用户名: 密码: 验证码:
基于反应谱的斜拉桥动力特性及地震响应的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展,交通建设量也得到了前所未有的加大,为了满足较大的跨度,预应力混凝土斜拉桥成为桥梁领域的主角之一,得到了广泛的运用;它出色的跨越能力和明显的结构特点使得该桥型跨度不断增大,成为中大跨度桥梁比选的佼佼者。我国是一个地震多发的国家,每当地震发生,公路线就成了生命线,而桥梁就成了构成生命线的关键点。桥梁的破坏与否将直接成为救灾与灾后重建工作能否顺利开展、经济能否快速恢复的决定因素,故而与生命息息相关。因此,作为有效实行抗震措施、建立合理抗震结构体系的科学根据,研究掌握桥梁的抗震能力、地震反应就显得至关重要。
     本文在结合国内外相关成果的基础上,以苏通大桥为实际工程背景,对斜拉桥的动力特性及地震响应进行了如下研究:
     (1)首先分析了目前大跨度斜拉桥的结构特点,设计参数以及它的发展状况,并对其抗震设计的现状,指出抗震反应分析的必要性;再对大跨斜拉桥地震响应分析中存在的问题进行探讨与分析,得出了本文所要分析的重点问题;
     (2)其次系统地阐述、归纳总结了桥梁地震响应分析方法——反应谱法,并对其基本假定,适应范围,分析过程与步骤以及该方法中存在的问题等进行了详尽的推演与修正;
     (3)利用大型有限元分析计算软件MIDAS CIVIL,通过对斜拉桥结构进行适当简化,建立其空间计算模型作为进行动力特性与地震响应分析的基础,在不考虑桩基与地基土对桥梁作用的情况下,计算斜拉桥的自振特性;
     (4)以上述结构的空间模型计算结果为依据,对设置了减震耗能装置与不设该装置斜拉桥的自振特性与振动特点进行对比分析,并得出分析结论;同时分析了大跨度斜拉桥在一致激励下的地震响应的反应谱分析,分别探讨在单向地震输入与组合输入下,对桥梁结构响应的影响,总结地震输入方向对大跨度斜拉桥计算结果的影响;最后通过对有阻尼与无阻尼模型关于地震响应结果进行对比,得出减震耗能装置对斜拉桥的抗震性能影响的结论。
With the rapid development of China's economy, traffic-building has also been an unprecedented amount of increase, in order to meet the demand of larger span, prestressed concrete cable-stayed bridge, one of the most popular bridge styles, has been widely used; its excellent crossing capacity and remarkable structural features make this type bridges’span increase day by day and become the leader in long-span bridges alternatives. China is the country prone to earthquakes, when the earthquake occurred; the road line became lifeline, as the bridge became the key point of the lifeline. It is the determinant to reconstruction work carried out smoothly and the rapid economy recovery whether the bridge was damaged or not, so the bridge is closely related with life. Therefore, it is vital to implement effective seismic measures and scientific researches and to establish a reasonable system of seismic structure and to grasp the seismic capacity of bridges.
     In this paper, on the basis of the relevant results at home and abroad, Su Tong Bridge is considered to be the practical engineering background, the analysis on the dynamic properties and seismic response of cabled-stayed bridge is the following:
     (1) Firstly, analyze the structure characteristics of current long span cable-stayed bridge and the design parameters and status of its development, and the status of seismic design, point out the necessity of earthquake response analysis; then the problems in cable-stayed bridges seismic response analysis are proposed and analyzed; obtain the key issues to be analyzed in this paper.
     (2) Followed by systematic exposition and summarizing the seismic response analysis method, response spectrum method, including its basic assumptions, the adaption scope of the analysis process and the steps, the deduction and correction to the problems of the method in details, etc.
     (3) At the same time, the finite element analysis software MIDAS CIVIL is used and the appropriate simplification of the cable-stayed structure is taken out to establish the spatial model as the basis of dynamic properties and seismic response analysis. On the circumstances of ignoring the interaction of pile and bridge foundation soil, the calculation of vibration characteristics of cable-stayed bridge is carried out;
     (4) Finally, according to the results of the bridge structure model, the vibration characteristics and modes analysis comparison is made between setting damping device and not setting the device in the cable-stayed bridge vibration. Some conclusions are drawn. Also, the response spectrum analysis is carried out under uniform excitation, the seismic response analysis effect is made, respectively, in the way of single seismic input and combined seismic input, and then it is necessary to summary the impact to the results of different seismic input direction of the span cable-stayed bridge. At last, the seismic response results comparison between having the damping device and not having damping device is executed to draw the conclusion to the damping device affecting the seismic characteristics.
引文
[1]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [2]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [3]刘严柱,陈文良,陈立群.振动力学[M].高等教育出版社,2005.
    [4]桥梁设计通用规范[S].北京:人民交通出版社,2004.
    [5]王元汉,李丽娟,李银平.有限元基础与程序设计[M].华南理工大学出版社, 2004.
    [6]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [7]顾安邦.桥梁工程[M].北京:人民交通出版社,2000.
    [8]刘土林,梁智涛,侯金龙,孟凡超.斜拉桥[M].北京:人民交通出版社,2002.
    [9]美R.克拉夫,J.彭津.结构动力学[M].高等教育出版社,2006.
    [10]李青宁,孙军举.曲线高架桥在非一致地震作用下的随机反应分析[J].公路交通科技,2009(4).
    [11]范立础.世界斜拉桥的新进展[J].重庆交通学院学报,1989(2).
    [12]范立础.再论世界斜拉桥的新进展[J].重庆交通学院学报,1988(3).
    [13]薛成凤.斜拉桥地震反应分析研究现状[J].山西建筑,2009(5).
    [14]屈庆琭.斜拉桥的大跨径发展趋势[J].重庆交通学院学报,1988(2).
    [15]陈玉峰.斜拉桥空间行为分析研究[D].西南交通大学硕士研究生学位论文,2004.
    [16]蒋成强.部分斜拉桥索力研究与动力分析[D].兰州交通大学硕士学位论文,2009.
    [17]张细芬.大跨径斜拉桥施工控制与仿真分析[D].武汉理工大学,2005.
    [18]尹国.大跨度斜拉桥的地震动响应分析研究[D].合肥工业大学,2005.
    [19]陈星烨,颜东煌,荣见华.大跨度斜拉桥梁塔几何非线性耦合分析[J].长沙交通学院学报,2001(04).
    [20]王东升,冯启民,凌贤长,翟桐.桥梁非线性地震反应分析若干问题研究现状[J].地震工程与工程振动,2002(01).
    [21]韦承基,史铁花,薛彦涛.合理振型数的确定及扭转振型判定[J].工程抗震, 2002(04).
    [22]徐月玲.结构抗震计算中关于主振型出现在高阶振型问题的探讨[J].广西土木建筑,2002(S1).
    [23]史铁花,韦承基.振型分解法中合理振型数的确定[J].建筑科学,2002(02).
    [24]叶爱君,胡世德,范立础.斜拉桥抗震结构体系研究[J]桥梁建设,2002(04).
    [25]聂利英,叶爱君,胡世德.大跨度悬索桥地震动力分析中高阶振动的影响[J].同济大学学报(自然科学版),2000(06).
    [26]孙利民,张晨南,潘龙,范立础.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报(自然科学版), 2002(04).
    [27]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996(06).
    [28]陈幼平,周宏业.天津永和桥地震反应的非线性效应分析[J].土木工程学报, 1997(03).
    [29]叶爱君,胡世德,范立础.大跨度桥梁抗震设计实用方法[J].土木工程学报,2001(01).
    [30]陈幼平,周宏业.斜拉桥地震反应特性[J].中国铁道科学,1996(01).
    [31]程翔云.悬臂施工中的预拱度设置[J].桥梁建设,1995(7).
    [32]杜国华.桥梁结构分析[M].上海:同济大学出版社,1994.
    [33]雷俊卿.大跨度桥梁结构理论与应用[M].北京:清华大学出版社,2007.
    [34]吕西林,蒋欢军.结构地震作用和抗震概念设计[M].上海:武汉理工大学出版社,2004.
    [35]韦晓,王君杰,袁万城,范立础.桥梁抗震设计规范实用功率谱[J].同济大学学报.2000.28(1)
    [36]范立础,王志强.桥梁减隔震设计[M].北京:人民交通出版社,2001.
    [37]于建华,谢用九,魏泳涛.高等结构动力学[M].四川大学出版社,2001.
    [38]周福霖.工程结构减震控制[M].北京:地震出版社,1996.
    [39]韦晓,袁万城,王志强,范立础.关于桥梁抗震设计规范反应谱若干问题[J],同济人学学报,1999.27(2):225.228.
    [40]吕西林,蒋欢军.结构地震作用与抗震概念设计.武汉理工大学出版社,2004.
    [41]王君杰,范立础.规范反应谱长周期部分修正方法的探讨[J].土木工程学报,1998.31[6]
    [42]胡月伟,李进,李青宁.线性地基上剪切梁式结构的地震响应[C]//徐世烺,罗尧治,段元锋,杨心鸽.第八届全国土木工程研究生学术论坛论文集.浙江:浙江大学出版社,2010:64页
    [43]Bridges,Papers for CCES 3rd Convention by Foreign Delegates, Shanghai,1986.
    [44]Walter Podolny, Jr. Prestressed Concrete Segmental Bridges In The United States, FHA, 1952.
    [45]W. Zellner, R. Sanland H. Severson, Recent Trends in The Design and Construction of Cable Stayed Bridges,12th Congress of IABSE,Final Report,1984.
    [46]Walter Podolny, Jean M. Muller. Construction and Design of Prestressing Concrete Segmental. Bridges, John Wiley&Sons, 1982.
    [47]Firdaus E Udwadia, Methodology for optimum sensor locations for parameter identification in dynamic systems[J].Journal of Engineering Mechanics 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700