用户名: 密码: 验证码:
搅拌槽内微观混合特性与离集指数的无因次关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微观混合对结晶产物的粒径,粒度分布,形貌有不同程度的影响,视结晶时产物的特性,操作条件而定。研究表征微观混合程度的离集指数随操作变量的变化规律,可为结晶产物粒径和粒度分布等控制提供依据。本文通过改变操作变量如加料时间,加料位置,体积比,搅拌速率,粘度,反应物浓度等来考察其对微观混合程度的影响,利用因次分析法关联离集指数与操作变量的准数式。本文工作如下:
     研究微观混合对反应结晶过程的影响,选择Ba(OH)_2+ NaHSO_4+ CLCH_2COOC_2H_5组成的平行竞争反应为研究体系,在以搅拌槽为结晶器内,用副产物乙醇收率测试反应物间微观混合程度,进而确定离集指数。通过单因素实验,考察搅拌速率等操作条件对微观混合效率的影响,并分析了传质系数和扩散系数对微观混合程度的影响。结果表明影响微观混合的主要操作变量为搅拌速率,反应物浓度,加料位置,粘度,传质系数和扩散系数。在此基础上,利用因次分析法中的Rayleigh法或Buckingham法推导出离集指数的准数关联式为: (?)
     根据离集指数的实验值,采用多元线性方程回归得到准数式中的模型参数,相关系数为R2=0.9937。验证结果表明由关联式所得离集指数的计算值与实验值的相对误差小于18%,得到离集指数计算值与实验值较吻合的结果。准数式可计算离集准数,并确定沉淀反应中产物粒径和粒度分布的准数范围。利用粒度仪和TEM测定BaSO_4粒径和粒度分布,并考察了Reynolds准数,Schmidt准数和Sherwood准数对粒度分布的影响。研究结果表明当Re≥3800时,BaSO_4主粒度(223 nm)所占比例大于77%。离集指数随Sc的增大而增大,当2800≤Sc≤3500时,BaSO_4主粒度(223 nm)分布在86% - 65%范围内。随Sh的增大离集指数逐渐增大,当800≤Sh≤1200时,BaSO_4主粒度(223 nm)占的比列大于80%。
Influences of micromixing on particle size, particle size distribution, and morphology of crystalls were investigated. Segregation index was characterization by conditions of operating, which particle size, and particle size distribution of crystals were provided for the basis. In this paper, efficiency of micromixing was researched by changing feeding time, feeding position, stirring speed, reactant concentration, viscosity, volume ratio, mass transfer coefficient and diffusion coefficient, where the segregation index was correlationed by dimension analysis. The main work was summarited as follows:
     Influences of micromixing on the reaction of crystallization were researched. Parallel competing reation system of Ba(OH)_2+ NaHSO_4+ CLCH_2COOC_2H_5 is selected as the research system with stirred tank as crystallizer. The efficiency of micromixing is valued by the yield of ethanol. To investigatting the influence of reaction conditions on the efficiency of micromixing, which affecten the micro-mixing were known by single factor experimental and theoretical analysis. The main parameters of the model were stirring speed, reactant concentration, feeding position, viscosity, mass transfer coefficient, and diffusion coefficient. Using dimensional analysis (Rayleigh Law or Buckingham Law), dimensionless number were deduced from conditions of operating and segregation index as follows: (?)
     Parameter of model of Xs was obtained by using multiple linear regression, and correlation coefficient (R2) was 0.9937. The related average error of experimental value and calculated value was less than 18%. The results indicated that experimental value and calculated value was consistented. From the equation, we can get the crystal size and crystal size distribution of products and determine the range of dimensionless.
     Based on the above work, and particle size and its distribution of BaSO_4 was characterized by particle size analyzers and transmission electron microscopy (TEM). The results indicated that size distribution were effected by Re, Sc, and Sh. Re≥3800, proportion of mian size BaSO_4 (223 nm) was more than 77%, ultrafine particles of narrow size distribution was obtained. Segregation index was increased follows Sc increase. 2800≤Sc≤3500, main size of BaSO_4 (223 nm) distribution was ranged from 86% to 65%. Small crystal size and narrow crystal size distribution of ultrafine can been prepared when viscosity was ranged from4.0 mp.s to6.0 mp.s. Segregation index was increased as Sh. 800≤Sh≤1200, main size of BaSO_4 distribution was more than 80%.
引文
[1]王承学.化学反应工程[M] .化学工业出版社, 2009
    [2] Pohorecki R; Baldyga J..The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors [J].Chem. Eng.Sci.1988,43:1949~1960
    [3] Baade W; Reichert K.H..Molecular weight distribution and branching of ploy(vinyl acetate) as a function of micro-and macromixing[J].Chem.Ing.Tech.1981,53:910
    [4] Marini L., Georgakis C..The effect of imperfect mixing on polymer quality in low-density polyethlene vessel reactors [J].Chem.Eng.Commun.1984,30:361
    [5] Villermaux J., Blavier L..A new method for modeling free radical homogenous polymerization reactions [J].Chem. Eng. Sci.1984,39:87~99
    [6] Dombrowski N., Hooper P.C..The performance characteristics of an impinging jet Atomizer in Atomospheres of high Ambient[ J].Density Fuel.1962,41:323
    [7] Bhandarkar S; Brown R..Studies in rapid precipitation of Hydroxides of Calcium and Magnesium[J]. J.crystal growth .1989, 97:407
    [8]Karpinski P.H..Importance of the two-step crystal growth model [J].Chem.Eng.Sci.1985, 40:641~646
    [9] Nauman E.B..The droplet diffusion model for micromixing [J].Chem.Eng.Sci.1975, 30:1135
    [10] Bourne J.R..The characterization of micromixing using fast multiple reactions [J]. Chem.Eng.Commun.1982, 16:79
    [11] Pohorecki R;Baldyga J..The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors [J].Chem. Eng.Sci.1988,43:149~160
    [12] Bourne J.R.,Gholap R.V.,Rewatkar V.B..The influence of viscosity on the product distribution of fast parallel reactions [J].Chem.Eng.Sci.1995,58:15~20
    [13] Curl R.L..Dispersed phase mixing:(I)theory and effects in simple reactors[J]. AIChE J.1963,9:175~181
    [14] Speilman L.A.,Levenspiel O.A..Monte-carlo treatment for reacting and coalesencing dispersed phase systems [J].Chem.Eng.J.1965,20:247~254
    [15] Ng,D.Y.C.,Rippin D.W.T..Third Eur.Symp Chem.Reaction Eng.[M]. Oxford:Pengamon Press,1964
    [16] Ritchie B.W.,Tobgy A.H..A three enironment micromixing model for chemical reactors witharbitrary separate feed streams [J].Chem.Eng.J.1979,17:173~182
    [17] Aubry C.,VillermauxJ..Mixing effects on complex reactions in a CSTR [J].Chem.Eng.Sci. 1975, 30:1309
    [18] Mao K.W.,Toor H.L..A diffusion model for reactions with turbulent mixing [J]. AIChE J .1970,16:49~52
    [19] Ottino J.M.,Ranz W.E..A lamellar model for analysis of liquid mixing [J].Chem.Eng.Sci.1979, 34:877~899
    [20] Baldyga J.,Bourne.J.R..A Fluid mechanical approach to turbulent mixing and chemical reaction:Part (I)Inadequacies of available methods[J].Chem.Eng.Commun.1984,28:231~241
    [21] Fournier M.-C.,Falk L.,Villermaux J..A new parallel competing reactor system for assessing micromixing efficiency (I):experimental approach[J].Chem. Eng. Sci.1996,55(22): 5053~5064
    [22] Fournier M.-C.,Falk L,Villermaux J.A new parallel competing reaction system for assessing micromixing efficiency(Ⅱ):determination of micromixing time by a simple mixing model[J]. Chem.Eng.Sci.1996,51(23):5187~5196
    [23]李希,陈剑峰,陈甘棠.微观混合研究现状[J].化学反应工程与工艺.1994,10(2):104~112
    [24] Carretier E.,Wyart Y.,Guichardon P.etal. New insight micromixing in supercritical CO2 using a chemical model [J].J.of Supercritical Fluids.2006,38:332~338
    [25] Yu S.Y..Micromixing and parallel reaction[D].Switzerland:Eidgenoessische Technisce Hochschule Zuerich,1993
    [26] Bourne J.R.,Gholap R.V.,Rewatkar V.B..The influence of viscosity on the product distribution of fast parallel reactions [J].Chem.Eng.Sci.1995,58:15~20
    [27]龚卫星,戴干策,许汝沫.影响BaSO4沉淀颗粒粒径分布的工程因素(J).华东理工大学学报.1995,03
    [28]梁继国.旋转填充床内微观混合的模型化研究[D].北京:北京化工大学.2003,50~59
    [29]肖扬,伍沅.浸没循环撞击流反应器中微观混合的影响因素[J].华中师范大学学报(自然科学版).2006,40(2):26~229
    [30]焦纬洲,刘有智,祁贵生.化学偶合法研究-反应器微观混合特性[J].化学工程.2007,35(5):36~39
    [31] Richard.W.R;Richard W.B.The Role of Micromixng in the Sacle-Up of Geometrically Sililar Batch Reactors[J].AIChE Jou.1990,36(2):293~298
    [32] Fang J.Z., Lee D.Micromixing efficiency in static mixer [J]:Chem.Eng Sc.2001,56:3797~3802
    [33]崔莎莎,李广赞,冯连芳等.粘性体系中微观混合实验研究[J].化学工程.2007.35(1):24~27
    [34]蒋勇,闵健,高正明等.搅拌槽内桨型对微观混合的影响[J].北京化工大学学报.2004,31(5):10~13
    [35] Brian K, Johnson R. K.,Prud’homm.Chemical Processing and Micromixing in Confined Impinging Jets[J].AIChE Jou.2003,49(9):2264~2282
    [36]赵玉潮,应盈,陈光文等.T形微混合器内的混合特性[J].化工学报.2006,8:57~63
    [37]闵健.搅拌槽内宏观及微观混合的实验研究与数值模拟[D].北京:北京化工大学博士学位论文.2005,14~16
    [38]张占元,文健,高正明.连续高速分散混合器内的微观混合性能[J].北京化工大学学报. 2008,35(5)
    [39]陈雁,肖杨,伍沅.SCISR和STR中微观混合的比较[J].化学与生物工程.2004,3
    [40]陈建峰,吕营,陈甘棠.混合-反应结晶过程:(I)实验[J].化工学报.1994,45(2):176~181
    [41]陈建峰,吕营,陈甘棠.混合-反应结晶过程:(II)模型及验证[J].化工学报.1994,45(2):176~181
    [42]李希,陈甘棠.微观混合问题的研究(VI):不同混合阶段的化学反应的描述[J].化学反应工与工艺.1993,9(3):9
    [43] Phillips R.,Rohani S.,Baldyga J. .Micromixing in a Single~Feed Semi-Batch Precipitation Proces [J].AIChE Jou.1999,45(2):82~92
    [44] Baldyga J,Pohorecki R. Micromixing-precipitation model with application to double feed semi-batch precipitation[J].Chem.Eng.Sci.1995,50:1281~1300
    [45] Baldyga J.,Makowski L.. Interaction between mixing, chemical reactions, and precipitation[J]..Ind.Chem.Eng. Res..2005,44:5342~5352
    [46]张伟,董师孟,戴干策.非牛顿流体的微观混合[J].华东理工大学学报.1994,10
    [47]张小平,郭祀远,李琳.流体混合程度对晶体生长速率的影响[J].华南理工大学学报(自然科学版).1996,24(8):91~95
    [48]李彩虹.一种制备单分散纳米粉体的液相沉淀法及其结晶动力学[D].天津大学,2004:48~51
    [49]Fang.JZ., ee,D.J., Micromixing efficiency in staticmixer[J] .Chem.Eng.Sci. 2001,56(12):3797~3802
    [50]Wong,D.C.Y.,Jaworski,Z.,Nienow,A.W. Barium Sulphate Precipitation in a Double-Feed Semi-Batch Stirred,Transactions of the Institution of Chemical Engineers Part[J] .Chem.Eng.Res.Des.2003,81(A8):874~880
    [51]丁绪淮,谈遒.结晶工业[M].北京:化学工业出版社,1985
    [52] Dirksen J.A., Ring T.A..Fundamentals of crystallization: kinetics effects on particle size distributions and morphology [J]. Chem.Eng.Sci .1991, 46:2389~2427
    [53] Nathalie L, Fabienne M..Effect of Ultrasound on the Induction Time and the Metastalbe zone Widths of Potassium Sulphate [J].Chem.Eng.Sci.2002, 86:233~246
    [54]周涛,段作营等.谷氨酸溶液结晶介稳区的性质[J].无锡轻工大学学报.2004,23(1):62~66
    [55] Mullin J.W Crystallization [M]. London: Butterworth-Heimemann,1992
    [56]陆杰,王静康.反应结晶过程研究(Ⅲ)[J].化学工业与工程.1999,16(1):58~62
    [57] Bramley A.S, Hounslow M.J..Aggregation During Precipitation from Solution–Kinetics for Calcium Oxalate Monohydrate [J].Chem.Eng.Sci.1997, 52:747~757
    [58]陈慧萍,陈利萍.流动溶液中维生素C单晶体生长动力学[J].化工学报.2003,54(8): 1173~1175
    [59] Nielsen A.E. Kinetics of Precipitation[M].Oxford :Pergamon Press,1964
    [60]李德良.因次分析法在化工研究过程中的应用[J]玉溪师专学报.1994,10:3~4
    [61] Mullin J.W. Crystallization [M]. London: Butterworth-Heimemann,1992
    [62]雷林.因次分析方法及其应用[J].成都师专学报.1994,
    [63]吴速英,李敏,陈火平等.因次分析法在ABSBR反应器水力混合特性研究中的应用[J].四川理工学院学报(自然科学版). 2008,21:1~4
    [64] Akiti O.Yeboah A.,Bai G.etal..Hydrodynamic effects on mixing and competitive reactions in laboratory reactors [J].Chem. Eng. Sci.2005,60:2341~2354
    [65]闵健.搅拌槽内宏观及微观混合的实验研究与数值模拟[D].北京:北京化工大学博士学位论文.2005:14~16
    [66]姚玉英.化工原理(上)[M].天津:天津大学出版社, 1999
    [67]李德良.因次分析法在化工研究过程中的应用[J].玉溪师专学报.1994,10 ;3~4
    [68]柯水洲,陈涣壮,吴慧英,因次分析和模型试验在污水处理曝气中的应用[J].湖南大学学报. 2002,29;1~4
    [69]杨小斌.微观混合对直接沉淀法制备超细氧化锌结晶过程的影响[D].内蒙古工业大学. 2008:49
    [70]任俊英.微观混合对硫酸钡沉淀过程的影响[D].内蒙古工业大学. 2006
    [71]漆建军.对一元线性回归的最小二乘法估算的相对误差分析[J].广东外语外贸大学信息科学技术学院.2005;1~3
    [72] E.L.柯斯乐.扩散流体系统中的传质[M],北京;化学工业出版社.2007,69~75
    [73] Khang,S. J.,Levenspiel,O.:“New Scale-Up and Design Method for stirrer Agitated Batcb Mixing Vesels”, Chem.Eng.Sci. 31,567(1976)
    [74] Bro dkey,R. S.,”Mixing in turbulent Fields P.47-119
    [75] Biggs,R. D,“Mixing Rates in Stirred Tank”,AIChE.JI,9,636.(1963)
    [76]丁绪准,周理.液体搅拌[M].北京;化学工业出版社.1983.3~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700