用户名: 密码: 验证码:
基于ANSYS的铸件充型凝固过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造过程数值模拟是当前材料加工领域的研究热点,目前进行的研究多将充型过程和凝固过程分开进行,且多在铸造专业软件上实现。只进行充型过程数值分析,得到的温度计算结果不能预测缺陷,没有工程实用价值;只进行凝固过程数值分析,温度初始条件多建立在“瞬间充型、温度均布”假设的基础上,从而难以得到可靠的温度场、应力场计算结果,而建立在温度场结果基础上的缩孔、缩松、热裂判断也难以准确,尤其是在尺寸上厚大的零件。因此,研究在通用模拟软件上进行铸造充型与凝固全过程数值模拟,对铸造数值模拟的工程实用化水平的提高有着重大意义。
     本文研究了铸造充型和凝固过程各控制方程的离散,用ANSYS Fluent软件包实现了铸造充型过程热流耦合计算及凝固过程温度场计算,得到了与实验相符的计算结果。用ANSYS Mechanical模块实现了铸造充型凝固过程流程、温度场、热应力场的计算,并进行了缩孔、缩松、热裂的缺陷预测。主要研究工作如下:
     1、研究了铸造充型过程各控制方程的有限体积法离散方法;
     2、研究了铸造凝固过程各控制方程的有限元法离散方法;
     3、研究了ANSYS Fluent中边界条件、初始条件、材料参数、紊流模型、相变等设置方法,并实现充型过程热流耦合和凝固过程的温度场计算;
     4、研究了ANSYS Mechanical中边界条件、初始条件、材料参数、紊流模型等设置方法,并实现充型过程热流耦合计算,并用热弹塑性力学模型,耦合计算了凝固过程温度场和应力场;
     5、比较了有限体积法(FVM)和有限元法(FEM)在热流耦合计算的过程及结果,得出有限体积法在求解流动和温度上速度较快的结论;
     6、选择合适的判据,对缩孔、缩松、热裂缺陷进行了预测。
Casting process simulation is the current hot research of materials processing field. Most current researches process do filling and solidification process simulation separately, and implemented on cast professional software. Temperature field results of mold filling process numerical analysis can not be used to predict the defects, which provide no practical value for engineering; numerical analysis of solidification process based on the assumption "moment of filling, temperature uniform", which can cause inaccurate results of the temperature field and stress field, and the shrinkage, thermal cracking defects predict will inaccurate too, especially heavy castings. Therefore, the study on the whole process of filling and solidification simulation on general simulation software has great significance to raise practical engineering level of casting numerical simulation.
     In this paper, discrete equations of filling and solidification process were studied.Using ANSYS Fluent software package coupled calculate temperature field and flow field of mold filling process and temperature field of solidification process, which consistent with the experimental results.Using ANSYS Mechanical module calculate temperature field, thermal stress calculation of casting process, and predict shrinkage, shrinkage and thermal cracking defects. The main work is as follows:
     1. Use FVM discrete control equations of mold filling process.
     2. Use FEM discrete control equations of solidification process.
     3. Studied setting method of boundary conditions, initial conditions, material properties, turbulence model in ANSYS Fluent, and coupled calculate temperature field and flow field of mold filling process and temperature field of solidification process.
     4. Studied setting method of boundary conditions, initial conditions, material properties, turbulence model in ANSYS Mechanical, and coupled calculate temperature field and flow field of mold filling process. And use Thermal elastic-plastic mechanical model, coupled calculated temperature field and temperature field.
     5. Comparied the process and results of FVM and FEM, and obtained conclusion that FVM is faster than FEM in flow field and temperature field calculation.
     6. Select the appropriate criterion to predict shrinkage, hot crack defects.
引文
[1]李依依,李殿中,张玉妥.我国铸造技术的现状与发展对策[J].中国科学院技术部,2006,21(5):395-398.
    [2]陶盼.基于ANSYS的铸件充型过程的数值模拟研究[D].东南大学,2005
    [3] Hwang W S,Stoehr R A.Fluid Flow Modeling for Computer-aided Design of Castings[J].Journal ofMetals,1983,(10):22-29
    [4] Stoehr R A,Wang C.Coupled Heat Transfer and Fluid Flow in the Filling of castings[J].AFSTransactions,1988,96:733-740
    [5] Sirrel B , Holliday M , Campbell J . The Benchmark Test 1995(A). In Proceedings of InternationalConference on Modeling of Casting , Welding and Advanced Solidification Process VII (C).London , UK, 1995. 915– 1013
    [6] Seigeo KASHIWAI , Itsuo O , Akihiko K, et al. Numerical simulation and X ray direct observation ofmold filling during vacuumsuction casting (A). Proc. of MCSP622004(C). Taiwan :Kaohsiung , 2004.107– 114
    [7]王君卿,Hansen S F,Hansen P N.铸造充型过程模型化及流动场数值模拟[J].铸造,1987(12):20-22
    [8]吴士平.铸钢件阀体铸造工艺CAD及一台金属填充铸型过程数值模拟的研究[D].哈尔滨:哈尔滨科学技术大学硕士学位论文,1990
    [9]裴清祥.铸造充型过程三维数值模拟及铸造工艺CAD系统的研究[D].清华大学博士学位论文,1991
    [10]卢宏远,李荣彬,吕吴凝碧.计算机模拟压铸型腔内金属液流动[J].铸造,1994(7):1-7
    [11]袁浩扬.铸件形成过程传热与流动耦合数字模拟的研究[D].华中理工大学博士学位论文,1995
    [12]刘瑞祥,陈立亮,林汉同等.铸钢件流动与传热耦合计算数值模拟[J].铸造1998(6):18-21
    [13]张卫善.压铸充型过程温度场流场数值模拟研究[D].清华大学博士学位论文,1997
    [14]贾良容.压力铸造过程数值模拟技术的研究[D].清华大学博士学位,2000
    [15]荆涛,闻星火,柳百成.微机在铸造工艺与设备中的应用[J].中国铸造设备与技术,1997(2):50-53
    [16]齐慧.铸件流场与温度场耦合计算的数值模拟研究[D].四川大学硕士学位论文,2002
    [17]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2007
    [18]侯华,毛洪奎,张国伟.铸造过程的计算机模拟[M].北京:国防工业出版社,2008
    [19]Ruey—Jer WENG,Jer—Haur K and Weng2Sing H Application of mold filling analysis in the design ofcentrifugal casting process for a casting of turbine disc with blades(A)Proc of MCSP622004(C)Taiwan:Kaohsiung,2004 131—140
    [20]程军.计算机在铸造中的应用[M].北京:机械工业出版社,1994.
    [21]赵建华,陈红兵.浅谈铸造过程模拟仿真技术[J].大型铸锻件,2007,4:11-14.
    [22]赵健,张毅铸件凝固电子计算机模拟发展概况[J].铸造,1988(2):1-6.
    [23]张毅,王君卿铸件凝固过程电子计算机模拟[J].铸造,1980(1):14—22.
    [24]郭可切,金俊泽,高钦等大型铸件凝固进程数字模拟[J].大连理工大学学报,1980(2):1—6.
    [25]郑贤淑,金俊泽应力框动态应力的热弹塑性分析[J].大连理工大学学报,1983,(3):1-6.
    [26]张政传热与流体流动的数值计算西北工业大学出版社1984
    [27]陶文铨数值传热学西安交通大学出版社1988
    [28]Harlow F H,WElch J E.Numerical Calculation of Time—dependent Viscous Incompressible Flow-ofFluidwithFree Surface[J].ThePhysics ofFluids,1965,(12):21 82—21 89
    [29]Hwang W s,Stoehr RA.Metals,1983,(10):22—29
    [30]WsHirtC,NicholsBD.Volume ofFluidMethodfortheDynamics ofFreeBoundaries[J].January ofComputation Physics,1981,(39):201—225
    [31]Hirt C wNichols B D Volume—of-fluid,VOF,for the dynamics offree boundaries[J]ComputPhyS 1981(39):201
    [32]柳百成,荆涛等.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001
    [33]梁红玉,冯文义,杨亚杰铸造充型紊流流场数值模拟研宄[N]华北工学院学报,2002(3):177-180
    [34]张卫善压铸充型过程温度场流场数值模拟研宄[D]清华大学博士学位论文,1997
    [35]Fluid Analysis Guide[G]ANSYS Corporation,2004
    [36]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [37]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工大学出版社,2000.
    [38]杨全,张真.金属凝固与铸造过程数值模拟[M].浙江:浙江大学出版社,1998.
    [39][美]Daryl L.Logan著,伍义生,吴永礼译.有限元方法基础教程(第三版)[M].北京:电子工业出版社,2003.
    [40]薛翔,周彼德,蔺克亮铸铝zLl01与树脂砂型之间等效换热系数的数值模拟[J].材料科学与工艺,2001,9f2):206-210.
    [41]戴锅生传热爿M]北京:高等教育出版社,1999
    [42]竹励萍金属型铸造凝固过程铸件/铸型界面换热系数的研宄[D]天津理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700