用户名: 密码: 验证码:
面向数控加工的三维人像模型相似度评价技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制造业发展的一个重要趋势是不断开发个性化定制产品,以满足快速发展的市场需求。当前,一类与人像有关的个性化定制产品正逐渐形成一个潜在的新兴产业。此产业主要包括两个环节,第一个是基于二维图像重建特定三维人像模型,第二个是把特定三维人像模型用数控机床加工获得人像产品。此产业成败的一个重要问题是人像产品与建模对象之间的相似度问题,其关键在于数控加工前的三维人像模型与建模对象之间的相似度问题。目前针对此产业的三维人像模型相似度评价方法多采用主观评价、专家打分的方式,但是这种方式存在主观性太强、评价结果不稳定的缺点。因此,有必要建立统一的相对客观的相似度评价体系和方法。本文结合个性化定制人像产品开发的研究项目,对面向数控加工的三维人像模型的相似度评价方法进行研究。研究内容主要包括以下几个方面:
     首先,通过对面向数控加工的三维人像模型的特点及相似度评价需求的分析,研究了面向数控加工的三维人像模型相似度评价技术体系,该体系包括相似度评价框架结构和相似度评价流程两部分内容,并对相似度评价关键技术进行了分析。
     其次,对三维人像模型的配准技术进行研究,该技术包括配准前期准备和模型配准实施两部分内容。在配准前期准备中,对三维人像模型尤其是基于图像的重建模型数据的获取技术进行介绍,对三维人像模型的数据处理技术进行重点研究;在模型配准实施中,针对三维人像重建模型与三维人像基准模型来自不同的坐标系,利用人脸特有的结构形状特征,提出分两步对模型进行配准的方法,即基于人脸特征对应点拾取的初始配准和基于改进ICP算法的精确配准的两步模型配准法。
     再次,在模型配准的基础上,研究基于模型误差的三维人像模型相似度计算方法,该方法由模型误差分析和相似度计算模型的构建两个过程构成。模型误差分析主要包括模型误差计算和模型误差显示两部分内容;相似度计算模型的构建主要由模型平均误差的求取和相似度计算函数的建立两个过程构成,重点分析相似度函数需要满足的条件。
     最后,把研究成果应用于个性化定制人像产品开发项目中,对本文提出的面向数控加工的三维人像模型相似度评价方法进行验证和初步应用。
An important development trend of manufacturing is to develop personalized customized products continually to meet growing market demands. Currently, a kind of personalized customized products with human portraits is gradually forming a potentially emerging industry. This industry mainly contains two parts, the first one is reconstructing three-dimensional (3D) portrait model for that person based on 2D image, the second one is the 3D portrait model was processed with NC machine to obtain 3D personalized customized products with human portraits. A vital point in this industry is the similarity between the product and the modeling object, the key of which is the similarity between the 3D portrait model before NC machining and modeling object. At present, the method of subjective evaluation and expert scoring is used widely, but this method owns some disadvantages, for example, the subjectivity is too strong, and the evaluation results are not stable. Consequently, it’s necessary to establish uniform and relatively objective similarity evaluation system. With the support of personalized customized products with human portraits developing project, the similarity evaluation method of 3D portrait model for NC machining is studied. The main study includes the following contents:
     To begin with, based on the analysis of 3D portrait model’s characteristics for NC machining and the need for the similarity evaluation, the similarity evaluation system for 3D portrait model for NC machining is studied, which is composed of two parts, namely, similarity evaluation frame and similarity evaluation process. In addition, the key techniques of similarity evaluation are analyzed.
     Then, the 3D portrait model registration technology is studied, which is composed by the prepared work before registration and model registration implementation work. Among the prepared work before registration, the acquirement techniques of 3D portrait model, especially the reconstructed 3D portrait model based on images are introduced, and data processing techniques are analyzed in detail. Among the model registration implementation work, in view of 3D portrait reconstructed model and 3D portrait standard model from two different coordinate systems, the model registration technology containing two stages is studied based on the unique structure shape characteristic of face, which are the initial registration based on picking face feature corresponding points and the accurate registration based on the modified ICP Algorithm.
     And then, on the basis of model registration, a similarity evaluation method based on model error for 3D portrait model is studied. The method is composed by the process of model error analysis and the process of building similarity calculation model. Model error analysis mainly includes two parts, which are model error calculation and model error display. The build of similarity calculation model mainly contains the process of the calculating the model average error and the process of establishing the similarity computing function, and the conditions that similarity functions need to meet are analyzed in detail.
     Finally, the research results are applied in personalized customized products with human portraits developing project, the similarity evaluation method of 3D portrait model for NC machining proposed in the dissertation is validated the practicality and efficacy.
引文
[1]徐成华,王蕴红,谭铁牛.三维人脸建模与应用[J].中国图象图形学报,2004,9(8): 893-903.
    [2] Parke F. I. Computer generated animation of faces[C]. Proceedings of ACM annual conference,Boston,Massachusetts,United States,1972:451-457.
    [3] Parke F. I. A model for human faces that allows speech synchronized animation [J]. Journal of Computers and Graphics,1975,1(1):1-4.
    [4]胡永利.真实感三维人脸建模及应用研究[D].北京:北京工业大学,2004.
    [5] V. Blanz, T. Vetter. A morphable model for the synthesis of 3D faces[C]. Proceedings of SIGGRAPH’99. Los Angeles : ACM Press , 1999:187-194.
    [6] S. Romdhani, V. Blanz, T.Vetter. Face identification by fitting a 3D morphable model using linear shape and texture error functions[C]. Proceedings of the 7th European Conference. Computer Vision, London: Springer-Verlag ,2002:3-19.
    [7] Hei-Sheung Koo,Kin-Man Lam. Recovering the 3D shape and poses of face images based on the similarity transform[J]. Pattern Recognition Letters,2008,29(6):712–723.
    [8]龚勋,王国胤.基于特征点的三维人脸形变模型[J].软件学报, 2009,20(3):724–733.
    [9]王成章,尹宝才,孙艳丰等.改进的基于形变模型的三维人脸建模方法[J].自动化学报,2007,33(3):232–239.
    [10]梁勇,程红,孙文邦等.图像配准方法研究[J].影像技术,2010,(4):15-17.
    [11] K.S.Arun, T.S.Huang, S.D.Blostein. Least-Squares Fitting of Two 3-D Point Sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):698-700.
    [12] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A,1987,4(4):629-642.
    [13] Menq, C.-H.,Yau, H.-T.,Lai, G.-Y. Automated precision measurement of surface profile in CAD-directed inspection[J]. IEEE Transactions on Robotics and Automation, 1992,8(2): 268-278.
    [14] Besl P J,Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, 14(2):239-256.
    [15]张政.点云数据配准算法研究[D].山东:山东大学,2008.
    [16] Z.Zhang. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2):119–152.
    [17] D.A. Simon, M. Hebert, and T. Kanade. Real-time 3-D pose estimation using a high-speed range sensor[J]. IEEE International Conference on Robotics and Automation, May 1994, 8-13:2235–2241.
    [18] Andrew Johnson,Sing Bing Kang. Registration and integration of textured 3-D data[D]. Digital Equipment Corporation Cambridge Research Lab,Ph.D.theis.1996.
    [19] Natasha Gelfand,Leslie Ikemoto,Szymon Rusinkiewicz,et al. Geometrically Stable Sampling for the ICP Algorithm[EB/OL]. http://scholar.google.com.hk. 2011-04-18.
    [20] Niloy J. Mitra , Natasha Gelfand , Helmut Pottmann ,et al. Registration of Point Cloud Data from a Geometric Optimization Perspective[C]. Proceedings of the 2004 Eurographics / ACM SIGGRAPH Symposium on Geometry Processing, 2004.
    [21]罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报自然科学版,2004,44(8):1104-1106.
    [22]王磊,邢渊.反向工程中数据点云的拼合[J].模具技术.2004,(1):47-49,56.
    [23]朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):476-481.
    [24]戴静兰,陈志杨,叶修梓. ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521.
    [25]严思杰,周云飞,彭芳瑜等.大型复杂曲面零件加工余量均布优化问题研究[J].华中科技大学学报(自然科学版),2002,30(10):35-37.
    [26]张学昌.基于点云数据的复杂型面数字化检测关键技术研究及其系统开发[D].上海:上海交通大学,2006.
    [27]刘晶.产品CAD模型与CT切片模型的配准研究[D].硕士学位论文.西安:西北工业大学,2003.
    [28]孙家广等.计算机图形学[M].北京:清华大学出版社,1998:370-371.
    [29] David A. Simon. Fast and Accurate Shape-Based Registration[D]. Carnegie Mellon University Pittsburgh:Ph.D.theis,1996.
    [30]杨现辉,王惠南. ICP算法在3D点云配准中的应用研究[J].计算机仿真,2010,27(8):235-238.
    [31]吉根林.遗传算法研究综述[J].计算机应用与软件, 2004, 21(2):69-73.
    [32]胡栋材,赵歆波,张定华等.自适应遗传算法配准三维数字样品模型及其CAD模型[J]. CT理论与应用研究,2008,17(2):8-14.
    [33]严庆光,李明哲,李东成.多点成形件检测中三维数据配准方法的研究[J] .中国机械工程, 2003, 14(19):1648-1651.
    [34]刘纯国,刘畅,安百玲等.基于遗传算法的三维曲面配准[J].锻压装备与制造技术, 2009, 44 (4):110-113.
    [35]刘晶.基于CAD模型的配准技术综述[J].机床与液压,2007,35(9):231-232,250.
    [36]黄镜荣,李熙莹.加快寻优的医学图像互信息配准算法的研究[J].中山大学学报(自然科学版),44(z2):174-177.
    [37]吴锋,钱宗才,杭洽时等.基于轮廓的力矩主轴法在医学图像配准中的应用[J].第四军医大学学报, 2001, 22(6):567-569.
    [38]王霄,刘会霞,梁佳洪.逆向工程技术及其应用[M].北京:化学工业出版社,2004.9.
    [39]刘元朋,刘晶,张力宁等.复杂曲面测量数据最佳匹配问题研究[J].中国机械工程,2005, 16 (12):1080-1082.
    [40] Wang,Y.Y ,Liu F, Li L, et al. A model inspection method for products with free-form surfaces[J].Key Engineering Materials,2011,460-461:246-251.
    [41]唐峰,王洵,董兰芳,万寿红.基于径向基函数多补离散数据插值的人脸变形研究[J].计算机工程与应用,2004,39(24): 80-82.
    [42]魏义坤,杨威,刘静.关于径向基函数插值方法及其应用[J].沈阳大学学报,2008, 20(1):7-9.
    [43]李丽.面向个性化定制产品的人像三维建模技术及其应用研究[D].博士学位论文,重庆:重庆大学,2011.
    [44]陈樊忠.基于三维形态模型的人脸识别技术研究[D].上海:上海交通大学,2005.
    [45]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001:435-440.
    [46]张学昌,习俊通,严隽琪等.基于遗传算法的点云数据与CAD模型坐标归一化研究[J].系统仿真学报,2006,18(9):2497-2500.
    [47]盖宇春.人体头部数字化建模方法的研究及应用[D].重庆:重庆大学,2006.
    [48]单岩,谢斌飞. Imageware逆向造型技术基础[M].北京:清华大学出版社,2006:83.
    [49]肖胜兵.结构光面扫描误差分析系统的设计[D].辽宁:辽宁工程技术大学,2006.
    [50]汤红江.集成逆向工程系统的误差分析与精度检测[D].上海:同济大学,2009.
    [51]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003.8:20-40.
    [52]吕宗宝.三维点云数据配准技术的研究与应用[D].哈尔滨:哈尔滨工程大学,2008.
    [53]梁永波.基于拾取点与ICP算法的三维图像重定位与实现[J].煤矿机械,2006,27(8):59-61.
    [54]窦晶.曲面匹配中的重采样逼近性质研究[D].大连:大连理工大学,2007.
    [55]张学昌,王月芳,习俊通.自由曲面检测中点云偏差色斑图的显示[J].上海交通大学学报,2006,40(7):1098-1102.
    [56]陶军,邢渊,张永清.自由曲面产品反向工程中最优匹配的应用研究[J].机械设计与制造工程, 2002,31(3): 63-64, 87.
    [57] D.W. Eggert, A. Lorusso, R.B. Fisher, Estimating 3-D rigid body transformations: a comparison of four major algorithms[J], Machine Vision and Applications, 1997, 9:272-290.
    [58]刘晶,张定华,毛海鹏. CT切片重构的STL模型与CAD模型之间的误差彩色云图显示[J].组合机床与自动化加工技术,2004,(2):83-84.
    
    [59]刘斌,上官宁,江开勇.三角网格模型匹配分析[J].华侨大学学报(自然科学版),2009,30(6):606-609.
    [60]乐思陶[EB/OL]. http://baike.baidu.com/view/2317807.htm#sub2317807. 2011-4-19.
    [61]非凡千百度[EB/OL].http://baike.baidu.com/view/3639884.htm#sub3639884. 2011-4-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700