用户名: 密码: 验证码:
西藏甲玛铜多金属矿床地质物征及矿床成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿床位于冈底斯陆缘火山—岩浆弧内,定位于弧内中生代沉积盆地(甲玛—日多盆地),是西藏冈底斯成矿带上典型的矽卡岩—斑岩铜多金属矿床。本文在充分收集和仔细研究前人资料的基础上,并进行了大量的野外工作,综合运用构造地质学、岩石学、矿物学、矿床学、地球化学、流体包裹体地质学和同位素地质学等多学科的理论和方法,认为到:矿体主要分布于矽卡岩中,矿体呈层状、似层状、透镜状产出,分布于上侏罗统多底沟组的上部与下白垩统林布宗组接触的部位;矿石矿物以黄铜矿、斑铜矿、方铅矿、闪锌矿、黄铁矿、辉钼矿等原生硫化物为主,可占矿石矿物总量的95%以上;脉石矿物以石榴子石、透辉石等矽卡岩矿物为主;围岩蚀变以矽卡岩化、大理岩化、硅化、角岩化与成矿关系最为密切,水平和垂向上蚀变分带现象明显,规律性较强;氢、氧同位素研究表明在干矽卡岩阶段成矿流体主要为变质水和岩浆水,后有大气降水和有机水混入;湿矽卡岩阶段成矿流体以岩浆水为主,在后期并有大气降水参与;根据矿石铅同位素、硫同位素、稀土元素研究结果表明,成矿金属物质主要来源于幔源或加厚的下地壳;流体包裹体研究表明,甲玛铜多金属矿床属于中高温热液矿床,部分流体包裹体均一温度在500°以上仍未均一,含子矿物流体包裹体较为发育,盐度较高,确定了成矿的物理化学条件。
     最后,通过对矿床地质特征及矿床地球化学的研究,重新阐述了此矿床的成因类型。希望能对本区下一步的探矿、找矿及预测工作起到重要的理论指导作用。
Copper polymetal deposit of Tibet Jiama is produced in Gangdese epicontinental volcano-magmatic arc, which is located in Mesozoic intra-arc sedimentary basin. It is the typical representatives of skarn-porphyry Copper polymetal deposit in Tibet Gangdese metallogenetic belt. In this article, on the basis of full collecting and carefully studying the previous information, I have done a great deal of field work and synthetically used multidisciplinary theories and methods, such as: structural geology, petrology, mineralogy, gitology, geochemistry, fluid medium and enclosure geology, isotope geology, etc. Mineral ore are mainly distributed in skarn. It is in layers and similar layers, lensing output, located in the Upper Jurassic Duodigou formation and the contacting position of the Lower Cretaceous Linbuzong formation. The primary ore minerals are chalcopyrite, chalcopyrite, bornite, galena, sphalerite, pyrite, molybdenite sulphide, and so on, which is native sulphide. They can totally be accounted for more than 95%. Gangue mineral is main skarn minerals, such as garnet, malacolite, etc. In rock alteration, skarnization, mamorization, silicate and hornfelsing are in the most closely relations to mineralization. In the horizontal and vertical, the phenomenon of alteration zoning is obvious and in strong regularity. The research of hydrogen-oxygen isotope indicated that in the anhydrous skarn stage metallogenic fluid are mainly metamorphic water and magmatic water, precipitation and Organic Water mixed in metallogenic fluid later; In the hydrous skarn stage metallogenic fluid are mainly magmatic water. According to the research of lead isotope, sulfur isotope and rare earth elements, the main ore-forming metals come from the mantle or lower thickening crust.The studies of fluid inclusion show that copper-polymetallic deposit in JIA Ma belongs to medium-high hydrothermal deposit, parts of fluid inclusion have not yet in uniform at more than 500°,fluid inclusions containing daughter minerals are well deve-loped,the fluid has relatively high salinity.The physico-chemieal conditions during the formation of deposits are determined.At last, through the study of the geological and geochemical characteristics, renewedly explain ore genesi. It is expected that the paper can plays important role in theoretical guidance for the future working of prospecting, exploration and forecast in this areas.
引文
[1].佘宏全,丰成友,张德全,李光明,刘波,李进文.西藏冈底斯铜矿带甲玛矽卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,2006,(3).
    [2].赵一鸣,吴良士,白鸽等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004:411.
    [3].姚鹏,李金高,顾雪祥,郑明华,陈建坤.从REE和硅同位素特征探讨西藏甲玛矿床层状矽卡岩成因[J].岩石矿物学杂志,2006,(4).
    [4].肖荣阁,刘敬党,费红彩等.岩石矿床地球化学[M].北京:地震出版社,2007.
    [5].姚鹏,顾雪祥,李金高,范文玉.甲玛铜多金属矿床层控矽卡岩流体包裹体特征及其成因意义[J].成都理工大学学报(自然科学版) ,2006,(3).
    [6].陈毓川,王登红,朱裕生等.中国成矿体系与区域成矿评价[M].北京:地质出版社,2007:1005.
    [7].姚鹏,郑明华,彭勇民,李金高,粟登奎,范文玉.西藏冈底斯岛弧带甲玛铜多金属矿床成矿物质来源及成因研究[J].地质论评,2002,(5).
    [8].潘凤雏,邓军,姚鹏,王庆飞,刘玉祥.西藏甲玛铜多金属矿床矽卡岩的喷流成因[J].现代地质,2002,(4).
    [9].肖荣阁,原振雷,费红彩等.区域成矿流体形成与演化[J].地学前缘,1999,6(2):243-250.
    [10].翟裕生,苗成来,向运川等.华北克拉通绿岩带型金矿成矿系统初析[J].地球科学,2002,27(5):522-529.
    [11].姚鹏,王全海,李金高.西藏甲玛——驱龙矿集区成矿远景[J].中国地质,2002,(2).
    [12].应汉龙,王登红,刘和林.云南墨江金厂镍-金矿床镍矿化地质特征及形成时间[J].矿床地质,2005,24(1) :44-51.
    [13].任云生,张金树,范文玉,蔡朝阳.西藏甲玛铜多金属矿床远景预测[J].地质与勘探,2002,(5) .
    [14].黎彤,倪守斌.地球和地壳的化学元素丰度[M] ,北京:地质出版社,1990.
    [15].袁万明,侯增谦,李胜荣,王世成.西藏甲玛多金属矿区热历史的裂变径迹证据[J].中国科学D辑,2001,(S1).
    [16].彭勇民,姚鹏,李金高.西藏甲玛铜多金属矿区上侏罗统—白垩系层序地层与成矿[J].地质论评,2001,(6) .
    [17].彭勇民,姚鹏,李金高.西藏甲玛弧内盆地的形成演化[J].沉积与特提斯地质,2001.
    [18].冯孝良,管仕平,牟传龙,侯增谦,李胜荣.西藏甲玛铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,2001,(4).
    [19].彭勇民,姚鹏,李金高.西藏甲玛弧内盆地甲玛矿区晚侏罗世海绵礁的发现[J].地球学报-中国地质科学院院报,2000,(3).
    [20].姚鹏,杜光树.西藏甲玛多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].沉积与特提斯地质,1999,(0).
    [21].杨时惠.西藏甲玛赤康多金属矿床金银铋钴镍赋存状态及其矿物学特征研究[J].矿物岩石,1995,(1).
    [22].曲晓明等.S_Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示
    [23].侯增谦等.初论陆_陆碰撞与成矿作用_以青藏高原造山带为例
    [24].佘宏全等.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析;矿床地质,2005.
    [25].连玉等.西藏冈底斯甲玛和南木矿床流体包裹体SR_XRF研究;岩石矿物学杂志,2008.
    [26].李光明、,芮宗瑶等.西藏冈底斯成矿带甲玛和知不拉铜多金属矿床的Re_Os同位素年龄及其意义;矿床地质,2005.
    [27].李光明等.西藏冈底斯成矿带的斑岩_矽卡岩成矿系统—来自斑岩矿床和矽卡岩型铜多金属矿床的Re - Os同位素年龄证据;大地构造与成矿学,2005.
    [28].林武硕士论文.藏南冈底斯铜矿带冲江含矿斑岩地球化学特征及形成研究,2005.
    [29].杨中保硕士论文.湖南浏阳七宝山铜多金属矿床的地质特征及成因研究
    [30].卢焕章,倪陪等.流体包裹体.地球化学地质出版社2004.
    [31].徐国风.矿相学教程.武汉地质学院出版社.1986.
    [32].徐恒硕士论文.梁河锡矿床地质特征及成因探讨.2007.
    [33].杨艳硕士论文.河南围山城金银多金属成矿带成矿流体研究.2007.中国地质大学(北京).
    [34].杨光树等.安庆矽卡岩型铁铜矿床流体包裹体研究.地球化学.2008第67卷第8期
    [35].陈化勇,陈衍景,倪培,等.2004.南天山萨瓦亚尔顿金矿流体包裹体研究:矿床成因和勘探意义[J].矿物岩石,24 (3) .
    [36].卢焕章,郭迪江.2000.流体包裹体研究的进展和方向[J].地质论评,46(4).
    [37].赵财胜.2004.青海东昆仑造山带金、银成矿作用〔博士论文〕[D] .导师:孙丰月.长春:吉林大学.
    [38].肖志峰,欧阳自远,卢焕章等.1994.海南抱板金矿田流体包裹体地球化学研究[J].矿床地质,13 (2) .
    [39].李秉伦,石岗.1986.矿物包裹体气体成分的物理化学参数图解[J].地球化学,2
    [40].李荫清,马秀娟,魏家秀.1998.流体包裹体在矿床学和岩石学中的应用[M] .北京:北京科学技术出版社.
    [41].刘斌,段光贤.1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,7(4).
    [42].毛景文,李荫清.2001.河北省东坪锑化物金矿床流体包裹体研究:地幔流体与成矿关系[J].矿床地质,20 (1) .
    [43].张文淮,陈紫英.1993.流体包裹体地质学[M].武汉:中国地质大学出版社.
    [44].陈衍景,倪陪,范宏瑞等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007.
    [45].卢焕章,范宏瑞,倪陪等.流体包裹体.北京:科学出版社,2004.
    [46].唐菊兴,王成善,黄卫,陈建平,顾雪祥等.2000.西藏玉龙斑岩铜矿成矿体系各矿体存在型式及其定位预测研究,矿床学理论与实践.北京:科学出版社.
    [47].臧文栓,孟祥金等.西藏冈底斯成矿带铅锌银矿床的S-Pb同位素组成及其地质意义.地质通报,2007.
    [48].侯增谦,吕庆田,王安建等.2003.初论陆-陆碰撞与成矿作用—以青藏高原造山带为例.矿床地质,22(4).
    [49].赵鹏大,池顺都等,查明地质异常:成矿预测的基础,高校地质学报,1996.
    [50].姚敬金,张素兰等,中国主要有色、贵金属矿床综合信息找矿模型.北京:地质出版社,2002.
    [51].陈永清,王世称,综合信息成矿系列预测的原理与方法.山东地质.1995.
    [52].肖克炎,试论综合找矿模型.地质与勘探,1994.
    [53].中国有色金属工业总公司地质勘查总局,金属矿床遥感地质的综合成矿预测.北京:地质出版社,1996.
    [54].侯增谦,高永丰,孟祥金等.西藏冈底斯中新世斑岩铜矿带埃达克质斑岩成因与构造控制.岩石学报,2005.
    [55].孟祥金,侯增谦,高永丰等.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re- Os年龄证据.矿床地质,2003.
    [56].王全海,王保生,李金高等.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估.地质通报,2002.
    [57].张洪涛,陈仁义,韩芳林.2004.重新认识中国斑岩铜矿的成矿地质条件.矿床地质.23(2).
    [58]. GAO Jianguo , Geochemical discrimination of the geotectonic environment of basaltic-andesitic volcanic rocks associated with the Laochang polymetallic ore deposit at Lancang,Yunnan.CHINESE JOURNAL OF GEOCHEMISTRY,2006.
    [59]. JIANG Sihong, NIE Fengjun, Geological and Geochemical Characteristics of the Zhulazhaga Gold Deposit in Inner Mongolia,China. ACTA GEOLOGICA SINICA,2005.
    [60]. Lead Iosptopic Composition and Lead Source of the Huogeqi Cu-Pb-Zn Deposit,Inner Mongolia,China.ACTA GEOLOGICA SINICA,2006.
    [61]. Jiang Neng et al. Fluid inclusion characteristics of mesothermal gold deposits in the Xiao Qinling district,Shanxi and Henan Provinces,People’s Republic of China[J]. Mineralize Deposits,1999,34: 150-162.
    [62]. Stuart F M,Turner G.. Abundance and isotopic composition of the noble gases in fluid inclusions. Chem Geol. 1992,101:97~111.
    [63]. Suart F M,Burnard P G,Taylor R P et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization,South Korea. Geochim Cosmo Chim Acta,1995,59: 4663-4673.
    [64]. Suart F M,Turner G,Duckworth R C et al. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology,1994,22:823-826.
    [65]. Taylor B.E. and O'Neil J.R. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks,as good Mountains,Nevada. Contributions to mineralogy and petrology,1977,63: 1-49.
    [66]. Taylor H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol,1974. 69: 843-883.
    [67]. Taylor S R,McLennan S M. The continental crust: Its composition and evolution. Oxford: Blackwell,1985,1-312.
    [68]. Baker E M,Andrew A S. Geologic,fluid inclusion,and stable isotope studies of the gold-bearing breccia pipe at Kidston,Queensland,Austraslia. Economic Geology,1991,86: 810-830.
    [69]. Baker T,Lang J R. Fluid inclusion characteristics of intrusion-related gold mineralization,Tombstone Tungsten magmatic belt,Yukon Territory,Canada. Mineralium Deposita,2001,36: 563-582.
    [70]. Baker T. Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Economic Geology,2002,97:1111-1117.
    [71]. Boullier A and Robert F. Paleoseismic events recorded in Archean gold-quartz vein networks,Vald’Or,Abitibi,Quebec,Canada[J]. Jour. Struct. Geol,1992,14:161-179.
    [72]. NengJiang. Hydrothermal fluid evolution associated with gold mineralization at the Wenyu Mine,Xiaoqinling district [J]. China Resource Geology,2000,50(2): 103-112.
    [73]. Ames L,Tilton G R,Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons,U-Pb zircon dating of coesite-bearing eclogites [J]. Geology,1993,21:339-342.
    [74]. Ohmoto H,Rye R O.Isotopes of sulfur and carbon[C]// Barnes HL.Geochemistry of hydrothermal ore deposits.New York: Wiley,1979.
    [75]. Graves D I. Structural setting and control of gold deposits. Nuaa conference on greenstone gold and crustal evolution,VALD’OR,May 1990: 79-85.
    [76]. Colvine A C. An empirical model for the formation of Archean gold deposits: Products of final cratonization of the Superior Province,Canada [J]. Econ. Geol.,Mono. 1989,6:37-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700