用户名: 密码: 验证码:
C+L带多波长光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波分复用(WDM)技术是目前大容量光纤通信网普遍采用的技术,为了进一步提高通信容量,波分复用通信系统正朝着信道数越来越多的方向发展。多波长光源是波分复用传输系统的核心技术之一。本论文主要围绕多波长光纤光源进行了以下几个方面的研究:
     一、C+L带多波长光纤激光器的理论研究
     1)为C+L带多波长光纤激光器建立光纤环形腔模型,阐述了该模型的可行性。
     2)给出系统中关键器件半导体光放大器(SOA)的经典数学模型,并对SOA的增益饱和特性进行研究,分析了注入电流和入射光功率对其增益的影响。
     3)介绍了对自发辐射噪声(ASE)的处理方法,模拟出不同入射光功率下的ASE输出光功率谱和SOA自发辐射光子密度图。
     4)讨论了高双折射光纤环形镜的滤波特性,并对自发辐射谱进行滤波,数值模拟了该光纤激光器稳态输出时的情况。
     二、C+L带多波长光纤激光器的实验研究
     1)对基于两个SOA级联的C+L带多波长光纤激光器进行分组实验,分析了SOA的注入电流、峰值增益波长以及级联顺序对输出结果的影响。实验得到符合ITU-T标准间隔100GHz的16个波长输出,各信道输出功率差小于6dB,输出的多波长位于C+L带,各波长的3dB线宽小于0.23nm。调节腔内的偏振控制器,实现了这组波长在50GHz范围内的整体连续可调谐。
     2)对加入单程反馈信号的C+L带多波长光纤激光器进行实验,实现了输出功率谱的平坦化。实验获得符合ITU-T标准间隔100GHz的27个波长的输出,各信道输出功率差小于6dB。
     3)改变激光腔输出耦合器的输出比,分析其对输出结果的影响。耦合比为60:40时,实验获得了符合ITU-T标准间隔100GHz的16个波长输出,各信道输出功率差小于4dB。
     4)利用未泵浦的掺铒光纤对该多波长光纤激光器进行压窄线宽的实验。实验获得基本符合ITU-T标准间隔100GHz的19个波长输出,各信道输出功率差小于6dB,波长的3dB线宽被压窄为0.16nm。
The technology of wavelength division multiplexing (WDM) is widely used for the high-capacity fiber-optic network. In order to enhance the communication capacity, WDM transmission system is moving in the direction of increasing channels. Multi-wavelength light source is a core technology in wavelength division multiplexing transmission system. This dissertation is focused on multi-wavelength lasers, which include:
     1. The theoretical research on C+L band multi-wavelength fiber laser
     1) A theoretical model for the C+L band multi-wavelength fiber laser is constructed and the feasibility of the model is explained clearly.
     2) The classical model for the semiconductor optical amplifier (SOA) is given. The static gain saturation in SOAs is numerically simulated. The results of SOA gain versus injected current and the input optical power are analyzed.
     3) The approach of the spontaneous emission noise is introduced. The graphs of ASE and SOA spontaneous emission photon density are simulated.
     4) The high-birefringence fiber loop mirror filter is analyzed and the steady output of the fiber laser is simulated.
     2. Experimental research on C+L band multi-wavelength fiber laser
     1) For the two cascaded structures which are composed by SOAs, the corresponding multi-wavelength fiber lasers are experimented and the experimental results are compared. The impact to the laser by the current, the peak gain wavelength and the sequence of the cascaded structure is discussed. One of the experiment results is simultaneous lasing of 16 wavelengths with spacing on ITU-grid(100GHz). The output power variation is less than 6 dB and it is basically in the C+L band. Its 3dB width is about 0.23nm. By adjusting the states of polarization controller, these wavelengths can be tuned together over 50GHz.
     2) One-way feedback signal on the C+L band multi-wavelength fiber laser is experimented. The output power is much flatter and the multi-wavelength number is increased significantly due to the feedback signal. Experiments achieve 27 wavelengths which comply with ITU-T standard interval of 100 GHz. The output power variation is less than 6 dB
     3) The ratio of the coupler in the laser cavity is changed separately. When the ratio is 60:40, 16 wavelengths are achieved whose output power variation is less than 4 dB.
     4) A non-pumped erbium-doped fiber (EDF) is added to narrow the line widths of the output wavelengths. During the experiments, 19 wavelengths are achieved whose 3dB line width is reduced to 0.16 nm with the output power variation less than 6 dB.
引文
[1]王永福.基于半导体光放大器的多波长光纤激光器的研究:[硕士学位论文],天津大学:精密仪器与光电子工程学院,2009
    [2]胡辽林,刘增基,光纤通信的发展现状和若干关键技术,电子科技,2004,2:3~9
    [3]张劲松,光波分复用技术,北京:北京邮电大学出版社,2002
    [4]蔡炬,杨祥林,光孤子通信技术的现状与未来,半导体光电,2003,2:66~70
    [5] Uyless Black, Optical Networks Third Generation Transport Systems, 2003
    [6]龚莉,王跃红,关于光波分复用技术与应用,中国新技术新产品,2009,14:15
    [7]纪越峰,光波分复用系统,北京:北京邮电大学出版社,1999
    [8]李锐,OTDM(光时分复用)技术的现状和展望,长春师范学院学报,2008,26(6):31~35
    [9]吴杰,浅谈我国光纤通信的发展现状及前景,商情,2009,33:111
    [10]刘艳格,室温稳定多波长光纤激光器技术的研究新进展,中国激光,2007,34(7):883~893
    [11] M. H. Reeve, A. R. Hunwicks, W. Zhao, et al., LED spectral slicing for single-mode local loop application, IEEE Electron. Lett., 1988, 24(4): 389-390
    [12] P. D.D. Kilkelly, P. J. Chidgey, and G. Hill, Experimental demonstration of a three channel WDM system over 110km using superluminescent diode, IEEE Electron. Lett, 1990, 26(20): 1671~1672
    [13] J. S. Lee, Y. C. Chung, and D. J. Digiovanni, Spectral-sliced fiber amplifier light source for multichannel WDM applications, IEEE Photon. Tech. Lett., 1993, 5(12):1458~1461
    [14] Y.J.Chai, C.G.Leburn, A.A.Lagatsky, C.T.A.Brown and R.V.Penty,1.36-Tb/s Spectral slicing source based in a Cr4+-YAG femtosecond laser, Journal of Lightwave Technology,2005,23(3):1319~1323
    [15]贾宝华,超结构光纤布拉格光栅的理论研究,中国激光,2003,30(3):247~251
    [16]赵东晖,利用光纤光栅和光纤M—Z干涉仪共同选频的环形掺饵光纤激光器,量子电子学报,1999,16(4):321~323
    [17] C.D.Su and Lon A.Wang, Multiwavelength Fiber Sources Based on Double-Pass Superfluorescent Fiber Sources, JOURNAL OF LIGHTWAVE TECHNOLOGY,2000,18(5):708~714
    [18] B. A. Yu, D. H. Kim and B. Lee, Multiwavelength generation in semiconductor fiber ring laser using a sampled fiber grating, Opt. Commun., 2001, 200:343-347
    [19] M.L.Niesen, M.Nord, M.N.Petersen et al,40Gbit/s standard-mode wavelength conversion in all-active MZI with very fast response, IEEE Electron.Lett,2003,39(4):385~386
    [20] T.Papakyriakopoilos,A.Stavdas,E.N.Protomotarios et al,10×10 GHz Simultaneously modelocked multiwavelength fiber ring laser, IEEE Electron.Lett,1999,35(9):717~718
    [21] H.Shi, G.A.Alphonse, J.C.Connolly et al,20×5 Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser,IEEE Elctron.Lett,1998,34(2):179~181
    [22] Dae Seung Moon,Bok Hyeon Kim,Aoxing Lin,et al,Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber.Optic express,2007,15(13):8371~8376
    [23] Z.Chen, S.Ma, N.K.Dutta, Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium, Optic Express,2009,17(3):1234~1239
    [24]徐帆,SOA环形腔激光器应用的理论与实验研究:[硕士学位论文],武汉:华中科技大学光电子工程系,2006
    [25]郭政华,半导体光放大器静态和动态模型及仿真技术研究,[硕士学位论文,北京:北京交通大学,2006]
    [26] Ginovart F, Simon J C, Valiente I, Gain recovery dynamics in semiconductor optical amplifier, Optics Communications,2001,199:111~115
    [27] Obermann K, All-optical wavelength conversion based on cross-gain modulation and four-wave mixing in semiconductor optical amplifiers. Berlin: Wissenschaft and Technik Verlag,1999
    [28]张新亮,半导体光放大器用作全光波长转换器的研究:[博士学位论文],武汉:华中科技大学光电子工程系,2000
    [29] Mikkelsen B, Optical amplifiers and their system application [Ph.D.Thesis], Lyngby: Dept.of Eletromagnetic System, Technical University of Denmark,1994
    [30]洪伟,黄德修,SOA环境及其在全光3R再生中的应用:[博士学位论文],武汉:华中科技大学,2003,18~36
    [31] L.Gilliner, Comparative study of some traveling-wave semiconductor laser amplifier models, IEEE Proceedings-J,1992,139(5):339~347
    [32]王会军,伦秀君,何敬锁,半导体光放大器增益及发光特性的理论研究,光学与光电技术,2007,5(1):17~19
    [33]洪伟,黄德修,半导体光放大器静态增益饱和特性的理论研究,华中科技大学学报,2002,30(9):67~69
    [34] Philippe Brosson, Analytical of a semiconductor optical Amplifier, Lightwave Technology,1994,12(1),49~53
    [35] L.Gilliner, Comparative study of some traveling-wave semiconductor laser amplifier models, IEEE proceedings-j,1992,139(5):339~347
    [36] Michael J.Connelly, Wideband Semiconductor Optical Amplifier Steady-state Numerical Model, Quantum Electronics,2001,37(2):439~447
    [37] J.Mork, A.Mecozzi. Theory of the ultrafast optical response of active semiconductor waveguide.J.Opt.Soc.Am.B,1996,13:1803~1816
    [38] G.P.Agrawal, Self-phase modulation and spectral broadening of optical pulse in semiconductor laser amplifiers. IEEE J. Quantum Electronics,1989,25(11):2297~2306
    [39] A.Uskov, J.Mork, J.Mark.Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. Journal of Quantum Electronics,1994,30(8):1769~1781
    [40] Benny Mikkelsen, Optical Amplifier and their system application, Technial University of Denmark: Dept of Electromagnetic System,1994
    [41] Alan.E.Willnera Shieh. Optical spectral and power parameters for all-optical wavelength shifting: single stage, fanout and cascadability.J.Lightwave Technology,1995,13(5):771~781
    [42] M.J.Connelly. Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate. IEEE Proc-Circuits Devices System,2002,149(3):173~178
    [43]蒋中.半导体光放大器动态特性的研究:[硕士学位论文],武汉:华中科技大学,2006,13~18
    [44] Amnon Yariv著.现代通信光电子学(第五版).陈鹤鸣,施伟华,张力译.北京:电子工业出版社,2004,121~138,424~433
    [45] Yann Boucher, Ammar Sharaiha. Spectral Properties of Amplified Spontaneous Emission in Semiconductor Optical Amplifiers. IEEE Journal of Quantum electronics,2000,36(6):708~720
    [46] G.Talli, M.J.Adams. Gain Dynamics of Semiconductor Optical Amplifiers and Three-Wavelength Devives. IEEE Journal of Quantum Electronics,39(10):1305~1312
    [47] B. A. Yu, D. H. Kim, and B. Lee,“Multiwavelength pulse generation in semiconductor-fiber ring laser using a sampled fiber grating,”Opt. Commun. 2001,200(1-6):343~347.
    [48] D. S. Moon, B. H. Kim, A. Lin, G. Sun, W. T. Han, Y. G. Han, and Y. Chung,“Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber,”Opt. Express 2007,15(13):8371~8376.
    [49] Y. W. Lee, J. Jung, and B. Lee,“Multiwavelength-switchable SOA-fiber ring laser based on polarization maintaining fiber loop mirror and polarization beam splitter,”IEEE Photon. Technol. Lett. 2004,16(1):54~56.
    [50] B. A. Yu, J. Kwon, S. Chung, S. W. Seo, and B. Lee,“Multiwavelength-switchable SOA-fibre ring laser using sampled Hi-Bi fibre grating,”Electron. Lett. 2003,39(8):649~650.
    [51] J. Sun, Y. Zhang, and X. Zhang, IEEE Photonics Technol. Lett. 2002,14:750.
    [52] Hongxin Chen, Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier, Optic let,2005,30(6):619~621
    [53] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S. Sygletos, and H. Avramopoulos,“Multiwavelength and power equalized SOA laser sources,”IEEE Photon. Technol. Lett.2002, 14(5):693~695.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700