用户名: 密码: 验证码:
短时空基线PS-InSAR技术在大同地区的形变监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达测量技术是近二十年来发展起来的新型遥感技术,其差分干涉模式(D-InSAR)具有全天候、大范围、高精度等地表形变监测优点,为地表形变监测以及灾害预测等提供了一种空间对地观测新途径。但是由于受到时空间失相干和大气效应等因素的影响,严重制约了D-InSAR技术的应用。而近些年发展起来的永久性散射体雷达差分干涉技术(PS-InSAR)能够间接克服时间、空间失相关和大气延迟的影响,其通过在时序SAR影像上探测的具有稳定后向散射特性的PS点目标相位信息进行分析,进而获取研究区域的地表形变信息。
     本文介绍了InSAR技术的基本原理,分析了干涉相位的组成,并进一步阐述了D-InSAR形变测量的原理及处理流程,对其误差来源和限制因素进行了分析。此外,在D-InSAR的基础上建立了PS-InSAR的空间差分相位模型,并进一步探讨了PS-InSAR数据处理中的关键技术。
     考虑到PS点目标稳定的后向散射特性和其回波信号的高信噪比特性,本文研究多重阈值法进行PS点目标的识别,并利用覆盖大同市区的39景SAR影像,采用多重阈值法选取了分布较为合理的PS点目标,证实了多重阈值法识别PS点目标的可靠性。
     同D-InSAR相比,SBAS技术应用于地表形变监测也有其自身的独特优势,即能有效地克服时空时间和空间失相干现象,且增加的时间采样率,对影像数量要求不高等。本文详细介绍了SBAS技术形变监测原理,并利用大同地区的39景SAR影像进行了SBAS试验,获取了大同地区七年的时间序列形变值。而SBAS技术的缺陷在于损失了分辨率,同时没有考虑到大气效应的影响。
     针对PS-InSAR技术对数据量要求苛刻的问题,本文借鉴了SBAS技术的思想,实现了SBAS技术和PS-InSAR技术的融合,即短时空基线PS-InSAR技术,并利用覆盖大同地区的39景Envisat影像进行地表形变监测试验,获取了大同地区2003-2010七年的累积形变量,其中最大年均形变速率达到了-2.2Cm/a,其形变量级和范围都和SBAS技术以及PS-InSAR技术的形变结果吻合的较好。
     同时本文利用20景SAR影像仍然在大同地区开展短时空基线PS-InSAR试验,获取的累积形变时间序列与39景SAR影像获取的PS-InSAR技术监测结果精度相当,证实了短时空基线PS-InSAR技术在一定程度上克服了PS-InSAR技术对数据量要求苛刻的缺陷,且更能保证形变结果的精度和可靠性,拓展了PS-InSAR技术的应用范围,具有较强的实用性。
As a new promising remote sensing technique, satellite synthetic aperture radar interferometry (InSAR) has been developed rapidly in recent twenty years, Its differential mode (D-InSAR), can be applied to detect ground deformation with the advantages of all-weather, large-scale and high accuracy, which provides a new space-geodetic approach for ground deformation disaster monitor. However, Its applications has been limited by the factor of spatio-temporal decorrelation and stmospheric effect. The PS-InSAR technique which developed in recent years can overcome the limited factors, the operation objects of this technique are permanent scatters point targets, which can keep phase stable in the temporal series, and these point targets can be used to get surface subsidence by analyzing the times-series differential phase variation.
     The basic principles of InSAR and the composition of the interferometric phase were introduced. The deformation monitoring principle and processing procedure of D-InSAR, the error sources and restricted factors were analyzed. In addition, the space differential phase model has been established based on the D-InSAR technology and the key technology of PS-InSAR data processing were introduced.
     Considering characteristics of the stable backscatters and high SNR of PS point targets, multi- thresholding algorithm is proposed to detect PS point targets. In this paper,39 SAR images covered Datong area has been used to select PS point targets which distributed reasonably. It proved the reliability of identification the PS point targets which used multi-thresholding algorithm.
     Compared with the D-InSAR, SBAS technology has its own unique advantages in deformation monitoring. It also can overcome the phenomenon of spatio-temporal decorrelation effectively, and the number of images is not high demanded because it increased time sampling rate. The principle of SBAS deformation monitoring was introduced. We took 39 SAR images to obtain the seven years of time series deformation of Datong region. However, the SBAS technology has the defects in the losing of resolution, and failed to take account of atmosphere effect.
     In order to solve the problem of PS-InSAR technology in the data number, we merged SBAS with PS-InSAR technology, which called short spatio-temporal baseline PS-InSAR technology. We also use 39 Envisat SAR images to obtain the seven years accumulation deformation which from 2003 to 2010 in Datong area, the results show that the largest annual average deformation rate had reached 2.2cm/a, and the results of deformation is highly consistent with the results of the SBAS technology and the PS-InSAR technology.
     At the same time, we used short spatio-temporal baseline PS-InSAR technology to detect the accumulated time series deformation in Datong by 20 SAR images, the deformation result has the same accuracy with the PS-InSAR technology which used 39 SAR images, the test proved that the short spatio-temporal baseline PS-InSAR technology can overcome the disadvantages of high demanding of SAR images in PS-InSAR technology to some degree. At the same time, it can ensure the accuracy and the reliability of the deformation results. It also extends the applications of PS-InSAR technology and with strong practicability.
引文
[1]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学版出社,2002
    [2]李陶.重复轨道星载SAR差分干涉监测地表形变研究[D].武汉大学博士论文,2004
    [3]隋立春.微波遥感.长安大学内部教材[M].
    [4]陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].西南交通大学博士论文.2006
    [5]齐晓明.PS-InSAR技术在西安地区的变形监测研究[D].长安大学硕士论文,2009
    [4]陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].西南交通大学博士论文.2006
    [6]刘国祥.Monitoring of Ground Deformations with Radar Interferomerry北京:测绘出版社,2006
    [7]Amelung F.,Galloway D.L.,et al. Sensing the ups and downs of LasVegas:InSAR receals strctuial control of land subsidence and aquifer-system deformation. Geology,1999, 27(6):483-486.
    [8]廖明生,林珲等.雷达干涉测量-原理与信号处理基础[M].北京:测绘出版社,2003
    [9]Li Zhiwei, Ding Xiaoli, Liu Guoxiang. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations:algorithms and some test results. Journal of Atmospheric and Solar-Terrestrial Physics,2004,66:907-917.
    [10]Zebker H.A., Rosen P.A., Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research,1997,102:7547-7563.
    [11]Zhenhong Li. Correction of Atmospheric Water Vapour Effects on Repeat-Pass SAR Interferometry Using GPS, MODIS and MERIS Data[D]. University of London,2005
    [12]Ferretti A, Prati C,Rocca. Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing,2001,39 (1):8-19.
    [13]Ferretti A.,Prati C., Rocca F.Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing,2002,38(5):2002-2212.
    [14]Mora O.,Malloraui J.J.,Duro J..Long-term subsidence monitoring of urban areas using differential SAR techniques.IEEE,2001,0-7803-7031-7:1104-1106.
    [15]Berardino P.,Fornaro G.,Lanari R.,et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms.IEEE Transactions on Geoscience and Remote Sensing,2002,40(11)2375-2382.
    [16]季灵运.InSAR相位解缠算法研究[D].长安大学硕士论文,2007
    [17]Kampes B., Adam N. Velocity field retrieval from long term coherent points in radar interferometric stacks. IEEE,2003,0-7803-7929-2:941-944.
    [18]Hooper A., deformation Zebker H.A., Segall P, et al. A new method for on volcanoes and other terrains using InSAR measuring persistent scatterers. Geophysical research letters,2004,31(L23611):1-5.
    [19]李德仁,廖明生,王艳永久散射体雷达干涉测量技术.武汉大学学报(信息科学版),2004,29(8):664-667
    [20]陈强,刘国祥,李永树.干涉雷达永久散射体自动探测---算法与试验结果[J].测绘学报,2006(2),112-117
    [21]龙江平.基于PS-InSAR技术的New Orleans地区的变形监测的研究[D].中南大学硕士论文,2006
    [22]李振洪,刘经南,许才军.InSAR数据处理中的误差分析[J].武汉大学学报(信息科学版)2004,29:72—75
    [23]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003
    [24]朱武.CRInSAR用于活动地裂缝的监测研究[D].长安大学硕士论文,2010
    [25]曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报,2004,33(2):127-131
    [26]张红,王超,吴涛,汤益先.基于相干目标的DInSAR方法研究[M].北京:科学版出社,2009
    [27]D.C.Ghiglia, M.D.Pritt.Two-dimensional phase Unwrapping:theory, algorithms, and software[M], Join Wiley&Sons.Inc.1998
    [28]Chen CW, Zebker HA. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization[J]. J Opt Soc Amer.2001,18: 338-351
    [29]Crosetto M.; Moreno Ruiz J.A.; Crippa B. Uncertainty propagation in models driven by remotely sensed data[J]. HRemote Sensing of EnvironmentH,2001 76(13):373-385
    [30]Liu Guoxiang. Mapping of Earth Deformations with Satellite Radar Interferometry:A Study of Its Accuracy and Reliability Performances[D]. Hong Kong:Publication of the Hong Kong Polytechnic University,2003
    [31]http://www.cosmo-skymed.it/en/index.htm[EB/OL]
    [32]Kampes,B.M. and Ramon F.Hanssen. Ambiguity resolution for Permanent Scatterer Interferometry[J]. IEEE transactions on geoscience and remote Sensing, 2004(11),2446-2453
    [33]罗小军,黄丁发,刘国祥.时序差分雷达干涉中的永久散射体自动探测[J].西南交通大学学报.
    [34]陈强,李永树,刘国祥.干涉雷达永久散射体识别方法的对比分析[J].遥感信息,2006(04)
    [35]葛大庆,王艳,郭小方等.基于相干点目标的多基线D-InSAR技术与地表形变监测[J].遥感学报,2007(4),574-580
    [36]屈春燕,单新建,宋小刚等.基于PSInSAR技术的海原断裂带地壳形变初步研究.地球物理学报,2011,54(4):984-993
    [37]IPTA_sers_guide of GAMMA Software. GAMMA Remote Sensing Research and Consulting AG.2006
    [38]Usai S.2001. A new approach for long term monitoring of deformations by differential SAR interferometry.Ph D thesis,Delft Univ of Technol,Delft, The Netherlands.
    [39]Usai S.2003. A least squares database approach for SAR interferometry data.IEEE Transactions on Geoscience and Remote Sensing,41(4):753-760
    [40]胡乐银,张景发,商晓青。SBAS-InSAR技术原理及其在地壳形变监测中的应用[J]。地壳构造与地壳应力文集,2010(22)
    [41]F.Case,M.Manzo.A quantitative assessment of the SB AS algorithm performance for surface deformation retrieval from D-InSAR data [J]. Remote Sensing of Environment,2006,25(102) 195-210
    [42]Francesco Casu,Mariarosaria Manzo,Paul Lundgren.Application of the SBAS-DInSAR technique to fault creep:A case study of the Haywrd fault,California Riccardo Lanari [J]. Remote Sensing of Environment,2007
    [43]焦明连,蒋廷臣.PS-InSAR技术在地表形变监测中的应用研究[J].全球定位系统,2008(4),7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700