用户名: 密码: 验证码:
荧光性植物纤维的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,商品造假行为日趋猖獗,在食品、医药、饮料、烟酒领域,假包装常使人防不胜防,不仅造成严重的经济损失,还直接危及人们的健康和生命。因此大力发展防伪技术,积极采取防伪手段来打击和制止伪造行为,在当前经济飞速发展中意义重大。
     本论文以植物纤维为原料,通过纤维的预改性处理,与荧光油溶液复合的方法,制备具有荧光性能的功能纤维。探讨了影响纤维改性处理的因素,通过对其吸附率、吸湿性、吸油率和保油率的测定,确定纤维改性处理的最佳工艺条件,并探讨了改性处理对纤维的结构和性能的变化;研究了不同影响因素在改性纤维与荧光油溶液复合过程中的影响程度,采用各种分析手段,对荧光纤维的结构与性能进行表征,并研究了荧光纤维在造纸中的应用性。主要研究结果如下:
     1、研究了硅烷偶联剂浓度、浆浓、浸渍温度和时间、干燥温度和时间等对纤维改性处理的影响,通过实验确定了纤维改性处理的最佳工艺条件:硅烷偶联剂K浓度为2%,浆料浓度为1.5%,浸渍温度为60℃,浸渍时间为24h,鼓风干燥温度为100℃,干燥时间为3h。
     2、对纤维改性前后的结构和性能进行分析,结果表明,硅烷偶联剂与纤维间形成Si-O-C键,在纤维表面包覆着一层柔软致密的有机硅薄膜,使改性后纤维的长度、粗度等表面形态发生变化的同时,降低了纤维的亲水性,增强了亲油性能,但是纤维的结晶结构并未改变。
     3、改性纤维与荧光油溶液复合过程中,设计正交试验研究了不同影响因素的影响程度,以及不同原料和处理条件对荧光强度的影响。结果表明,荧光粉油液浓度对实验结果的影响最大,为主要因素,浆料浓度和反应时间的影响次之,反应温度的影响最小,几乎可以忽略;较之原纤维,改性纤维在冷冻干燥和鼓风干燥(100℃)制备的荧光纤维效果均更好。
     4、研究了制备的荧光纤维的结构和性能,其FTIR和XPS分析显示,荧光纤维表面化学键和元素组成均发生了变化,这是由于呈小长方体状的荧光物质,密密麻麻的附着在纤维表面的沟壑、凹陷处。制备的荧光纤维,荧光强度高,荧光牢度好,在水中能很好的分散,在紫外光或激光下,能发出闪亮的红光,防伪性和抄造性能皆很好。
     5、研究了荧光纤维的抄造性能,探讨了荧光纤维用量、助留剂用量、纸页定量等对荧光纤维在纸页中留着的影响,结果表明,纸页定量越低,荧光纤维的分布密度越大,在助留剂用量为0.10%-0.15%时,荧光纤维用量≤0.01%即可满足荧光纤维纸的防伪要求,而且制备的荧光纤维具有一定的可重复利用性。
With the development of economy, the products are forged seriously. In the fields of food, medicine, wine and tobacco, the counterfeit packages result in the economy loss and endanger people’s health. So it is necessary to develop the anti-counterfeit technology.
     In this paper, functional fibers were made by pre-modification treatment on fiber, and then mixed with fluorescence oil. The factors that affected the modification of fiber were studied to determine the optimum process conditions via measuring rate of absorption, water absorbability, oil absorbability and oil-retention, at the meantime, the changes of fiber structure and properties, the effects of factors in the composite process between modified fiber and fluorescence oil were also studied. The structure and properties of fluorescence fiber, application of fluorescence fiber in pulp and papermaking were characterized by using various analytical tools. The major findings of this study are as follows:
     1、The influences of K and fiber concentration, immersion time and tempreture, and drying time and tempreture on modification treatment were studied, and major findings are as follows: K concentration is 2%, fiber concentration is 1.5%, immersion time and tempreture is 24h and 60℃, drying time and tempreture is 3h and 100℃.
     2、The structure and properties of fibers were studied. The results showed that Si-O-C bond was formed between silane coupling agents and fibers, a dense and soft plastic film covered the fiber, that changed surface morphology of fiber after treated, lowed fiber hydrophilicity and strengthened its lipophilic performance, but the crystal structure of fiber had no change.
     3、The influence of different fibers and treat conditions on the fluorescence intensity, effects of factors in the composite process between modified fiber and fluorescence oil were studied by orthogonal experiment design. The results showed that fluorescence oil concentration had a significantest impact, and then fiber concentration, reaction time, reaction tempreture successively. Compared with raw fiber, fluorescence fibers, prepared with treated fiber by freeze drying and air drying, were all displayed a salutary effect.
     4、The structure and properties of fluorescence fiber were studied. The FTIR and XPS results showed that bands and elemental composition had changed, accruing on the surface of fluorescence fiber, it is because of box-like fluorescence materials had thickly covered in canals and hollow of fluorescence fiber. Fibers prepared had high fluorescence intensity, good fluorescence fastness, and high quality dispersion in water. Meanwhile, anti-counterfeit and application properties of fibers prepared were pretty well, and they could glow with red light under UV light.
     5、The application properties of fluorescence fiber were studied by ananlizing the influence of fluorescence fiber and retention agent content, and paper size on the retention of fiber. The result showed that the lower paper size, the more fiber prepared scattered in the paper. Paper could meet the anti-counterfeit and duplication of certain high utilization needs, when the retention agent content is 0.10%-0.15%, and fluorescence fiber content is lower than 0.01%.
引文
[1]田威.纸张防伪与防伪纸[J].天津造纸,2008,(4):32-36
    [2]朱传方,徐汉红.可逆热色性化合物的研究进展[J].化学进展, 2001,13(4):261-267
    [3]龙柱.防伪纸及其展望[J].江苏造纸,2009,(4):8-16
    [4]郝晓秀,杨淑蕙.光(温)致变色材料的合成及其在防伪纸中的应用研究[D].天津科技大学博士学位论文,2004
    [5]哈流柱,付子平,齐成.防伪技术概要[J].中国防伪,2005(5):29
    [6]陈港,谢国辉,武书彬.防伪纸张及其防伪技术[J].中国造纸,2001,(4):52-55
    [7]夏庆根,陈港.荧光防伪植物纤维的制备及其性能研究[D],华南理工大学硕士毕业论文,2005
    [8]张文若,周世生.商业票据印刷中纸张防伪技术的探讨[J].防伪印刷,2001(6):107
    [9]樊世云.浅谈票据证券印刷防伪技术[J].票据印刷,2004(1):44
    [10]饶勤福.防伪复印纸[J].中华纸业,2004,25(5):34
    [11]郝晓秀,杨淑蕙,冯群策,等.安全线防伪纸的研究进展[J].天津造纸,2002(4):21
    [12]楮庭亮.证券印刷及其防伪技术[J].印刷技术,1999(3):15
    [13]杨开吉,苏文强.磁性纸制备技术及其开发与应用[J].中国造纸,2007(3):46-48
    [14]郝晓秀,杨淑蕙,冯群策,等.防伪技术在造纸工业的应用与研究进展[J].中国造纸学报,2003年(增刊):16
    [15]凌启淡,章文贡.稀土高分子荧光材料研究综述[J].高分子通报,1998(1):48
    [16]郝晓秀,杨淑蕙,冯群策,等.紫外光致变色防伪纸及其防伪机理[J].中国造纸,2004,23(1):21-24
    [17]杨淑蕙,郝晓秀,冯群策,等.光致变色涂布防伪纸及其防伪性能研究[J].中国造纸学报,2004,19(1):104-107
    [18]王旭东,徐伟箭.可逆热致变色材料的应用新进展[J].化工进展,2000,19(3):42-45
    [19]王良御,廖松生.液晶化学[M].科学出版社,1985,17-25
    [20] Christopher Elkins, John Fessler, and John k, Eaton. A novel mini calibrator for thermochro–mic liquid crystals [J]. Journal of Heat Transfer, 2001,123(3):604-607
    [21]董翠华,杨淑蕙,刘洪斌等.抄造条件对可逆温致变色防伪纸色差的影响[J].中国造纸,2008,27(5):11-14
    [22]董翠华,龙柱,庞志强.微胶囊技术及其在功能纸中的应用[J].中国造纸,2008,27(4):53-56
    [23]叶军等.防复印纸的研究进展[J].纸和造纸,1999,(2):47
    [24]郝晓秀,杨淑蕙,冯群策,等.防伪技术在造纸工业的应用与研究进展[J].中国造纸学报,2003年(增刊):16
    [25]刘北平,王海毅,相小明.防伪纸及其发展前景[J].中国造纸,2007,26(6):49-52
    [26]王睿.激光全息技术的发展[J].印刷杂志,2004, (12):15-16
    [27]李跃勤,金东水.出入境证件纸张防伪技术研究[J].中国防伪报道,2008(6):9-12
    [28]李金丽,刘全校.磁性防伪纸[J].黑龙江造纸,2010(2):32-34
    [29]齐成.常见防伪纸特性和应用领域[J].印刷质量与标准化,2007(5):14-18
    [30]李冰.票证防伪印刷技术综述[J].辽宁警专学报,2009(2):69-72
    [32]徐艳娜,葛明桥.夜光纤维的结构与性能研究[D]..江南大学优秀硕士学位论文.2008
    [33]郝晓秀,杨淑蕙,冯群策等.紫外光致变色防伪纸及其防伪机理[J].中国造纸,2004,23(1):2l~24
    [34]龚静华,黄素萍,秦伟.双波长荧光防伪纤维的研究[J].上海纺织科技,2002,30(5):14~16
    [35]秦传香等.发光纤维的研究进展[J].合成纤维工业,2005,28(6):59
    [36]刘水平,陈彦模,刘俊等.光致变色纤维的研究现状及其制造与应用[J].新型化纤材料研究开发与产业论坛,2007,7
    [37] Zakaria S, Ong B H, van de Ven T GM. Lumen loading magnetic paperⅡ:mechanism and kinetics[J],Colloids and Surfaces A:Physicochem.Eng.Aspects,2004,251:31
    [38] Zakaria S, Ong B H,Van de Ven T GM.Lumen loading magnetic paper I:flocculation[J].Colloids and Suyfaces A:Physicochem.Eng.Aspects,2004,25l:1
    [39]藤原腾夀,森川政昭,Katsuhisa Fujiwara, Masaaki Morikawa.磁性纸制造(第3版)——磁性材料在内腔充填的磁性纸的制造方法和物理特性[J].纸技杂志,2003,57(5):716-723
    [40]夏庆根,陈港,等.马尾松纤维细胞腔加填技术的研究[J].中华纸业.2005,26(8),55-57
    [41] L.Raymond. D.H.Revol and R.H.Marchessault.In situ synthesis of ferrites in cellolosis[J].Chem Mater,1994,6:249—255
    [42] R.H.Marchessault,P.Rioux and Louise Raymond. Magnetic cellulose fibers and paper:preparation, processing and properties[J].Polymer,1992,33(19):4024-4028
    [43] C.H.Chia,Tuan D.Duong, Kien L.Nguyen, S.Zakaria. Thermodynamic aspects of sorption of Fe2+ onto unbleached kraft fibers[J].Journal of Colloid and Interface Science 2007,(307):29-33
    [44]唐爱民,张宏伟等.原位复合法制备纤维素/磁性纳米复合材料的初步研究[J].中国造纸学报,2006,2l(4):66-70
    [45]李海峰,龙柱,杨欣.原位复合法制备纸质磁性材料研究[J].磁性材料及器件,2008,39(1):49-52
    [46]张慧茹,黄素萍,龚静华等.荧光防伪纤维[J].合成纤维工业,2002,25(4):39-41
    [47]张慧茹,黄素萍,龚静华.荧光纤维的结构与性能[J].上海纺织科技,2003(5):18
    [48]孔金玲,李彩卿,马长生.荧光和彩色的完全纤维[J].中国专利公开号CN1092119A
    [49]高效荧光皮芯复合纤维及其制造方法和应用[J].中国专利公开号CN1405368A
    [50]黄素萍,龚静华.双波长荧光复合纤维及其制造方法和应用[J].中国专利公开号CN1412355A
    [51] Jalon, et al. Security fibers and other materials made luminescent by a dyeing process for their manufacture and their applications [J]. US Patent 4,921,280
    [52]王艳忠,黄素萍.荧光防伪纤维的制造方法及其应用[J].合成纤维,2000,29(4):20-22
    [53] Belgacem, M.N., Gandini, A. The surface modi?cation of cellulose ?bres for use as reinforcing elements in composite materials[J]. Composite Interfaces, 2005, 12, 41–75
    [54] Belgacem, M.N., Gandini, A.(2008).Surface modi?cation of cellulose ?bres. InM. N.Belgacem& A.Gandini(Eds.), Monomers, polymers and composites from renewable resources[J]. Oxford, UK: Elsevier, 2008, 385–400
    [55]邬义明.植物纤维化学[M](第二版).北京:中国轻工业出版社,1997,217
    [56]刘仁庆编著.纤维素化学慕础[M].北京:科学出版杜,1985
    [57]宋俊,肖长发.UHMWPE纤维的表面改性研究进展[J].纤维技术,2006,(12):47
    [58]杨增吉,邱化玉,孙海梅.改性纤维在造纸工业中的研究及其应用前景[J].西南造纸,2006,35(3):10-12
    [59] Gruber E. Is There a Future for Chemically Modified Pulp [J].ipw, 2002(6):173
    [60] Gruber Erich Weight. Chemical modification of pulp to reduce is hornification tendency [J].Papier,1998,52(10):20
    [61] Heberish A. The Chemistry and Technology of Cellulose Copolymers[M]. Guthrie, J.T. Berlin USA. Springer, 1981,178
    [62] Bieanda, E, Ansell, M. The Effect of Silane Treatment on the Mechanical and Physical Properties of Sisal-Epoxy Composites[J]. Science and Technology, 1991,41 (3):165
    [63] Makki Abdelmouleh, Sami Boufi, Mohamed Naceur Belgacem, et al. Modification of Cellulose Fibers with Functionalized Silanes: Effect of the Fiber Treatment on the Mechanical Performances of Cellulose-Thermoset Composites[J]. Journal of Applied Polymer Science,2005,98:974-984
    [64] Jayamol George, M.S.Sreekala, Sabu Thomas. A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites[J]. Polymer Engineering and Science,2001,41(9):1471-1485
    [65] Laly A.Pothan, Sabu Thomas. Effect of Hybridization and Chemical Modification on the Water-Absorption Behavior of Banana Fiber-Reinforced Polyester Composites[J].Journal of Applied Polymer Science,2004,91,3856-3865
    [66] Karen T. Love, Brian K. Nicholson, John A. Lloyd, et al. Modification of Kraft wood pulp fiber with silica for surface functionalisation[J]. Composites: Part A,2008,(39):1815-1821
    [67] Lifang Liu, Jianyong Yu, Longdi Cheng, et al. Mechanical properties of poly(butylenes succinate) (PBS) biocomposites reinforced with surface modified jute fiber[J].Composites: Part A,2009,(40):669-674
    [68]李海龙,陈嘉川,詹怀宇等.木聚糖酶处理后麦草浆的表面形态及化学组成[J].华南理工大学学报(自然科学版),2008,36(3):55-59
    [69]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003
    [70]罗玲,彭家惠,瞿金东.硅烷偶联剂改性对聚丙烯纤维抗裂效果的影响[J].重庆建筑大学学报,2007,29(4):118-120
    [71]封严,肖长发.后交联共聚甲基丙烯酸酯纤维及其吸油性[J].纺织学报,2006,27(12):1-4
    [72]王泉泉,徐广标,王府梅.蒲绒纤维的稀有性能[J].东华大学学报(自然科学版),2010,36(1):26-29
    [73]封严.三维网状结构共聚甲基丙烯酸酯纤维及其吸油性能研究[D].天津工业大学博士学位论文,2004
    [74]渡边谦哉.硅烷偶联剂的最新进展[J].橡胶参考资料,1993,23(4):1-5
    [75] Lifang Liu, Jianyong Yu, Longdi Cheng, et al. Mechanical properties of poly(butylenes succinate) (PBS) biocomposites reinforced with surface modified jute fiber[J].Composites: Part A,2009,(40):669-674
    [76]刘伟,刘晓洪,殷肖海等.热处理对苎麻纤维结晶度的影响[J].纺织科技进展,2009(4):50-51
    [77]胡萍,姜明,黄畴等.硅烷偶联剂的界面性能研究[J].表面技术,2004,33(5):19-21
    [78]高红云,张招贵.硅烷偶联剂的偶联机理及研究现状[J].江西化工.2003, (2):30-34
    [79] Makki Abdelmouleh, Sami Boufi, etal. Modification of Cellulose Fibers with Functionalized Silanes: Effect of the Fiber Treatment on the Mechanical Performances of Cellulose-Thermoset Composites [J]. Journal of Applied Polymer Science, 2005, 98: 974-984
    [80] Karen T. Love, Brian K. Nicholson, John A. Lloyd, etal. Modification of Kraft Wood Pulp Fiber with Silica for Surface Functionalisation[J]. Composites: Part A, 2008,39:1815-1821
    [81]章新农,邵行洲.纤维素热裂解及阻燃剂作用的研究[J].印染,1988,14(2):69-75
    [82]王丹枫.纤维形态参数及测量[J].中国造纸,2000(1):36-39
    [83] Pradeep K, Kushwaha and Rakesh Kumar. Studies on water absorption of bamboo-polyester composites: effect of silane treatment of mercerized bamboo [J]. Polymer-plastics Technology and Engineering, 2005, 44(7):45-52
    [84]王艳忠,黄素萍,龚静华等.荧光防伪聚丙烯纤维的制备及其特性研究[J].合成纤维,2001,30(5):28-30
    [85]中华人民共和国国家标准防伪油墨第1部分:紫外激发荧光油墨(胶版、凸版印刷)技术条件.印刷质量与标准化,1999,(4):29-37
    [86]驰云.纸张防伪技术漫谈[J].印刷技术,2001,(6):103
    [87]陈振乾.浅谈防伪纸张[J].中国防伪报道,2005,(1):5
    [88]段瑞斌,黄颖为.组合防伪技术的研究[J].中国防伪,2005,(7):20
    [89]吴青.防伪印刷油墨[J].网印工业,2004,(5):43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700