用户名: 密码: 验证码:
祥云地区三叠系层序地层学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祥云地区处于川滇台背斜、丽江台缘皱褶带、兰坪-思茅坳陷三个二级构造单元结合部位,因其构造演化的复杂性和特殊性,该地区三叠系地层的沉积环境和层序地层研究颇为粗略、模糊。本文在大量查阅研究区区域地质资料和前人研究成果的基础上,经过长期的野外填图,层型剖面勘测及室内主要剖面、地球化学数据精细研究,以沉积学、地层学、层序地层学、大地构造学、古生物地史学及盆地分析原理等理论为指导,结合区域地质背景和沉积岩石地球化学特征,对祥云地区三叠系沉积地球化学特征、沉积环境、沉积体系、层序地层等方面的研究,进而对沉积盆地演化特征进行了研究。
     1、通过古生物、岩性特征、沉积构造等对研究区内三叠系地层进行了沉积相和沉积环境划分。
     2、对研究区三叠系地层进行了常量、微量、稀土元素沉积地球化学研究。同时通过常量、微量、稀土元素地球化学特征从古气候、古盐度、氧化还原、古水深、源区分布5个方面研究了工区晚三叠世古环境。
     3、根据层型剖面岩石组合,沉积序列,沉积构造、生物组合和沉积岩矿成分和地球化学特征,将该区三叠系四个组地层划分为7种沉积体系:①半深海体系(罗家大山组第二段);②陆棚体系;③碳酸盐台地;④滨海体系;⑤三角洲体系;⑥湖泊体系;⑦河流体系。并详细分析了各沉积体系特征。
     4、在沉积环境和沉积体系分析研究的基础上,运用层序地层学的原理,对研究区上三叠统的三级层序界面特征、界面的成因类型进行了深入研究。工区内三级层型界面类型有Ⅰ型和Ⅱ型,分为:沉积间断面(SB11)、古风化面(SB12、SB23、SB14)、底砾侵蚀面(SB,5)。将工区上三叠统划分为5个三级层序,即卡尼阶两个(TSQ1、TSQ2),诺利阶二个(TSQ3, TSQ4),瑞替阶1个(TSQ5).
     5、分析了各个三级层序内部构成:体系域的类型和特征。TSQl和TSQ2缺失了低位体系域(LST), TSQ3、TSQ4、TSQ5内三种体系域(LST、TST、HST)发育完整。共出现5次海侵,其中三级层序TSQl和TSQ3内的海侵速度和幅度均很大。详细分析了构造、海平面变化、气候因素、沉积物供给四种因素对研究区层序发育的控制作用。
     6、晚三叠世时期,祥云地区在丽江地块和康滇古陆之间的分离裂陷和挤压逆冲作用影响下,形成了复合盆地;为前期分离裂陷作用下发育的裂陷盆地和后期挤压逆冲作用下发育的前陆盆地。盆地基底经历了裂陷-稳定-裂陷-挤压逆冲(折返)四个阶段。盆地充填序列演化经历了海相(磨拉石建造、复理石建造、碳酸盐建造)-海陆交互相(含煤砂泥岩建造)-陆相(河湖含煤泥质、砂质岩建造)这一转换过程。
Xiangyun locates in the middle part of, chuandian platform anticline, Lijiang platform margin fold belt, Lanping-Simao depression binding sites of three secondary structure units, because of its tectonic evolution of the complexity and particularity, the deposition of Triassic strata environment and sequence stratigraphy of the rather rough and fuzzy. This inspection of the study area in a large number of regional geological data and the results of previous studies, based on over a long period of geological mapping, surveying and interior stratotype section the main section, the detailed study of geochemical data, to sedimentology, stratigraphy, sequence stratigraphy science, geology, tectonics, paleontology, historical and basin analysis theory and other theories as a guide, combined with regional geological setting and geochemical characteristics of sedimentary rocks, and Triassic sedimentary geochemical characteristics of clouds, depositional environment, depositional systems, sequence stratigraphy, etc. research, and study the evolution of sedimentary basin characteristics of the area.
     1, Through paleontology, lithology, sedimentary structures of Triassic strata of the study area was divided into sedimentary facies and depositional environment.
     2, Triassic strata of the study area were constant, trace, rare earth element geochemistry. Same time, through constant, trace, REE geochemical characteristics of the ancient climate, ancient salinity, redox, water depth, source distribution of five aspects of the work area the Late Triassic paleoenvironment.
     3, under the stratotype section of rock composition, sedimentary sequence, sediments, biological composition and mineral composition and geochemical characteristics of sedimentary rocks, the Triassic strata are divided into four groups of seven kinds of depositional systems:①semi-deep system (Luo the second paragraph of the mountain group);②shelf system;③carbonate platform;④coastal system;⑤delta system;⑥lake system;⑦river system. And a detailed analysis of the sedimentary system.
     4, in the depositional environment and depositional systems analysis, based on the use of the principles of sequence stratigraphy, the study area of the Upper Triassic of the three characteristics of sequence boundaries, the interface of genetic types in depth. Workers in the region three layer-type interface typesⅠandⅡ, divided into:sedimentary discontinuity (SB11), weathering surface (SB12, SB23, SB14), the end gravel erosion surface (SB15). The work area of the Upper Triassic is divided into five three sequence that Carnian 2 (TSQ1, TSQ2), Norian 2 (TSQ3, TSQ4), Rhaetian 1 (TSQ5).
     5, analysis of the internal structure of all three sequences:the type and characteristics of the domain system. TSQland TSQ2 missing the LST (LST), TSQ3, TSQ4, TSQ5 three systems within the domain (LST, TST, HST) complete development. Transgression occurred 5 times, including three sequences TSQ1 and TSQ3 transgression within the range of both speed and great. Detailed analysis of the structure, sea-level change, climate, sediment supply four factors in the study area controlling sequence development.
     6, Late Triassic period, XiangYun area in the separation and compression under the influence of thrust between Lijiang tableland and Kangdian Ancient land, forming a composite basin; for the effect of early separation of rifting and development of rift Basin and thrusting under the late development of the foreland basin. Basement through the rift-stability-rift-Extrusion and Thrust (returned) four stages.Basin-fill sequence.evolution experienced marine facies(molasse, flysch, construction, carbonate rock build)-and sea cross each other facies(the construction of coal-bearing sandstone and mudstone)-continental facies(fluvial coal-bearing shale, sandy rock build) the conversion process.
引文
[1]Vail P. R Seismic stratigraphy interpretation using sequence stratigraphy,Part 1: Seismicstratigraphy interpretation porcedure[J]. In:Atlas of seismic stratigraphy(Ed. Bally A W)AAPGstudies in Geology.1987,27:1-10.
    [2]Wheeler H E. Base level,lithosphere surface and time-stratigraphy.Bull GeolSoc,1964,75:5 99-610.
    [3]Cheney E.S., Sequence stratigraphy and plate tectonic significance of the Transvaalsuccession of Southern Africa and its equivalent in Western Australia. In:Ge0109yand geochemistry of the Transvaal Supergroup, Southern Africa. Precambrian Research.79:1-2, Pages 3-24.1996.
    [4]垄一鸣,张克信主编,地层学基础与前沿[M],武汉:中国地质大学出版社,2007,123-125.
    [5]宋万超,刘波,宋新民编著,层序地层学概念、原理、方法及应用[M],北京:石油工业出版社,2003,36-39.
    [6]Barrett P J, History of the Ross Sea region during the deposition of the BeaconSupergroup 400-180 million years ago. Journal of the Royal Society of New Zealand.11:4, Pages 447-459.1981.
    [7]王华等编,层序地层学基本原理、方法与应用[M],武汉:中国地质大学出版社,2008,15-20.
    [8]吴因业,邹才能,季汉成编著,中国层序地层学导论[M],北京:石油工业出版社,2005,35-27.
    [9]Galloway W E.Genetic stratigraphic sequence in basin analysis 1:architecture and genesis of flooding/suiface bounded depositional units.AAPG Bull,1989,73:125-142.
    [10]T.A.Cross,M.R.Maker,etc., Applications of High-resolution Sequ-ence Steatigraphy to Re servoir Analysis.In:Proceedings of the 7th Exploration and Production Research Conference.1993,P aris.11-13.
    [11]郭建华、曾允孚等,新疆塔中石炭系层序地层学研究-克拉通内坳陷盆地的层序地层格架模式[J],地质学报,1996,70(4):361-370.
    [12]邓宏文,高分辨率层序地层学:原理及应用[M],北京:地质出版社,2002,1-230.
    [13]程日辉、王东坡,陆相层序地层学进展[J],岩相古地理,1996,16(4):56-58.
    [14]李思田、林畅松、解习农等,大型陆相盆地层序地层学研究-以鄂尔多斯中生代盆地为例[J],地学前缘,1995,2(3-4):133-148.
    [15]徐怀大,如何推动我国层序地层学迅速发展[J],地学前沿,1995,2(3-4):103-113.
    [16]陈根文等,楚雄弧后前陆盆地的形成及演化[J].云南地质,1999(18),4,P.392-397.
    [17]谭富文等,楚雄前陆盆地系统的构造单元及沉积标识[J].沉积学报,2000(18),4,P 573-579.
    [18]曹德斌等,楚雄盆地中一新生界构造变形特征[J].云南地质,2001(21).1,P.50-59.
    [19]赖生华,楚雄盆地上三叠统储集体成因类型及几何模式[J],云南地质,2007(26).3,P315-321.
    [20]尹福光、万方等,楚雄盆地晚三叠世古地理变迁[J].沉积与特提斯地质,2004年9月,第3期,第24卷.
    [21]李儒峰等,云南楚雄盆地波动特征及构造沉积演化[J],地球科学——中国地质大学学报,第29卷第3期,2004年5月.
    [22]蒲心纯、尹福光,楚雄前陆盆地的充填层序与造山作用[J],岩相古地理,1996,16(3):47-57.
    [23]张志斌,滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的关系—以楚雄西舍路至禄丰碧城镇区域地质综合剖面为例[J],地球学报,2002,第23卷第2期,129-134页.
    [24]许效松等,楚雄盆地性质与沉积层序演化[J].岩相古地理,1999(19),5.
    [25]云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
    [26]张进江等,东南亚及哀牢山红河构造带构造演化的讨论[J],地质论评,1999,第45卷第4期,337-344.
    [27]张志斌、刘发刚、包佳凤,哀牢山造山带构造演化[J],云南地质,2005,第24卷第2期137-141页.
    [28]方维萱等,云南哀牢山地区构造岩石地层单元及其构造演化[J],大地构造与成矿学,2002,第26卷第1期,28-36.
    [29]向宏发、万景林登,红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年[J],地球科学,2006,(11):977-987.
    [30]巫建华,刘帅编,大地构造学概论与中国大地构造学纲要[M],北京:地质出版社,2008.
    [31]王二七、樊春等,滇西哀牢山-点苍山形成的构造和地貌过程[J],第四纪研究,2006,第26卷第2期,200-210.
    [32]朱俊江、詹文欢等,红河断裂带活动性研究[J],华南地震,2003,第23卷第2期,13-20
    [33]李光容,金德山,程海断裂带挽近期活动性研究[J].1990,9(4):1-2.
    [34]陈建强,周洪瑞,王训练编,沉积学及古地理学教程[M],北京:地质出版社,2004,84-93.
    [35]张志斌等,贵阳乌当地区中-上奥陶统沉积学研究[J],地质与资源,第14卷第4期2005.12月.
    [36]柳永清、李寅,准噶尔盆地侏罗系露头层序地层及沉积学特征[J],地质学报,第22卷第1期2001年1月.
    [37]徐胜林,渝东鄂西地区早中三叠世层序岩相古地理研究[D],成都理工大学,2007,15-16.
    [38]杨兢红、王颖等,宝应钻孔沉积物的微量元素地球化学特征及沉积环境探讨[J],第四纪研究,2007第27卷第5期,735-740.
    [39]沈华悌.深海沉积物中的稀土元素[J].地球化学,1990,(4):133-136.
    [40]陈骏,王鹤年主编,地球化学[M],北京:科学出版社,2004,302-305.
    [41]熊国庆、王剑、胡仁发,贵州梵净山地区震旦系微量元素特征及沉积环境[J],地球学报,2008,29(1),52-55.
    [42]Shimizu H. Masuda A. Cerium in chert as an indication ofmarine environment ofits formation[J]. Nature.1977,266:346-8.
    [43]张世涛、冯明刚、李荫玺著,近现代星云湖的环境变化与生态对策[M],北京:地质出版社,2007,58-60.
    [44]牟保磊编著.元素地球化学[M].北京:北京大学出版社,1999.169-177.
    [45]丁林,钟大赉.滇西昌宁—孟连带古特提斯洋硅质岩的稀土元素和铈异常特征[J].中国科学(B辑),1995,25(1):93-101.
    [46]Rollison H R著.杨学明,杨晓勇,陈双喜等译.岩石地球化学[M].合肥:中国科学技术大学出版社,2000.54-68.
    [47]黄修保,赣西北地区中元古界双桥山群沉积学特征[J],地质通报,第22卷第1期2003年1月.
    [48]谭富文,云南思茅三叠纪弧后前陆盆地的沉积特征[J],沉积学报,第20卷,第4期,2002.12.
    [49]马永生,陈洪德,王国力等编,中国南方层序地层与古地理[M],北京:科学出版社,2009,36-40.
    [50]徐强等,中国层序地层研究现状和发展方向[J].沉积学报,2003,21(1):155-167.
    [51]朱红涛,层序地层学模拟研究进展及趋势[J],地质科技情报,第26卷第5期,2007年9月.
    [52]朱志军、陈洪德,川西前陆盆地蓬莱镇组层序、岩相古地理特征及演化[J],地层学杂志,2009,第33卷第3期,318-324.
    [53]王华等编,层序地层学基本原理、方法与应用[M],武汉:中国地质大学出版社,2008,15-20.
    [54]郭彦如、刘化清等,大型坳陷湖盆层序地层格架的研究方法体系[J],沉积学报,2006,第26卷第3期,385-390.
    [55]田继军、姜在兴,东营凹陷沙河街组四段上亚段层序地层特征与沉积体系演化[J],地质学报,2009,83(6),837-841.
    [56]管红、朱筱敏,南堡凹陷东营组层序地层格架与沉积体系[J],沉积学报,2008,25(6),731-737.
    [57]杜远生,童金南主编,古生物地史学概论[M],武汉:中国地质大学出版社,1998,59-61.
    [58]纪友亮、曹瑞成等,塔木察格盆地塔南凹陷下白垩统层序结构特征及控制因素分析,2009,83(6),827-833.
    [59]吴跃东、江来利,皖西南地区泥盆纪-三叠纪层序地层[J],成都理工大学学报(自然科学版),2009,36(1),19-23.
    [60]袁红旗、柳成志等,海拉尔盆地查干诺尔凹陷下白垩统层序地层学研究[J],沉积学报,2008,26(2),241-245.
    [61]蒲心纯、尹福光,楚雄前陆盆地的充填层序与造山作用[J],岩相古地理,1996,16(3):47-57.
    [62]梁西文,中扬子区晚三叠世—新近纪层序岩相古地理演化研究[D],成都,成都理工大学,2008.
    [63]徐刚,四川省炉霍地区三叠系沉积环境及盆地研究[D],成都,成都理工大学,2008.
    [64]贵州省地质矿产局科技情报室,层序地层学译文集[M],1991,66-68.
    [65]张志斌、曹德斌,滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的关系,地球学报[J],2002,第23卷第2期129-134.
    1 资料综合:云南省地质矿产局.云南省区域地质志,1990.云南省地质矿产局.1:20万大理幅区域地质调查报告(地质部分),1973.云南省地质调查院.1:25万大理市幅区域地质调查报告,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700