwhile during the crack expansion process, under the tensile stress, extension to form larger microcracks would confluence with the main crack, leaded the main crack propagation path was distorted and bifurcation, and made the main crack propagation path was more tortuous. This could absorb more elastic strain energy, thus greatly improved the fracture toughness.
引文
[1]兰向东,乔冠军,金志浩等,可加工陶瓷研究的新近展,材料导报,2001,15(4):2629
    [2]Jahanmir S, Ives L K, et al. NISTSP834, U.s.Government Printing Offiee, Washington D.C., 1993
    [3]Subramanian K, Kopp R N.P.336 in Cermics and Glasses, Engineered Materials Hnadbook, VOI.4, ASM international, Metals Park, OH,336(1991)
    [4]Lawn B, Padture N P, Cai H, et al. Making ceramics "ductile".Science.1994,263:1114~1116
    [5]Davis J B, Marshall D B, Housley R M, et al. Machinable ceramic; containing rare-earth phosphates. J. Am. Cera. Soc.,1998,81(8):2169-2175
    [6]Seiichi Taruta, Michita Sakata, Tomohiro Yamaguchi,et al. Crystallization process and some properties of novel transparent achinable calcium-mica glass-ceramics[J].Ceram Inter,2008,34(1):75~79
    [7]Beall G H. Microstructure developed in crystallized glass-ceramics. Am Ceram Soc,1972.251~261
    [8]Grossman D G. Machinable glass-ceramics based on tetrasilicic mica. J Am Ceram Soc,1972,55(9):446~449
    [9]乔冠军,王永兰,金志浩,等.碱土云母可切削玻璃陶瓷的研究.西安交通大学学报,1995,29(6):96~100
    [10]Baik D S, No K S, Chun J S, et al. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics[J]. J Mater Pro Tech,1997,67: 50~54
    [11]Seiichi Taruta, Tomomi Ichinose, Tomohiro Yamaguchi,et al. Preparation of transparent lithium-mica glass-ceramics[J].J Non-Crys Sol,2006,352:5556~5563
    [12]Uno T, Kasuga T, Nakajima K. High strength mica-containing glass-ceramics. J Am Ceram Soc,1991,74(12):3139~3141
    [13]Cho M W, Kim D W, Cho W S. Analysis of micro-machining characteristics of Si3N4-hBN composites[J].J Eur Ceram Soc,2007,27:1259~1265
    [14]Niihara K, Suzuki Y. Strong monolithic and composite MoSi2 materials by nanostructure design. Mater Sci Eng,1999,A261:6~15
    [15]Wang R G,Pan W,Chen J, et al. Fabrication and characterization of machinable Si3N4/h-BN functionally graded materials[J].Mater Res Bull,2002,37:1269~127
    [16]Cho Won-Seung,Cho Myeong-Woo,Lee Jae-Hyung,et al. Effects of h-BN additive on the microstructure and mechanicalproperties of AlN-based machinable ceramics[J]. Mater Sci Eng, 2006, A 418:61~67
    [17]Kawai C,Yamakawa A. Machinability of high-strength porous silicon ceramics. J Ceram Soc Jap,1998,106(11):1135~1137
    [18]Yang J F, Zhang G J, Ohji T. Fabrication of low2shrinkage, porous silicon nitride ceramics by addition of a small amount of Carbon[J], J AmCeram Soc,2001,84 (7):1639-1641.
    [19]Yang J F, Deng Z Y, Ohji T. Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 as sintering additive [J]. J Eur Ceram Soc,2003,23:371-378.
    [20]Padture N P, Evans C J, Hockin H K X, et al.Enhanced machinability of silicon carbide via micmstructure design[J].Am Ceram Soc,1995,78(1):215~217
    [21]Baskaran S, Halloran J W. Fibrous monolithic ceramics:Ⅱ, flexural strength and fracture behavior of the silicon carbide/graphite system [J], Am Ceram Soc,1993,76(9):2217~2224
    [22]She J H, Ueno K. Densification behavior and mechanical properties of pressureless-sintered silicon carbide ceramics with alumina and yttria additions. Mater Chem Phy,1999,59:139~142
    [23]Li S B, Xie J X, Zhao J Q, et al. Mechanical properties and mechanism of damage tolerance for Ti3SiC2[J].Mate Lett,2002,57:119~123
    [24]Barsoum M W, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J].Am Ceram Soc,1996,79(7):1953~1956
    [25]Low I M. Vickers Contact Damage of Micro-layered Ti3SiC2[J].J Eur Ceram Soc,1998,18:709~713
    [26]Davis J B, Marshall D B, Morgan P E D. Monazite containing oxide/oxide composites[J].Eur Ceram Soc,2000,20:583~587
    [27]Wu M,Matsubara T,Daimon K,et al. Thermal and mechanical properties of sintered machinable LaPO4-ZrO2 composites[J].Mat Res Bull,2002,37(6):1107~1107
    [28]Davis J B, Marshall D B, Housley R M, et al.Machinable ceramics containing rare-earth phosphates[J].Am Cerain Soc,1998,81(8):2169~2175
    [29]Zhou Z J, Yang Z F, Yuan Q M,et al. Preparation of Machinable Y-TZP/LaPO4 Composite Ceramics by Precuisor Infiltration[J].J Rare Ear,2002,3:197~203
    [30]Zhou Z J, Pan W, Xie Z P. Preparation of machinable Ce-TZP/CePO4 composite ceramics by liquid precursor infiltration[J].J Eur Ceram,2003,23:1649~1654
    [31]Wang R G, Pan W, Chen J, et al. Microstructure and mechanical properties of machinable Al2O3/LaPO4 composites by hot pressing [J].Ceram Int,29 (2003) 83~89
    [32]M. Abdul Majeed, L. Vijayaraghavana, S.K. Malhotra, R. Krishnamoorthy, A.E. monitoring of ultrasonic machining of Al2O3/LaPO4 composites[J]. journal of materials processing technology 2008 (207)321-329
    [33]Uno T, Kosuga T, Shin N, et al, Microstructure of mica-based nanocomposite glass-ceramics.J,Am.Ceram.Soc.,1991,74(2):3139~3141
    [34]乔冠军,王永兰,金志浩,等.以Ba云母为主晶相的可切削玻璃陶瓷,无机材料学报,1996,11(1):29~32
    [35]Katsuaki Suganuma, Genn Sasaki, et al. Mechanical properties and microstructures of machinable silicon carbide, J Mater Sci,1993,28:1175~1181
    [36]Kawai C, Yankawa A. Effect of Porosity and Microstructure on the Strength of Si3N4: Designed Microstructure for High Strength,High Thermal Shock Resistance and Facile Machining[J]. J Am Cera Soc,1997,80(10):2705~2708
    [37]Racault C, et al. Solid State Synthesis and Characterization of the Ternary Phase Ti3SiC2, J Mater Sci,1994,29:3384~3392
    [38]兰向东,乔冠军,金志浩等,可加工陶瓷研究的新近展,材料导报,2001,15(4):26~29
    [39]邱世鹏,刘家臣等,CePO4/Ce-ZrO2可加工陶瓷性能与断裂机制研究,中国稀土学报,2003,4(21):159~161
    [40]Michel W.Barsoum and Tamer EI-Ragl,Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2, J.Am.Ceram.Soc.,1996,79(7):1953~1956
    [41]李永利,乔冠军,金志浩,可加工陶瓷及工程陶瓷加工技术现状及发展无机材料学报,2001,16(2):207~211
    [42]Zhou A, Wang C, Huang Y.A Possible mechanism on synthesis of Ti3AlC2.Mater Sci Eng,2003,(A352):333~339
    [43]陈加娜,叶红齐,谢辉玲.超细粉体表面包覆技术综述[J].安徽化工2006, (140):12~15
    [44]刘波,庄志强,刘勇等.粉体的表面修饰与表面包覆方法的研究[J].中国陶瓷工业,2004,11(1):50~54
    [45]ARMSTRONG T R, BUCHANAN R C. Influence of core-shell on the internal stress state and permittivity response of zirconate-modified barium titanate [J]. J Am Ceram Soc,1990,73(5): 1268~1273.
    [46]李志强,李娟,田少华,等.CVD法在电致发光粉表面包覆SiO2膜[J].表面技术,2004,33(2):32~35.
    [47]李晓波.沉淀法制备MLCC内电极用锆酸钙包覆超细复合镍粉的研究[D].长沙:中南大学,2006:10.
    [48]刘川文,黄红军,刘宏伟.复合粉体的包覆制备技术现状与发展[J]
    [49]应皆荣,万春荣,姜长印.用溶胶凝胶法在LiNi0.8Co0.2O2表面包覆SiO2[J].电器技术
    [50]雷景轩,马学鸣,朱丽慧.液相包覆技术及其在材料制备中的应用[J].材料科学与工程,2002,120(11):93~96
    [51]Victor K. Lamer and Robert H.Dinegar. Theory production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society,1950.72(11):4847~4854
    [52]Ajay K. Grag and Lutgard C.De Jonghe.Microencapsulation of silicon nitride particles with ytria and yttria-alumina precursons. J. Mater. Res,1990.5(1):136~142
    [53]黄冠,何捍卫,刘晓峰,等.Fe2O3粉末表面非均匀成核法包覆[J].粉末冶金材料科学与工程,2006,11(2):114~117.
    [54]冯涛,丛晓民,盖国胜.粉体表面的包覆改性[J].无机化工信息,2005,(4):18~22.
    [55]付廷明,李凤生.包覆式超细复合粒子的制备.火炸药学报,2002(1):33~35~80
    [56]吴其晔,方鲲,崔陇兰,等.两步连续反相微乳液法原位合成铁钴镍/聚苯胺核-壳型纳米复合微粒青岛科技大学学报,2003,24(1):37~41
    [57]羊亿,申德振,于广友,等.CdS/ZnS包覆结构纳米微粒的微乳液合成及光学特性[J].发光学报,1999,20(3):251-253.
    [58]邵忠财,田彦文,翟玉春.化学镀法制备包覆ZrO2粉末镀液的研究.材料科学与工艺,1999.7(4):78~80
    [59]史桂梅,张志东,杨洪才,等.化学镀法合成纳米Ag包覆Al2O3复合粉[J].东北大学学报:自然科学版,2004,25(8):768~770.
    [60]R H Dauskardt, D B Marshall, R O Ritchie. Cyclic Fatigue-Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics. J Am Ceram Soc,1990,73 (2):893~903.
    [61]Steffen A A, et al. in Fatigue 90, U. K. (1990)
    [62]J F Tsai, C S Yu, D K Shetty. Fatigue Crack Propagation in Ceria-Partially-Stabilized Zirconia (Ce-TZP)-Alumina Composite. J Am Ceram Soc,1990,73 (10):2992~3001.
    [63]S Y Liu, I W Chen. Fatigue of Yttria-Stabilized Zirconia Ⅱ, Crack Propagation, Fatigue striations, and Short-Crack Behavior. J Am Ceram Soc,1991,74 (6):1026~1216.
    [64]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程.硅酸盐学报,1995,23(4):365~371.
    [65]Debasish Sarkar, Bikramjit Basu, Min Cheol Chu. R-curve behavior of Ti3SiC2. Ceramics International 33 (2007) 789~793、
    [66]赵喆,龚江宏,苗赫濯等.TiC颗粒弥散Al2O3复合材料的阻力曲线行为[J].硅酸盐学报.2000(28)4:371~375
    [67]冯涛,丛晓民,盖国胜.粉体表面的包覆改性,18~22
    [68]Ajay K. Grag and Lutgard C.De Jonghe.Microencapsulation of silicon nitride particles with ytria and yttria-alumina precursons. J. Mater. Res,1990.5(1):136~142
    [69]Tao Jiang, Zhihao Jin, Jianfeng Yang, etal. Mechanical property and R-curve behavior of the B4C/BN ceramics composites[J]. Materials Science and Engineering A,2008(494):203~216
    [70]Gangbin Yang, Yinjuan Liua, Guanjun Qiao, etal. Preparation and R-curve properties of laminated Si/SiC ceramics from paper[J]. Materials Science and Engineering A 2008(492):327~ 332
    [71]王昕,于薛刚,单妍,等.内晶结构复相陶瓷的裂纹扩展行为[J].材料热处理学报,2008,29(4):52~59
    [72]M Zenotchkine, R Shuba, J S Kim, I W Chen. R-curve Behavior of in Situ-toughened A-sialon Ceramics. J Am Ceram Soc,2001,84 (4):884~886.
    [73]徐芝纶编,弹性力学(上册).人民教育出版社(1978)
    [74]B.R.Lawn and M.V.Swain, Microfracture Beneath Point Indentations in Brittle. Solid. J. Mater.Sci.,1975(10)113~122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700