用户名: 密码: 验证码:
准双曲面齿轮数控成形铣齿机的设计与干式切齿实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准双曲面齿轮是汽车底盘结构中广泛应用的关键传动构件。随着我国汽车工业的飞速发展,准双曲面齿轮的需求量也在成倍增长。目前我国现有的准双曲面齿轮制齿设备,大多采用湿式加工且生产效率偏低。为了满足生产的需要,开发效率高、操作简单、节能环保的干式数控准双曲面齿轮加工机床非常必要。
     本论文主要研究内容如下:
     1.根据准双曲面齿轮大轮成形法的切齿原理和方法,建立在铣齿机上加工准双曲面齿轮的数学模型,并对其运动参数进行了求解。介绍了高速干式切削原理,拟定出满足干式切削的数控成形铣齿机的设计方案。
     2.对机床结构进行了设计,并根据干式切削对机床性能的要求对机床各部分进行优化改进,如采有整体床身、八级转速刀具箱、变导程蜗轮副分度、自动排屑装置等。最后完成机床机械结构设计,绘制了零件图用于生产。
     3.对机床的液压部分进行了设计。分析了机床的工况,根据机床实际的动作要求,合理选择了数控成形铣齿机的数控系统,设计了机床电路及电控柜,绘出了机床的电路原理图,实现工件的数控加工。
     4.装配出样机,完成了干式铣齿实验,检验了机床的性能、加工精度及效率。
     实验结果表明,该数控成形铣齿机能够满足干式铣齿要求,可使准双曲面齿轮大轮成形粗切效率提高5倍以上,具有高效率加工、操作简单、低价位等优点,达到了预定的设计要求。
Hypoid gear is a critical part which is widely used in automobile chassis transmission. With the rapid develop of our country’s motor-dom, the demand of the hypoid gear multiplies. At the present, the gear milling machine which use damp processing is widely used in our country, but the cutting efficiency is low. So, it is necessry to develop a dry cutting milling machine, which is energy conservation and environment protection and will increase the efficiency and make processing easier.
     These contents have been discussed in this paper:
     1. Based on the principle and method of spiral bevel and hypoid gears generating, the mathematical model of cutting hypoid gear in the machine has been seted up. And the movement of processing parameters are solved. The principle of high speed dry-type cutting has been introduced. Then the mechanical structure designs of machine tool have been done,
     2. Designed the machine structure. According to the requirements of dry cutting to machine tools’performance, parts of machine optimization were improved. Such as the use of the whole bed, 8 speed tool box, variable lead worm gear indexing, automatic chip removal devices. At last machine mechanical structure design was completed, the parts diagram was drawed for the production.
     3. The hydraumatic part of the machine has been designed. The working condition of machine has been analysed, and according to the actual movement request of machine, the The numerical control of the machine has been chosen reasonably, then the machine tool circuit and the electricla cabinets have been designed, and the circuit schematics of machine have been draw to realize the semi-numerically processing of work piece.
     4. The prototype has been assembled, and the experiment has been done to inspect performance, machining accuracy and efficiency of the machine.
     The test proved that the NC milling machine can meet the needs of dry cutting, and the rough cut efficiency of the wheel hypoid gears increases 5 times, and the machine has more advantages, such as high strength, high efficiency, easy to operate and inexpensive, and so on.. The scheduled design requirements have been achieved.
引文
[1]孙桓,陈作模,葛文杰.机械原理[M].第七版.北京:高等教育出版社,2006,174.
    [2]齿轮制造手册编委会.齿轮制造手册[M].第二版.北京:机械工业出版社,2005,3.
    [3]张华,邓效忠.四轴数控螺旋锥齿轮铣齿机变性法铣齿研究[J].中国机械工程,2007,1652~1655
    [4]齿轮手册编委会.齿轮手册(上册)[M].第二版.北京:机械工业出版社,2004,25.
    [5]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989,66.
    [6]王超俊.变性法加工准双曲面齿轮的研究及机床设计[D].河南科技大学,2008,3.
    [7] Wildhaber E. Gear Tooth Curvature Treated Simply[J]. American Machinist, 1945, 8(18):100-103.
    [8] Wildhaber E. Basic Relationship of Hypoid Gears[J]. American Machinist, 1945, 90(20):108-111.
    [9] Wildhaber E. Basic Relationship of Hypoid Gears-Ⅱ[J]. American Machinist, 1946, 90(3) :90-94.
    [10] Wildhaber E. Basic Relationship of Hypoid Gears-Ⅲ[J]. American Machinist, 1946, 90(5):63 -67.
    [11] Baxter M L. Basic Geometry and Tooth Contact of Hypoid Gear[J]. Industrial Mathematics, 1961(2):1-28.
    [12] Baxter M L. High Reduction Hypoid[J]. Machine Design, 1961, (27):121~125.
    [13] Baxter M L. Second Order Surface Generation[J]. Industrial Mathematics, 1964, (2):75~79.
    [14]李兆文,王勇,陈正洪等.螺旋锥齿轮技术的研究[J].工具技术,2007,41:3~6.
    [15] Litvin F L, chen J S, Handschuh R F. Application of Finite Element Analysis for Determination of Load Share, Real Contact Ration, Precision of motion, and Stress Analysis[J]. Journal of Mechanical Design, ASME, 1996, 118(12):561-567.
    [16] Litvin F L, Zhang Yi, Kieffer J, Handschuh R F. Identification and Minimization of Deviations of Real Gear Tooth Surfaces[J]. Journal of Mechanical Design, ASME, 1991, 113(3):55-61.
    [17] Litvin F L, Wei-Jiung Tiang. Method for Generation of Spiral Bevel Gears with Conjugate Gear Tooth Surfaces[J]. Journal of Mechanisms, Transmissions and Automation in Design, ASME, 1987, 109(6):163-170.
    [18] Litvin F L, Gutman Y. A Method of Local Synthesis of Gears Grounded on the Connections between the Principal and Geodetic Curvatures of Surfaces[J]. Journal of Mechanical Design, ASME, 1981, 103(1):114-125.
    [19]吴训成.基于Free-form型锥齿轮机床的齿面制造技术[J].机床与液压,2006(2):32-34.
    [20] Zhang Y, Litvin F L, Maruyama N, etc. Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces[J]. Journal of Mechanical Design, ASME, 1994, 116(9):677-682.
    [21] Litvin F L,Gutman Y. Method of Synthesis and Analysis for Hypoid Gear-Drives of“Formate”and“Helixform”(Part 1)[J]. Journal of Mechanical Design, ASME, 1981, 103(1):83-88.
    [22] Litvin F L,Kuan C, Wang J C, etc. Minimization of Deviations of Gear Real Tooth Surfacres Determined by Coordinate Measurements[J]. Journal of Mechanical Design, ASME, 1993, 115(12) :74-80.
    [23]严志达.论共轭齿面的法曲率关系及应用[J].机械工程学报,1979,(1)
    [24]吴序堂.刀倾半展成法加工弧齿锥齿轮的原理及机床调整.西安交通大学科学技术报告,1979.
    [25]吴序堂.刀倾半展成法加工准双曲面齿轮的原理及机床调整.西安交通大学科学技术报告,1981.
    [26]吴序堂.准双曲面齿轮的变性全展成加工法原理.齿轮,1984,8(2):1~8.
    [27]吴序堂.准双曲面齿轮的变性全展成加工法原理.齿轮,1984,8(3):1~7.
    [28]吴序堂,王小椿,李锋.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价.机械工程学报,1994,30(3):47~52.
    [29]吴序堂.齿轮啮合原理[M].北京:机械工业出版社,1982,33.
    [30]吴序堂.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价.机械工程学报,1994,30(3):47~54.
    [31]董学朱.准双曲面齿轮切齿调整计算方法的改进(一).齿轮,1985,9(6):1~4.
    [32]董学朱.准双曲面齿轮切齿调整计算方法的改进(二).齿轮,1986,10(1):40~42.
    [33]董学朱.准双曲面齿轮变性半展成切齿调整计算新方法.齿轮,1987,11(4):1~7.
    [34]董学朱.弧齿锥齿轮半展成切齿调整计算新方法.齿轮,1988,12(4):1~7.
    [35]董学朱.准双曲面齿轮刀倾全展成切齿调整计算方法.齿轮,1988,12(5):1~7.
    [36]郑昌启,黄昌华,吕传贵.螺旋锥齿轮轮齿加载接触分析计算原理.机械工程学报,1993,29(4):50~54.
    [37]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理.机械工程学报,1981,17(2):1~12.
    [38]曾韬.Gleason磨齿机床展成凸轮分析.机床,1978,(5).
    [39]李兆文,王勇,陈正洪.螺旋锥齿轮技术的研究[J].工具技术,2007,41(10):3~6.
    [40]谢耀东,张俊杰,王志勇,陈书涵,刘赣华,张明德.弧齿锥齿轮的高效干切技术[J].现代零部件,2009(2):30~33.
    [41]刘海渔.绿色干式切削技术及其在齿轮加工中的应用[J].装备制造技术,2009,4:105~107.
    [42]汪哲能,刘彬.干式切削的关键技术[J].邯郸职业技术学院党报,2009,22(1):35~37.
    [43]储开宇.绿色高速干式切削技术的研究内容及其发展[J].工具技术,2008,42(8):6~9.
    [44]樊奇,让德福.Gleason制造专家系统开创弧齿锥齿轮及准双曲面齿轮数字化制造新纪[J].世界制造技术与装备市场,2005(4):87-93.
    [45]石丽丽.新时期下的我国汽车零部件进出口形势[J].技术与市场,2009(2):22~25.
    [46]西安交通大学机制教研室齿轮研究组编.弧齿锥齿轮和准双曲面齿轮加工调整原理[M].上海:上海科技出版社,1979,5.
    [47]乐兑谦.准双曲面齿轮加工调整原理[J].齿轮学报,1979,42.
    [48]刘志峰,张崇高,任家隆等.干切削加工技术及应用[M].机械工业出版社,2005.
    [49]席俊杰.绿色切削的关键技术及应用[J].制造业自动化,2005,(7):7-10.
    [50]张书诚.高速干切削技术研究[J].金属加工(冷加工),2008,(3):33-34.
    [51]王章勇.少无冷却液切削加工方法的集成应用研究[D].武汉科技大学, 2009.
    [52]蔡厚道,吴炜.数控机床构造[M].北京:北京理工大学出版社,2007,63~64.
    [53]王艳辉,伍建国.精密机床床身的模态分析与结构优选[J].机械设计与制造,2005,(3):76-77.
    [54]易红.数控机床[M].北京:机械工业出版社,2005.
    [55]韩荣第.金属切削原理与刀具[M].哈尔滨:哈尔滨工业大学出版社,2005,69-70.
    [56]卢光贤、王立伦.机床液压传动与控制[M].西安:西北工业大学出版社,2006.7,180-181.
    [57]王贵成.数控机床故障诊断技术[M].北京:化学工业出版社,2005.
    [58]富大伟,刘瑞素.数控系统[M].北京:化学工业出版社,2005.
    [59]李晋,邓效忠.准双曲面齿轮切削过程传动误差分析[J].煤矿机电,2007,(4):14-16.
    [60]卢胜利,王睿鹏,祝玲.现代数控系统——原理、构成与实例[M].北京:机械工业出版社,2006.
    [61]孙志永,赵砚江.数控与电控技术[M].北京:机械工业出版社,2007.
    [62]周旭.数控机床实用技术[M].北京:国防工业出版社,2006.
    [63]孙翰英.数控加工中的误差来源分析[J].现代制造技术与装备.2006,(6):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700