用户名: 密码: 验证码:
被动调Q与锁模Tm:YAP激光器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体激光器泵浦Tm:YAP固体激光器的输出波长位于2μm波段,在环境监测、光电对抗、医疗等方面有广泛的应用。本论文从理论和实验两个方面对连续波(CW)、被动调Q(PQS)和被动调Q锁模(PQML)运转的Tm:YAP激光器进行了研究。
     在理论方面,主要进行了以下三方面的工作。首先,为了获得腔内激光模半径的分布,方便快捷的设计各种激光器谐振腔,根据ABCD矩阵理论编制了“固体激光器谐振腔计算机辅助设计软件V1.0”。其次,根据速率方程理论分别建立了CW、PQS和PQML激光器模型,编制了“固体激光器输出特性仿真软件V 1.0”,利用该软件可以方便的从理论上分析出CW,PQS和PQML运转激光器的输出激光功率、能量和脉冲的时间特性。最后,为了分析晶体热效应对激光输出功率、效率、长腔的稳定性等的影响,本论文首次建立了连续波泵浦的具有解析形式的含时热分析模型,同时首次推导并提出了热贡献系数和应力贡献系数的概念,并根据此模型编制了“激光晶体热分析仿真软件V 1.0”。此外,利用该软件对泵浦功率30W条件下半径为2mm的Tm:YAP晶体进行了动态热分析,结果表明晶体端面的热弥散时间常数约0.78s,但与晶体的半径参数无关,该晶体的热贡献系数值为1.29K/W,晶体内最高温度达326K,最大应力强度位于晶体端面的边缘处为10.2MPa。热分析结果还表明应力强度越靠近端面中心就会越快的达到稳态,而且稳态时相应的应力强度也越小,并通过Tm:YAP的破裂极限推得在应力贡献系数为0.34 MPa/W条件下该晶体的最大可允许泵浦功率为471W。
     在实验方面,主要开展了以下四个实验。一是测量热焦距实验,在泵浦功率16~34W时实验测量Tm:YAP的热焦距约为90~40mm,与“激光晶体热分析仿真软件V 1.0”的仿真结果一致,仿真与实验结果表明连续波泵浦的具有解析形式的含时热分析模型可以很好的反映晶体的瞬态热和应力的变化。二是CW运转Tm:YAP激光器实验,详细研究了LD的工作温度、腔长、输出镜透过率对激光输出特性的影响,验证了透镜补偿法和平凹镜补偿法两种热透镜补偿方案。利用“固体激光器输出特性仿真软件V 1.0”对激光器CW输出性能进行了模拟,搭建了L型腔激光器,实验结果与仿真的斜率效率均为34%,但仿真的阈值(6.35W)要比实际值小1.07W,分析了二者不一致的原因,最后验证了CW运转激光器模型的正确性。三是PQS实验,首次实现了LD泵浦用InGaAs/GaAs做饱和吸收体的双波长(1940nm和1986nm)输出的PQS Tm:YAP激光器。通过选择吸收体合适的位置,在泵浦功率35W条件下,获得了重频43.7kHz,脉宽447ns,最大脉冲能量达28.1μJ的脉冲输出。四是PQML实验,通过搭建1.8m的长腔,实现了LD泵浦用InGaAs/GaAs做饱和吸收体的PQML Tm:YAP激光输出,输出中心波长是1938nm,PQS效率达46.6%,PQML的调制深度约50%,最大平均输出功率达480mW。实验结果证明InGaAs/GaAs可以作为2μm波段的饱和吸收体。
The laser diode (LD) pumped Tm:YAP laser’s wavelength is 2μm which is in the atmospheric window and is applied in remote sensing, photoelectric countermeasures, and medical diagnoses widely. In this paper, we investigate and explore both theories and experiments in the field of the diode-end-pumped Tm:YAP continuous-wave (CW), passively Q-switched (PQS) and Q-switched mode-locking (PQML) lasers.
     Theoretically, our main work is concentrated on the following three aspects. Firstly, in order to investigate the mode radius in the laser cavity and design various resonators conveniently,“Resonator of Solid State Laser Computer Aid Design Software V1.0”is programmed according to ABCD matrix theory. Secondly, the CW, PQS and PQML models are built according to the rate equation theory, and“Solid State Laser Output Laser Characteristics Simulation Software V1.0”is programmed, which can be easily used to analyze the output laser power, energy, and pulse time characteristics under CW, PQS and PQML laser operation. Finally, in order to analyze the effect on the output laser power, energy, and stability of long cavity by thermal loading in the crystals, a time-dependent analytical thermal model of temperature and stresses is developed for the first time. What’s more, the temperature contribution coefficient and stress contribution coefficient are firstly derived from the analytical model. Then, the software of“Laser Crystal Thermal Analysis Simulation V 1.0”is programmed according to the model. Under the condition of pump power of 30 W, dynamic thermal effects of Tm:YAP sample with a radius of 2 mm was analyzed. The results show that the thermal diffusion time constant of the crystal’s end face was about 0.78 s, which is independent of the crystal radius. The temperature contribution coefficient obtained from analytical model is 1.29 K/W and the highest temperature in the crystal was 326 K. The maximum stress intensity at the edge of the crystal end face is 10.2 MPa. The thermal analysis also shows that the closer the distance to the center of the face, the faster it would reach steady state, and the corresponding stress intensity in the steady state would be smaller. For the stress contribution coefficient of 0.34 MPa/W, the permissible maximum pump power of 471 W is obtained.
     Experimentally, four experiments are mainly carried out as follows. The first one is thermal focus measurement experiment. When the pump power is between 16 W and 34 W, the focal lengths of the Tm:YAP is measured in the range of 40~90 mm, which is agreed with the simulating results very well. Simulating and experimental results show that changes in transient thermal and stress in the crystal can be well reflected by the model. The second one is CW operation of Tm:YAP laser experiment. For the Tm:YAP laser, the influences including the working temperature of LD, the cavity length and the different transmittances of output coupler on the output power are studied in details. Then, the convex lens and plano-concave mirror thermal lens compensation methods are proposed and applied to achieve high output power. In addition, to verify the CW operation laser model, an L shape cavity is built. The slope efficiencies of the theory and experiment are agreed well (34%). However, the threshold of the theory (5.28W) is smaller than the experimental result (6.35 W). And the reasons for this difference are analyzed. The third one is PQS Tm:YAP laser experiment. Dual-wavelength (1940 nm and 1986 nm) PQS Tm:YAP laser with InGaAs/GaAs as the saturable absorber is demonstrated firstly. The influences of the semiconductor saturable absorber’s (SESA) position and thermal lens effect on the Q switch characteristics are investigated. At pump power of 35 W, the maximum pulse energy of 28.1μJ with a pulse width of 447 ns at the repetition rate of 43.7 kHz is obtained by optimizing the position of the SESA. The last one is PQML Tm:YAP laser experiment. The PQML Tm:YAP laser operating at the wavelength of 1.94μm with InGaAs/GaAs as the saturable absorber is demonstrated . Conversion efficiency of pulsed operation to free-running is estimated to be 46.6%. The experimental results show that the PQML laser has the 50% modulation depth and the maximum average output laser power is 480 mW. The experimental result certifies the the InGaAs/GaAs can be used as the saturable absorber in ultrashort-pulse solid-state lasers emitting in the range of 2μm.
引文
1. F. J. McAleavey, B. D. MacCraith. Efficient Diode Pumped Tm~(3+)-Doped Fluoride Fibre Laser for Hydrocarbon Gas Sensing. Electron. Lett. 1995, 31 (10):800~802
    2. F. J. McAleavey, J. O'Gorman, J. F. Donegan, Brian D, M. Craith, J. Hegarty, and G. Maze. Narrow Linewidth, Tunable Tm~(3+)-Doped Fluoride Fiber Laser for Optical-Based Hydrocarbon Gas Sensing. IEEE J. Sel. Top. Quantum Electron. 1997, 3
    3. W. L. Barnes, J. E. Townsend. Highly Tunable and Efficient Diode Pumped Operation of Tm~(3+) Doped Fibre Lasers. Electron. Lett. 1990, 26 (11):746~747
    4. S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P.Turner, and I. Crowe. Power Scaling of High-Power Fiber Lasers for Micromachining and Materials Processing Applications. Proc. SPIE. 2006, 6102: 402~408
    5. B. E. Bouma, L. E. Nelson, G J. Tearney, D. J. Jones, M. E. Brezinski, and J. G Fujimoto. Optical Coherence Tomographic Imaging of Human Tissue at 1.55 urn and 1.81 jim Using Er- and Tm-Doped Fiber Sources. J. Biomed. Opt. 1998, 3 (1):76~79
    6. N. J. Scott, C. M. Cilip, and N. M. Fried. Thulium Fiber Laser Ablation of Urinary Stones through Small-Core Optical Fibers. IEEE J. Sel. Top. Quantum Electron. 2009, 15(2):435~440
    7. N. J. Scott, C. M. Cilip, and N. M. Fried. Thulium Fiber Laser Lithotripsy. Proc. SPIE. 2009, 7161: 1E1~1E7
    8. B. C. Dickinson, S. D. Jackson, and T. A. King. 10 mJ Total Output from a Gain-Switched Tm-Doped Fibre Laser. Optics Comm. 2000, 182 (l-3):199~203
    9. G Renz, W. Bohn. Two-Micron Thulium-Pumped-Holmium Laser Source for Dircm Applications. Proc. SPIE. 2007, 6552:02-1~02-15
    10.G Renz, W. Bohn. A 2 urn- Pump -Laser- Based Dircm System and Aero-Optics in the Mid-IR. Proc. SPIE. 2007, 6738:0Bl~0B12
    11.G Frith, T. McComb, B. Samson, W. Torruellas, A. Carter, J. Farroni, K. Farley, and K. Tankala. Latest Developments in 790nm-Pumped Tm-Doped Fibre Laser Systems for Dircm Applications. Proc. SPIE. 2008, 7115:07-1~07-7
    12.I. Elder. High Average Power Thulium Fibre Laser Pumped Mid-IR Source. Proc. SPIE. 2007, 6738:04-1~04-10
    13.K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M-Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen. New Developments in High Power Eye-Safe LMA Fibers. Proc. SPIE. 2006, 6102:06-1~06-9
    14. B. Cole, M. L. Dennis. S-Band Amplification in a Thulium Doped Silicate Fiber.
    15.T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima. Efficient Upconversion Pumping at 1.064 urn Tm~(3+)-Doped Fluoride Fibre Laser Operating around 1.47 urn. Electron. Lett. 1992, 28 (9):830~832
    16.Y Miyajima, T. Komukai, and T. Sugawa. 1-W cw Tm-Doped Fluoride Fibre Laser at 1.47um. Electron. Lett. 1993, 29 (8):660~661
    17.H. Chen, F. Babin, G. He, and G. W. Schinn. S-, C- and L-Band Continuously TunableFiberLaserUsingThulium-andErbium-DopedFibers.CLEO. 2005:1855~1857
    18.J. P. Cariou, B. Augere, and M. Valla. Laser Source Requirements for Coherent Lidars Based on Fiber Technology. C. R. Physique. 2006, 7 (2):213~223
    19.Z. S. Sacks, Z. Schiffer, and D. David. Long Wavelength Operation of Double-Clad Tm:Silica Fiber Lasers. Proc. SPIE. 2007, 6453:20-1~20-9
    20.G Qin, S. Huang, Y Feng, A. Shirakawa, M.Musha, K. Ueda. Blue up-Conversion Laser in Tm~(3+) Doped ZBLAN Glass Fiber. CLEO. 2005: 824~825
    21.J. Y Allain, M. Monerie, and H. Poignant. Blue Upconversion Fluorozirconate Fibre Laser. Electron. Lett. 1990, 26 (3): 166~168
    22.R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna and G Maze. 230 mw of Blue Light from a Thulium-Doped Upconversion Fiber Laser. IEEE J. Sel. Top. Quantum Electron. 1997, 3 (4):1100~1102
    23.S. D. Jackson, T. A. King. High-Power Diode-Cladding-Pumped Tm-Doped Silica Fiber Laser. Opt. Lett. 1998, 23 (18):1462~1464
    24.J. Yoshida, T. Segi, and K. Kaneda. Novel 1.8-um-Band Light Sources Composed of Thulium-Doped Fiber for in Vivo Imaging. Proc. SPIE. 2008, 6852:0I-1~0I-8
    25.M. C. Pierce, S. D. Jackson, P. S. Golding, et al. Development and Application of Fiber Lasers for Medical Applications. Proc. SPIE. 2001, 4253:144~154
    26.C. E. Warnaby, D. J. Coleman, and T. A. King. Photothermal Modeling of Thulium Fibre Laser-Tissue Interactions. Proc. SPIE. 2003, 5142:68~75
    27.N. M. Fried, K. E. Murray. High-Power Thulium Fiber Laser Ablation of the Canine Prostate. Proc. SPIE. 2005, 5686:176~182
    28.N. P. Barnes, W. A. Clarkson, D. C. Hanna, V Matera, and B. M. Walsh. Tm:Glass FiberLaserPumpingHo:YAGandHo:LuAGTechnicalDigest.CLEO. 2001:530~531
    29.A. Abdolvand, D. Y Shen, L. J. Cooper, R. B. Williams, and W. A. Clarkson. Highly Efficient Ho: YAG Laser Pumped by a Tm -Doped Silica Fiber Laser. CLEO. 2003:1623~1624
    30.D. Creeden, M. Jiang, P. A. Budni, P. A. Ketteridge, S. D. Setzler, Y E. Young, J. C. McCarthy, P. G Schunemann, T. M. Pollak, P. Tayebati, and E. P. Chicklis. Thulium
    31.D. Creeden, P. A. Budni, and P. A. Ketteridge. Pulsed Tm-Doped Fiber Lasers for Mid-IR Frequency Conversion. Proc. SPIE. 2009, 7195:0X-l~0X-5
    32.A. F. El-Sherif, T. A. King. Analysis and Optimization of Q-Switched Operation of a Tm~(3+) Doped Silica Fiber Laser Operating at 2 urn. IEEE J. Quantum Electron. 2003, 39 (6):759~765
    33.宗艳花.Tm:YAP和TM:LSO两微米激光晶体生长、光谱和激光性能的研究.中国科学院上海光学精密机械研究所博士论文.2004:38~59
    34.M. J. Weber, M. Bass, T. E. Varitimoset, and D. Bua. Laser action from Ho , Er and Tm~(3+) in YA1O3. IEEE J. Quantum Electron. 1973, 9(11): 1079~1086
    35.N. I. Bordin, P. V. Kryukov, A. V. Popov, S. N. Ushakov and A. V. Shestakov. Diode-pumped cw Tm~(3+):YA1O3 Laser. Quantum Electron. 2005, 35(6): 511~514
    36.X. Cheng, F. Chen, G. Zhao, and J. Xu. High-Efficiency, High-Power, Diode-Pumped Continuous-Wave Tm:YAlO3 Slab Lasers. App. Phys. B: Lasers Opt. 2009, 97(3):639~643
    37.S.S. Cai, J. Kong, B. Wu, YH. Shen, G.J. Zhao, YH. Zong, and J. Xu. Room-Temperature cw and Pulsed Operation of a Diode-End-Pumped Tm:YAP Laser. Appl. Phys. B: Lasers Opt. 2008, 90 (1): 133~136
    38.Y F. Li, B. Q. Yao, Y Z. Wang, Y Ju, G. Zhao, Y Zong, and J. Xu. High Efficient Diode-Pumped Tm:YAP Laser at Room Temperature.Chin.Opt.Lett. 2007,5(5):286~287
    39.P. Cerny, J. Sulc, and H. Jelinkova. Continuously Tunable Diode Pumped Tm: YAP Laser. A. Sennaroglu, J. G Fujimoto, and J. A. C. Terry. 2nd Conference on Solid State Lasers and Amplifiers, Spie -Int Soc Optical Engineering, Strasbourg, 2006. France, 2006:19008
    40.A. C. Sullivan, G J. Wagner, D. Gwin, R. C. Stoneman, and A.I.R. Malm. High power Q-switched Tm:YAlO3 lasers. Advanced Solid-State Photonics, New Mexico, 2004, Optical Society of America, 2004: WA7
    41.A.O. Matkovskii. Growth and properties of YAIO3:Tm single crystals for 2-μm laser operation. J. Crystal Growth. 2002, 241(4): 455~462
    42.I. F. Elder, J. Payne. Diode-pumped, room-temperature Tm:YAP laser. Appl. Opt. 1997,36(3): 8606~8610
    43.R. C. Stoneman, L. Esterowitz. Efficient 1.94-μim Tm:YALO Laser. IEEE J. Sel. Top. Quantum Electron. 1995, 1(1): 78~81
    44.Y K. Kuo, M. Birnbaum, and W. Chen. Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm, Cr:Y3 AI5O12 laser. Appl. Phys. Lett. 1994 65(24): 3060~3062
    45.Y K. Kuo, M. Birnbaum. Ho:YVO4 solid-state saturable-absorber Q switch for a 2-μm Tm, Cr:Y3Al5O12 laser. Appl. Opt. 1996, 35(6): 881~884
    46.Y. K. Kuo, M. Birnbaum, F. Unlu, and M. F. Huang. Ho:CaF2 solid-state saturable-absorber Q switch for the 2-um Tm,Cr:Y_3Al_5O_(12) laser. Appl. Opt. 1996, 35(15): 2576~2579
    47.T. T. Kajava, A. L. Gaeta. Q switching of a diode-pumped Nd:YAG laser with GaAs. Opt. Lett. 1996, 21(16): 1244~1246
    48.J. Gu, F. Zhou, W. Xie, S. C. Tarn, and Y L. Lam. Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler. Opt. Commun. 1999, 165(4-6):245~249
    49.A. Li, S. C. Liu, K. W. Su, Y L. Liao, S. C. Huang, Y F. Chen, and K. F. Huang. InGaAsP quantum-wells saturable absorber for diode-pumped passively Q-switched 1.3-um lasers. Appl. Phys. B: Lasers Opt. 2006, 84(3):429~431
    50.A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett. Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 urn. Opt. Lett. 2010, 35(2): 172~174
    51.I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev,andA.A.Lipovskii.Passivemodelockingof 2.09μm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass. Opt. Lett. 2009, 34(21): 3403~3405
    52.周炳琨,高以智,陈倜嵘,陈家骅,激光原理.第五版.国防工业出版社.2007:220~228
    53.W. B. Cho, A. Schmidt, J. H. Yim, S. Y Choi, S. Lee, F. Rotermund, U. Griebner, G Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguilo, and F. Diaz. Passive mode-locking of a Tm-Doped bulk Laser near 2 urn using a carbon nanotube saturable absorber. Opt. Express. 2009, 17 (13):11007~11012
    54.K. Yang, H. Bromberger, H. Ruf, H. Schaer, J. Neuhaus, T. Dekorsy, C. V.-B. Grimm, M. Helm, K. Biermann, and H. Kuzel. Passively mode-locked Tm,Ho:YAG laser at 2 um based on saturable absorption of intersubband transitions in quantum wells. Opt. Express. 2010, 18(7):6537~6544
    55.E. Snitzer. Glass Lasers. Appl. Opt. 1966, 5 (10): 1487~1499
    56.H. W. Gandy, R. J. Ginther, and J. F. Weller. Stimulated Emission of Tm Radiation in Silicate Glass. J. Appl. Phys. 1967, 38:3030~3031
    57.A. Buryy, D. Y Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv, and I. M. Solskii. The comparative analysis and optimization of the free-running Tm3+ :YAP and Tm3+:YAG microlasers. Appl. Phys. B. 2007, 88(3):433~442
    58.R. C. Stoneman, L. Esterowitz. Efficient 1.94-pm Tm:YALO Laser. IEEE J. Sel. Top. Quantum Electron. 1995 1(1):78~81
    59.J. K. Jabczynski, L. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, and M. Nemec. Advances in Solid State Lasers Development and Applications,SCIYO, Croatia, 2010
    60. Y. Lu, Y. Dai, Y. Yang, and J. Wang, A. Dong, and B. Sun. Anisotropy of thermal and spectral characteristics in Tm:YAP laser crystals. J. Alloy. Compd. 2008, 453(1-2):482~4862008:18~35
    61.李玉峰.二级管泵浦TM3+固体激光器研究.哈尔滨工业大学博士论文2008:18~35
    62. W. J. He, B. Q. Yao, Y. Z. Wang, and Y. L. Ju. Determination of thermal focal length of diode laser end-pumped solid-state amplifier. Acta Phys. Sin. 2007, 56(6):3240~3246
    63. X. L. Zhang, Y. Z. Wang, and H. F. Shi. Diode-end-pumped CW Tm,Ho:YLF sol id-state-laser working at room temperature. Acta Phys. Sin. 2006,55(4): 1787~1792
    64. E. H. Bernhardi, A. Forbes, C. Bolig, and M. J. D. Esser. Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model. Opt. Express. 2008, 16(15): 111 15~11123
    65. T. Li, S. Zhao, Z. Zhuo, and Y. Wang. Thermal effects investigation and cavity design in passively mode-locked Nd:YVO4 laser with a SESAM. Opt. Comm. 2009, 282(5):940~943
    66. C. Pfistner, R. Weber, H.P. Weber, S. Merazzi, and R. Gruber. Thermal beam distortions in end-pumpeed Nd:YAG, Nd:GSGG, Nd:YLF rods. IEEE J. Quantum Electron. 1994, 30(7):1605~1615
    67. M. Innocenzi, H.Yura, C. Fincher, and R. Fields. Thermal modeling of continuous wave end-pumped solid-state lasers. Appl. Phys. Lett. 1990, 56(19):1831~1833
    68. Y. Li, C. H. Lee. Thermal effects in end-pumped Nd:phosphate glasses. J. Appl. Phys. 1994, 75(3): 1286~1292
    69. H. S. Carslaw, J. C. Jaeger. Conduction of Heats in Solids, Oxford University Press, Oxford, 1959
    70. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions. Opt. Express. 2008 16(25):21155~21160
    71. G Rustad, K. Stenersen. Modeling of Laser-Pumped Tm and Ho Lasers Accounting for Upconversion and Ground-State Depletion. IEEE J. Quantum Electron. 1996, 32 (9):1645~1656
    72. P. Cemy, D. Burns. Modeling and Experimental Investigation of a Diode-Pumped Tm:YALO3 Laser with a- and b-Cut Crystal Orientations. IEEE J. Sel. Quantum Electron. 2005, 11 (3):674~681
    73. M. Schellhorn, A. Hirth. Modeling of Intracavity-Pumped Quasi-Three-LevelLasers. IEEE J. Quantum Electron. 2002, 38 (11):1455~1464
    74. M. Schellhorn. High-Power Diode-Pumped Tm:YLF Laser. Appl. Phys. B. 2008, 91(1):71~74
    75. J. J. Degnan. Optimization of passively Q-switched lasers. IEEE J. Quantum Electron. 1995, 31(11): 1890~1901
    76. T. Dascalu, G. Philipps, and H. Weber. Investigation of a Cr 4+:YAG passive Q-switch in CW pumped Nd:YAG laser. Opt. Laser Technol., 1997, 29(3): 145~149
    77. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang. Optimization of Cr4+_ doped saturable-absorber Q-switched lasers. IEEE J. Quantum Electron. 1997, 33(12):2286~2294
    78. Y. K. Kuo, H. M. Chen, and Y Chang. Numerical Study of Passive Q Switching of a Tunable Alexandrite Laser with a Cr:Y2SiO5 Solid-State Saturable Absorber. Appl. Opt. 2001, 40(9): 1362~1368
    79. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber. Modeling of Passively Q-Switched Lasers. J. Opt. Soc. Am. B. 2000, 17 (7): 1166~1175
    80. D. Y Tang, S. P. Ng, L. J. Qin, and X. L. Meng. Deterministic chaos in a diode-pumped Nd:YAG laser passively Q-switched by a Cr4+:YAG crystal. Opt. Lett. 2003, 28(5):325~327
    81. J. Kong, D. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani. Passively Q-switched Yb:Y2O3 ceramic laser with a GaAs output coupler. Opt. Express. 2004, 12(15):3560~3566
    82. J. M. Khosrofian, B. A. Garetz. Measurement of a Gaussian laser beam diameter through the direct inversion of a knife-edge data. Appl. Opt. 1983, 22(21):3406-3410
    83. Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai. Analysis of Passively Q-Switched Lasers With Simultaneous Modelocking, IEEE J. Quantum Electron. 2002, 38(3):312~317
    84. K. Yang, S. Zhao, G Li, M. Li, D. Li, J. Wang, J. An. Diode-Pumped Passively Q-Switched Mode-Locked c-Cut Nd:GdVO4/KTP Green Laser With a GaAs Wafer. IEEE J. Quantum Electron. 2006, 42 (7):683~689
    85. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B. 1999, 16(l):46~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700