用户名: 密码: 验证码:
锈蚀钢筋混凝土梁节点抗震性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构由于疲劳荷载作用、环境锈蚀、材料老化引起的损伤积累,使得承载力和延性显著降低,进而导致了结构抗震性能显著降低。近年来,混凝土结构耐久性退化引起结构抗震性能变化的问题也越来越受到学术界的广泛关注。因此,对耐久性退化的钢筋混凝土结构抗震性能的研究具有主要理论意义。
     本文通过对不同钢筋锈蚀率的梁节点在低周反复荷载作用下的试验,研究钢筋锈蚀对混凝土结构抗震性能的影响。论文主要工作如下:
     1.通过进行试块的电化学加速锈蚀试验,确定电化学加速锈蚀试验试件与试块中钢筋锈蚀率的对应关系,为保证梁节点试件的电化学加速锈蚀试验的有效性提供了保证。
     2.进行了5个不同钢筋锈蚀率的梁节点在低周反复荷载作用下的试验。5个梁节点的钢筋锈蚀率分别为0%、3.19%、5.77%、9.12%、12.21%,实际锈蚀率与期望锈蚀率的最大偏差在试验允许误差范围内。
     3.通过对5个不同锈蚀率的梁节点在低周反复荷载作用下的试验,研究了钢筋锈蚀率对梁节点破坏形态、滞回性能、钢筋应变规律的影响。试验表明,梁节点的破坏以梁端塑性铰破坏为主,且随锈蚀率的提高其裂缝扩展更为迅速、裂缝宽度更宽;试件滞回曲线形状随锈蚀率的提高由未锈蚀时的丰满的梭形发展成为捏缩明显的反弓形甚至反S形状,滞回环所包围的面积逐渐减小,构件的耗能能力在逐渐降低;各试件荷载-应变滞回曲线加载阶段斜率随着锈蚀量的增加而减小,试件的刚度随锈蚀率的提高而在降低,且随着锈蚀量的增加,荷载应变曲线所包围的面积有减小的趋势,滞回环愈加不稳定。
     4.通过对梁节点的低周反复荷载试验,研究了钢筋锈蚀率对梁节点承载力和延性(含位移延性和滞回延性)的影响。试验表明,随着钢筋锈蚀量的增加,钢筋混凝土梁节点屈服荷载、极限荷载、位移延性系数、耗能能力均降低。进而根据试验数据提出了反映钢筋锈蚀率影响的梁构件承载力和延性计算方法和修正公式。计算公式能更好地反映结构在长期使用过程中对结构承载力和延性的退化。
Reinforced concrete structures duing to fatigue loading, environmental corrosion, material damage caused by the accumulation of aging make the bearing capacity and ductility decreased significantly, which led to a significant reduction in seismic performance. In recent years, the durability of concrete structures seismic performance degradation of change is getting more attention by academia. Therefore, the study of seismic behavior of durability of reinforced concrete structures has the major theoretical significance.
     Based on the steel corrosion rate of the different nodes in the beam under cyclic loading test, we study the performance of steel corrosion on the seismic of concrete structures. Paper are as follows:
     1 By the electrochemical accelerated corrosion test block test to determine the electrochemical accelerated corrosion test specimens and test block in the corresponding relationship between steel corrosion rate, in order to ensure the beam joint specimen validity of the electrochemical accelerated corrosion tests to provide a guarantee.
     2 Carried out 5 different rates of steel corrosion in the low beam joints under cyclic loading test.5 beam joint of steel corrosion rates were 0%, 3.19%,5.77%,9.12%,12.21%, the actual rate of corrosion rate and the expected maximum deviation of rust tolerance in the test range.
     3 Through the corrosion rate of 5 different nodes in the beam under cyclic loading experiment to study the steel corrosion rate on the beam joint failure modes, hysteretic behavior, rules of steel strain. Tests showed that the destruction of the node beam plastic hinge damage to the main beam, and with the improvement of its corrosion crack propagation rate is more rapid, wider crack width; beam hysteretic shape of the curve with the corrosion rate of increase is not corroded by the time of plump spindle become apparent anti-pinch bow or even anti-S shape, surrounded by the hysteresis loop area decreases, the energy dissipation capacity of components decreased; each specimen load-strain hysteresis curve of the slope with the load phase the increase in the amount of corrosion decreases the stiffness of the specimen with the corrosion rate of increase in the lower, and with the increase in the amount of corrosion, surrounded by load-strain curve tends to decrease the area, hysteresis loop even more unstable.
     4 Beam node by cyclic loading tests of the steel corrosion rate of the bearing capacity and ductility of beam (including the displacement ductility and hysteretic ductility) of. Tests showed that with the increase in the amount of steel corrosion, reinforced concrete beam joint yield load, ultimate load, displacement ductility, energy dissipation capacity were reduced. According to the test data,put forward reflect the impact of steel corrosion rate of bearing capacity and ductility of beam calculation method and modified formula. Formula to better reflect the structure of long-term use in the different stages of the process of the structure of the bearing capacity and ductility changes.
引文
[1]胡聿贤.地震工程学[M]北京:地震出版社,2006
    [2]王光远等著.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工‘业出版社,1999.59~81.
    [3]罗涵杰.损伤钢筋混凝土结构抗震性能研究及评估[硕士学位论文].长沙:中南大学硕士学位论文.2009
    [4]肖国强.钢筋混凝土框架节点抗震性能及抗震加固研究[硕士学位论文].长沙:湖南大学,2005
    [5]傅建平.钢筋混凝土框架节点抗震性能及设计方法研究[博士学位论文].重庆:重庆大学,2002
    [6]刘晓.抗震框架中间层中节点梁筋粘结退化性能试验研究[硕士学位论文].重庆:重庆大学2006
    [7]游渊,傅建平,白绍良等.钢筋混凝土抗震框架梁柱节点的延性设计准则[J].重庆建筑大学学报,1996.12,第18卷第4期,第12-19页
    [8]张连德.钢筋混凝土空间框架节点抗震性能的研究[J].建筑结构学报,1987年第1期
    [9]陈永春,高红旗等.反复荷载下钢筋混凝土平面框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究[J].建筑科学,1995年第1期,第3-10页
    [10]马东辉,郭小东,王志涛.城市抗震防灾规划标准实施指南[M].北京:中国建筑工业出版社,1999.59~81.
    [11]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.12
    [12]T.鲍雷,M.J.N.普利斯特利著,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计[M].中国建筑工业出版社,1996.6
    [13]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.1-2
    [14]丘桂秀.钢筋混凝土结构梁—柱节点性能分析[硕士学位论文].西安:西南交通大学,2008
    [15]《汶川地震建筑震害调查与灾后重建分析报告》编委会.汶川地震建筑震害调查与灾后重建分析报告[M]北京:中国建筑工业出版社,2008(1)
    [16]夏珊,刘爱文.汶川地震框架柱震害的初步分析[J].震灾防御技术,2008.9,第3卷第3期
    [17]孙金坤,刘爱文.汶川地震框架柱震害的初步分析[J].震灾防御技术,2008.9,第3卷第3期
    [18]T.Paulay,R.Park,and M.J.N.Priestley,Reinfoced Concrete Beam-Column Joints under Seismic Actions,ACI Journal,Proceeding Vol.75,No.11,Nov.1978,P.585~593
    [19]Roberto T.Leon, Shear Strength and Hysteretic Behavior of Interior Beam-Column Joints, ACI Structural Journal, Jan-Feb.1990, P.3~11
    [20]AL-Sulaimani G J, Kaleemullah B. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members [J]. ACI Structural Journal, 1990,87(2):220-231
    [21]焦心良,张连德,卫云亭.钢筋混凝土框架顶层中节点抗震性能试验研究[J],建筑结构,1995(11)
    [22]王学民.锈蚀钢筋混凝土构件抗震性能试验与恢复力模型研究[硕士学位论文].西安:西安建筑科技大学,2003
    [23]范颖芳.受腐蚀钢筋混凝土构件性能研究[博士学位论文].大连:大连理工大学,2002
    [24]金伟良,陈驹等.钢筋锈蚀对钢筋混凝土短梁力学性能的影响[J].华中科技大学学报,2003(3)第20卷第一期
    [25]易美英.重复荷载作用下受腐蚀钢筋混凝土梁承载力研究[硕士学位论文].上海:上海交通大学,2008
    [26]王天稳.土木工程结构试验[M].武汉:武汉理工大学出版社,2006
    [27]杨明.锈蚀钢筋混凝土梁受弯性能研究[东南大学硕士论文].南京:东南大学,2006:4-6
    [28]中华人民共和国国家建设部.JGJ101-96.建筑抗震试验方法规程.北京:中国标准出版社,1996
    [29]中华人民共和国国家建设部.GBJ82-85.普通混凝土长期性能与耐久性能试验方法.北京:中国标准出版社,1996
    [30]戴靠山,袁迎曙.锈蚀框架边节点抗震性能试验研究[J].中国矿业大学学报,2005.1,第34卷第1期,第51-56页
    [31]中华人民共和国国家建设部.JGJ97-1995T.工程抗震术语标准.北京:中国标准出版社,1996
    [32]Shigeru Hakuto, Robert Park, Hitoshi tanaka,Effect of Deterioration of Bond of Beam Bars Passing through Interior Beam-Column Joints on Flexural Strength and Ductility, ACI Structural Journal,1999,9~10
    [33]T.Tada, T.Takeda, Analysis of Bond Deteriotation Process in Reinforced Concrete Beam - Cloumn Joints Subjectd to Seismic Loading,SP 123-17
    [34]清华大学抗震抗爆工程研究室.科学研究报告集第3集钢筋混凝土结构的抗震性能[M],清华大学出版社,1981.12
    [35]贡金鑫,仲伟秋,赵国藩.受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J].建筑结构学报,2004,25(5):92-97.
    [36]惠云玲.混凝土结构中钢筋锈蚀程度的评估和预测[J].工业建筑,1997,27(6)
    [37]惠云玲.锈蚀钢筋性能的试验研究[J].工业建筑,1997,27(6)
    [38]R.Park,T.Paulay.Reinforced concrete structures.NewYork:J.Wiley&Sons,1975
    [39]惠云玲,李荣,林志伸等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997,27(6):14-18
    [40]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[硕士学位论文].上海:同济大学,1999
    [41]张章.锈蚀钢筋混凝土梁抗弯性能试验研究[硕士学位论文].上海:上海交通大学,2010
    [42]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报;2001,34(3):47-52
    [43]边丽.损伤钢筋混凝土结构延性研究[硕士学位论文].长沙:中南大学,2010
    [44]AL-Sulaimani G J, Kaleemullah B. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members [J]. ACI Structural Journal, 1990,87(2):220-231.
    [45]吕西林,郭子雄,王亚勇.RC框架梁柱组合体抗震性能试验研究[J].建筑结构学报,第22卷第1期,2001,第2-7页
    [46]江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社,1998
    [47]袁迎曙,章鑫森,姬永生.人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J].土木工程学报;2006年03期
    [48]牛荻涛,翟彬,王林科等.锈蚀钢筋混凝土梁的承载力分析.建筑结构,1999,(8):23-25
    [49]袁迎曙,贾福萍,蔡跃.锈蚀钢筋的力学性能退化研究工业建筑[J].2000,30(1):43-46.
    [50]左龙华.锈蚀钢筋混凝土构件承载力计算分析[硕士学位论文].湖南:湖南大学,2006
    [51]王小惠.锈蚀钢筋混凝土梁的承载能力[博士学位论文].上海:上海交通大学,2004,
    [52]付恒菁.低周反复荷载作用下月牙钢筋粘结性能实验研究[J].西安治金建筑学院学报,1986:9-19
    [53]孙克俭.钢筋混凝土抗震结构的延性及延性设计[M].呼和浩特:内蒙古人民出版社,1996
    [54]GJ.Al-Sulaimani,M.Kaleemullah,I.A.Basunbul and Rasheeduzzafar.Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members.ACI Structural Journal.2000,87(2)
    [55]中华人民共和国国家建设部.GB50010-2002.钢筋混凝土设计规范.北京:中国标准出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700