用户名: 密码: 验证码:
缅甸海域底辟构造特征、分布及其与油气成藏关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缅甸海域及邻区底辟构造特征多,分布范围广,成因机理复杂,对油气成藏有重要的影响。缅甸海域及邻区属于主动大陆边缘,位于欧亚板块的南部,印度洋板块-澳大利亚板块北部,太平洋板块西部,西紧邻孟加拉和孟加拉湾,南部紧邻苏门达腊,东部紧邻泰国和马来西亚,北部紧邻Mishmi逆冲断裂带,即印度板块与欧亚板块以及太平洋板块交汇区。从构造动力学及运动学特征分析,该构造带处于印度板块向北、北东向斜向俯冲和实皆走滑断裂双重机理控制下所发育形成的主动大陆边缘构造。据区内构造演化特征划分为五个构造带、九大坳陷。缅甸海域及邻区底辟构造就发育于印度板块、欧亚板块及太平洋板块交汇区的特殊构造环境下,因而底辟构造比较复杂,研究难度相当大。本文主要应用地震资料,测井资料和钻井资料研究底辟构造特征;结合区域地质背景资料,沉积资料,断裂体系特征研究底辟构造分布;综合底辟构造几何学、运动学、动力学特征解决底辟构造的成因机理,最后得出与油气成藏的关系。
     缅甸海域经历了被动大陆边缘,过渡型大陆边缘以及演化到现今的主动型大陆边缘三个阶段,因而形成三期构造演化格局。复杂的构造背景形成了增生楔混合介质底辟构造、火山岛弧带岩浆热液底辟构造,弧后盆地安达曼海坳陷泥底辟构造。增生楔底辟构造主要分布在若开海岸增生楔段的A4区块,Rmree岛、A7区块、A2区块、M2区块、M5区块、M8区块;安达曼海-尼科巴增生楔北段底辟构造分布在M2区块、M5、M8区块。其中A4、Rmree岛、A7区块、M5、M8区块底辟属于冷底辟,冷底辟沿增生楔长约500 km。在不同构造位置,冷底辟东西宽度存在差异;热底辟分布在M2区块。底辟构造的特征主要是泥火山、泥底辟和混合介质底辟。底辟作用形成刺穿、龟背型、树枝式,圆柱构造。其中M2区块底辟作用形成了许多断块构造。
     增生楔底辟构造形成的机理复杂:混合介质底辟是印度洋板块俯冲过程中产生的岩浆热液及海水、熔融物质,玄武质岩浆以及异常岩浆混合作用形成的底辟,是研究中发现的复杂底辟。增生楔底辟构造类型分别有低能量的低幅隆起、中等能量龟背上隆和高能量的刺穿底辟构造,甚至还发育大量的泥火山。增生楔盆地主要有两套烃源岩发育层位:深部的始新统泥岩和浅部的中新统泥岩。增生楔构造带上已勘探到油气田,但与底辟构造紧密相联的构造带油气发现很少。如增生楔斜坡盆地A7区块-M2区块烃源岩厚度较大、类型好,但其有机质成熟度偏低,普遍处于未成熟-低成熟阶段,不利于成烃转化和油藏的形成。
     火山岛弧岩浆热液底辟分布在火山岛弧构造带上,分割弧前、弧后坳陷。研究区主要分布在M2区块和M3区块、M5区块和M6区块、M8区块和M9区块等区块之间。火山岛弧带高温热流体能量强,火山岩刺穿上覆岩层,底辟核顶部地层埋深浅,底辟核顶部是上中新统地层以及上新统地层。底辟核被张性断裂分割,断面弯曲,断裂剖面形态“包心菜”结构。底辟核周围形成周缘向斜构造,中新统地层褶皱变形,形成一系列相似褶皱。缅甸海域火山岛弧带西部是弧前坳陷,东部是弧后盆地安达曼海弧后坳陷。岛弧带渐新统-中新统沉积较薄。岛弧带主要发育刺穿型底辟构造。岩浆热液底辟构造成因是岩浆熔融体向上顶托侵位、穿刺围岩的作用或由于重力不稳和侧向挤压导致岩浆垂直上升,岩体没有增生现象,岩浆上升和围岩相对下降造成两者之间的剪切作用,在围岩中形成周缘向斜,底辟岩体常呈倒水滴状,形成一系列的刺穿构造
     弧后坳陷底辟主要分布在弧后盆地安达曼海弧后坳陷北部,紧邻马达班湾地区的M1、M3、M4、M6、M7、M9等区块,泥底辟以气烟囱状为主。该构造带发育的底辟走向近南北向,底辟数量多,大小各异。最大的泥底辟南北长达125km,东西宽达5.7km。最小的泥底辟南北长达13km,东西宽达4km。其中,M3、M4区块泥底辟数量较小,但底辟幅度较大。M1区块底辟构造分布最多,底辟构造幅度较小。在纵向上,泥底辟分布层位分别是白垩系、始新统、渐新统、下中新统、中中新统、上中新统、上新统及全新统。弧后坳陷的底辟成因机理因素多,主控因素是地温梯度高,走滑断裂作用,伊洛瓦底江搬运的沉积物沉积作用,以及重力和侧向应力等综合作用的结果。
     缅甸海域及邻区三类不同底辟对油气成藏影响很大,分别对烃源岩、储集层、盖层等油气成藏作用造成不同程度的影响。增生楔底辟构造对油气的成藏破坏性较大,成藏有利因素较差;火山岛弧岩浆热液底辟位于构造高隆起位置,其烃源岩来自弧后坳陷,独特的构造位置有利于形成油气藏。弧后泥底辟对油气成藏影响具有双重作用,底辟发育区的断裂开启造成大量油气散失,在断裂发育微弱构造带则有利于形成良好的油气藏;底辟构造主要沿实皆走滑断裂发育,沿走滑断裂发育的底辟规模大。弧后坳陷底辟发育的集中区,跟马达班湾和伊洛瓦底江沉积物搬运和实皆断裂的走滑作用以及异常高温热流体作用有关。因此,泥底辟构造及其伴生断裂控制了弧后盆地安达曼海弧后坳陷油气成藏作用。
There are lots of diapirs characteristics in Myanmar Sea and adjacent regions.Distribution is range,formation mechanism are complex.It may be a major effect for possession of hydrocarbon accumulation.Myanmar Sea and adjacent area belong to active continental margin.It is located at the south of the Eurasian plate, the north of the Indian plate-Australian plate,the west of the Pacific plate, and the north of west Bengal.It is adjacent to Bangladesh and the west of Sumatra, The eastern of Myanmar Sea and adjacent regions close to southern Thailand and Malaysia, the north of Myanmar Sea and adjacent regions are adjacent to Mishmi thrust fault zone, namely the Indian plate with the Eurasian plate, and the Pacific plate intersection. From structural dynamics and kinematics characteristic analysis, the India plate tectonic belt is located at the north and north-east to oblique subduction and strike-slip faults under double mechanism control of active continental margin development structure formation. According to the characteristics of structural evolution, Myanmar Sea and adjacent regions are divided into five tectonic belts, and nine depressions. Myanmar Sea and adjacent regions diapirs developed in the special tectonic environment where India plate, Eurasian plate and the Pacific plate intersect, so diapirs are more complex,and the research is extremely difficult.This paper mainly applied seismic data,logging data and drilling material to research the diapirs features and the diapirs distribution in combination with regional geological background material,sedimentary material and faults system features of this area Comprehensive geometry, kinematics and dynamics characteristic of diapirs to solve diapirs formation mechanism, Finally concluded that the relationship of diapirs and hydrocarbon accumulation.
     Myanmar Sea experienced passive continental margin, transitional continental margin and evolution to today's active continental margin three stages, It is formed phase iii tectonic evolution patterns.Complex tectonic background formed Mixed media diapirs in accretionary wedge, volcanic island of diapirs magmatic hydrothermal and Mud diapir of back-arc depression of back-arc basin the Andaman sea. The accretionary wedge diapirs is mainly distributed section A4 block,Rmree island, and the A7 block,M2 block,M5 block and M8 block in the Arakan's coast area. The Andaman sea-nicoba accretionary wedge section diapirs distribute in M2 bloc, M5, M8 block.In these areas,Rmree island, A4 block, and A7 block, M5 block, M8 block are belong to cold diapirs, cold diapirs of the accretionary wedge are 500km long. In different tectonic settings, cold diapirs width of stope have some differences between that.The main feature of diapirs is mud volcano or mud diapirs and mixed medium diapirs.Role in the formation of diapirs have many Pierce types and create branch type, tortoise type, and cylindrical structures.especially M2 block formed many fault block structures.
     Accretionary wedge diapir's mechanism is complex. Mixed media diapirs is India Plate produced during subduction of magmatic hydrothermal and seawater, molten material, the connection basaltic magma and magma mingling of abnormal role in the formation of diapirs, is found in the research of complex diapir. Accretionary wedge diapirs type is respectively the low energy and low-rising uplift, medium energy turtle on high-energy pierced and augmentation of diapirs, even development a lot of mud volcano. Accretionary wedge basin basically has two sets of source rock developmental horizon. Deeper Eocene formation is mudstone and shallow Miocene is mudstone. It is found oil and gas in the Accretionary wedge, but already exploration to closely related with the structure of diapirs oil and gas found few of the tectonic belt. If Accretionary wedge slope basin block-M2,A7 block hydrocarbon source rocks thickness, good types, but larger organic matter maturity is low, the universal in immature-low in mature stage, to the detriment of hydrocarbon reservoir into the transformation and the formation.
     Volcanic island of magmatic hydrothermal diapirs are distrubuted in volcanic island-arc bring,segmentating back-arc depression before Arc former and back-arc depression. In research area, they are mainly distributed between the M2 and M3 blocks, M5 and M6 blocks, M8 and M9 blocks and so on. Volcanic island has high temperature hot fluid of strong energy. Volcanics penetrate overlying strata. The top formation overlying on diapirs nuclear lies shallow in the earth, which are upper Miocene and Miocene strata. Diapirs is divided by tensional fracture with bending profile and "cabbages" structure in profile. The area around diapirs nuclear form incline with Miocene formations foilding and forming a series of somillar folid. Myanmar sea with volcanic island arcs depression before the west is eastern of back-arc basin, the Andaman sea back-arc depression.the tectonic belt's new series-Miocene wudaoliang sedimentary of gradually is thinner and mainly develop pierced type diapirs. Magmatic hydrothermal origin is the founction of diapirs magma body up top Joe emplacement and puncture of surrounding rock or magma vertical rise caused by unstable gravity effects or and lateral extrusion. Rock has no hyperplasia phenomenon.Shearing action between magma rises and relative decline in surrounding form incline in surrounding rock. Diapirs rock often submit pour water droplets shape and form a series of piercing structure.
     Back-arc depression diapirs is mainly distributed in the back-arc basin, the Andaman sea back-arc depression north, close to the M1, M3, M4, M6, M7, M9 etc block of motor class bay area, characterized with gas chimney mud diapirs. The diapirs developed in the tectonic belt strikes almost NS, has large qualities and various sizes. The biggest mud diapirs measures 125km from north to south and 5.7 km from east to west, the smallest 13km and 4km. Among them, M3, M4 block has smaller amount but higher mud diapirs, but Ml block is on the contrary.Mud diapirs are vertically distributed in Cretaceous,Eocene,Oligocene,Lower Miocene,Middle Miocene,Upper Miocene,Pliocene, Quaternary, formation.The formation mechanism of Back-arc depression diapirs is diverse. The major controlling factors is high temperature gradient, strike-slip faults effect, the Irrawaddy handling of sediment deposition and the result of comprehensive effect of gravity and lateral stress. The three different diapirs of Myanmar Sea and adjacent regions have great impact on the oil-gas accumulation, with respectively fifferent degee of influence on hydrocarbon, source rocks, reservoir,layer etc. Hyperplasia wedge of diapirs has bigger destructiveness on hydrocarbon accumulation, and poor accumulation factors, which promote the formation of oil-gas accumulation with its source rocks from back-arc depression. Back-arc mud diapirs has dual effect on oil-gas accumulation. Open fractures developed from diapir caused massive hydrocarbon dissipation, but in structural belt where fracture development is weak good reservoirs are formed. The structure of diapirs mainly follows the real are strike-slip faults along the strike-slip faults development, development of the size of monarch. Diapir distribute mainly along the Sagaing strike-slip faults, and the scale of the diapir developed along the Sagaing strike-slip fault is large. Back-arc depression diapir development focus areas, with the mataban Bay and Irrawaddy sediment transport and strike-slip movement of Sagaing faults and abnormal high temperature thermal fluid effects. Therefore, diapir and its associated faults control oil and gas accumulation depression effection of the back-arc basin, the Andaman Sea
引文
[1]王燮培,费琪,1981.东营凹陷底辟型构造圈闭的形成机理.石油学报,Vol.3,No.2,PP.113-124.
    [2]殷秀兰,李思田,2000.底辟区构造分析及热流体运移模拟-以莺歌海盆地DF121为例[J].地学前缘,Vol.7,No.3,PP.81-89.
    [3]何斌.2005.北京西山房山岩体岩浆底辟构造及其地质意义.地球科学,Vol.30,No.3,PP.298-308.
    [4]于建国,2005.东营凹陷盐底辟作用与中央隆起带断裂构造成因.地质科学,Vol.44,No.1,PP.55-68.
    [5]周心怀,2009.渤海地区底辟构造及其油气地质意义.石油学报,Vol.30,No.4,PP.518-521..
    [6]何春波,2009..塔里木盆地塔中地区底辟构造与油气关系[J].大庆石油学院学报,Vol.33,No.5,PP.5-12.
    [7]A.Yu.Antonov,2007.Geochemistry and Petrology of Mseozoic-Cenozoic Magmatic Complexes of the Southern Framing of the Aldan Shied:Geodynamic Problems.Russian Journal of Pacific Geology, Vol.1,No.2,PP.153-175.
    [8]J.Bruthans.N,2008.A study of erosion rates on salt diapir surfaces in the Zagros Mountains,SE Iran.Environ Geol 53:1079-1089.
    [9]Riocardo.I.Combellas.Bigott and William E.Galloway,2005.Depositional and structural evolution of the middle Miocene depositional episode,east-central Gulf of Mexico.AAPG BULLETIN V.90,NO.3(March 2006),PP.335-362.
    [10]C. Nielsen,2004.From partial to full strain partitioning along the Indo-Burmese hyper-oblique subduction. Marine Geology 209:303-327.
    [11]Mitchell A H G, Mckerrow W S,1975. Analogous evolution of the Burma Orogen and the Scottish Caledonides.Geological Society of America Bulletin,86:305-315.
    [12]Anne Yvonne Le Dain,1984.Active faulting and tectonics of Burma and surrounding regions[J]. journal of geophysical research vol89.NO.B1,pages 453-472, January10.
    [13]K.A. Kamesh Raju,Juby Varghese,2004 New insight into the tectonic evolution of the Andaman basin,northeast Indian ocean. Earth and Planetary Science letters.221:145-162.
    [14]oseph R.Curray,2005.Tectonics and history of the Andaman sea region.Journal of Asian Earth Science.25:1787-232.
    [15]P.S.Raoa,T,V.Ramaswamaya,2005.Sediment texture,distribution and transport on the Ayeyarwady continental shelf,Andaman Sea.a Marine geology 216:239-247.
    [16]Ziagos J,P,Blackwell D D,1986.A model for the transient temperature geothermal system.Journal of Volcanology and Geothermal Research.27(3):371-397.
    [17]Stephenson D, Marshall T R.,1984.The petrology and mineralogy of Mt. Popa Volcano and the nature of the late-Cenozoic Burma Volcanic Arc. J. Geol. Soc. London,141:747-762.
    [18]Tapan Pala*,sanjeev Raghav b,2010.The 2005-2006 eruption of the Barren volcano,Andaman Sea:Evolution of basaltic magmatism in island arc setting of Andaman-Java subduction complex.Journal of Asian Earth Sciences.
    [19]Samuel M.Hudson and Andrew D.Hanson.Thermal,2010.maturation and hydrocarbon-migration within La Popa Basin,northeastern Mexico,with implications for othersalt-structures.AAPG.BULLETIN,V.94,NO.3,PP.273-291.
    [20]Jiri Bruthans.Surficial,2009.Deposits on salt diapirs (Zagros Mountains and Persian Gulf Platform,Iran),characterization evolution,rosion and the influence on landscape morphology[J]. Geomorphology 107:195-209.
    [21]J.Javier Herna'ndez-Mendoza,2008.Major structural elements of the Miocene section, Burgos Basin,northeastern Mexico[J].AAPG Bulletin, v.92, no.11,pp.1479-1499.
    [22]Martin P.A.Jackson,2008.Evolution of the Cretaceous Astrid-thrust belt in the ultradeep-water Lower Congo Basin, Gabon. AAPG Bulletin, v.92,no.4, pp.487-511.
    [23]C.J.Wandrey,2006.eocene to miocene composite total petroleum system, Irrawaddy-Andaman and North Burma Geologic Provinces, Myanmar,Petroleum Systems and Related Geologic Studies in Region 8,South Asia.U.S.Geological Survey Bulletin 2208-E.
    [24]费琪,王燮培,1981.初论中国东部含油气盆地的底辟构造[J].石油天然气地质,V.3.No.2.113-124.
    [25]曹成润,刘志宏,2005.含油气盆地分析原理及方法[M].吉林:吉林大学出版社
    [26]何家雄,夏斌,刘宝明等,2004.莺歌海盆地泥底辟活动上侵活动与天然气及及CO2运聚机理剖析[J].石油实验地质,Vol.26,No.4:349-358.
    [27]何家雄,陈红莲,1994b.莺歌海盆地泥底辟带天然气成藏条件及勘探方向[J].中国海上油气(地质),Vol.9,No.3,157-163.
    [28]何家雄,,黄火尧,陈龙操,1994a.莺歌海盆地泥底辟发育演化与油气运聚机理[J].沉积学报,Vol.9,No.3,120-129.
    [29]胡望水,1997.底辟构造成因类型[J].江汉石油学院学报,Vol.l9,No.4:1-7.
    [30]王家豪.2006.珠江口盆地白云凹陷中央底辟带的发现及识别[J].地球科学-中国地质大学学报,Vol.31,No.2,209-213.
    [31]黄春菊,陈开远,李思田,2002.莺歌海盆地泥底辟活动期次分析[J].石油勘探与开发Vol.29,No.4,44-47.
    [32]毛云新.何家雄.张树林.2005.莺歌海盆地泥底辟带昌南区热流体活动的地球物理特征及成因[J].天然气地球科学,Vol.l6,No.1.108-113.
    [33]石万忠,2009.珠江口盆地白云凹陷底辟构造类型及其成因[J].地球科学-中国地质大学学报,Vol.34,No.5,778-784.
    [34]张明山,2002.塑性岩体与逆冲构造变形关系讨论-库车坳陷西部实例分析[J].地学前缘,Vol.9,No.4,371-376.
    [35]高印军,2010.尼日尔三角洲泥底辟和泥火山的形成机理[J].新疆石油地质,Vol.31,No.3.332-334.
    [36]王力峰,沙志彬,2010.晚期泥底辟控制作用导致神狐海域SH5钻位未获水合物的分析[J]. 现代地质,Vol.24,No.3.450-456.
    [37]何家雄,徐瑞松,2008a.莺歌海盆地泥底辟发育演化与天然气及CO2运聚成藏规律[J].第四纪地质与海洋地质.Vol.8,No.1.91-98.
    [38]Phl Shane and Join Westgate,1995.New Geochemical Evidence for the youngest Toba Tuff in India[J].Quaternary Research,44:200-204.
    [39]王瑜,1999.西藏及腾冲地区晚新生代火山岩作用的构造背景[J].地质评论,1-8.
    [40]Wang jiang-hai,2001.A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone.Earth and planetary science Letters 188:123-133.
    [41]何斌,2005.北京西山房山岩体岩浆底辟构造及其地质意义[J].地球科学-中国地质大学学报,Vol.14,No.4,471-476.27-40.
    [42]张家声,2007.云蒙山变质核杂岩抬升过程中伸展拆离和岩浆底辟联合作用的证据[J].地学前缘,Vol.14,No.4.26-39.
    [43]解习农,李思田,1999..热流体活动示踪标志极其地质意义[J].地球科学-中国地质大学学报.Vol.24,No.2,183-188.
    [44]郝芳,李思田,2001莺歌海盆地底辟发育机理与流体模幕式充注[J].中国科学,Vol.31,No.6,471-476.
    [45]郝芳,2003莺歌海盆地汇聚型超压流体流动及天然气晚期快速成藏[J].石油学报,Vol.24,No.6,7-12.
    [46]沙志斌,王宏斌,2005.底辟构造与天然气水合物的成矿关系[J].地学前缘,Vol.12,No.3.283-288.
    [47]张树林,2007.珠江口盆地白云凹陷天然气水合物成藏条件及资源量前景[J].石油地质,1-7.
    [48]何家雄,祝有海,2010.南海北部边缘盆地泥底辟及泥火山特征及油气运聚关系[J].地球科学,Vol.35,No.1.75-88.
    [49]张欣,温志峰,2010.东辛油田底辟伴生构造的形成机理与地球物理特征[J].中国石油大学学报,Vol.34,No.5.32-37.
    [50]郭小文,何生,2010.番禺低隆起PY3021构造热流体活动及油气成藏[J],石油勘探与开发,Vol.37,No.3,297-302..
    [51]CHARLES W. HARPER JR,1998.Thickening and/or thinning upward patterns in sequences of strata[J]. tests of signi(?)cance Sedimentology 45:657±696.
    [52]KrishnaMohan,S.G.Vinod Dangwal,2006.Andaman basin-a future exploration-target.the leading eage [J]. the leading eage,964-967.
    [53]Hubbert,M.K.,and.Rubey,W.W,1959.Role.of.fluid.pressure.in.machanics.of.overthrust.faultin g Geolo.Soci.Amercia Bull. Vol.70.
    [54]Ridd,M.F,1970.,Mud volcanoes in New Zealand[J],AAPG Bull.
    [55]O Brien,G.D,1968.Survey of diapirs and diapirism.in Diapirism and Diapirs.AAPG Mem.8.
    [56]Smith,J.E,1971.The dynamics of shale compaction and evolution of pore-fluid pressures jinternant.Assoc.Math.Geo logy, Vol.3.
    [57]Halbouty,M.T1976.Salt.dome,Gulf.rrgion-United.states.and.Mexico.,Gulf.Publishing.Co..
    [58]Ocamb,R.D,1961.Growth.of.faults.of.South.Luisiana[J].Gulf.Coast.Assco.OfGeol.Society.
    [59]Currie J.B,1956.Role of concurrent deposition and deformation of sediments in development of salt-dome graden structures.AAPG Bull.NO.1.
    [60]Johannes Schoenherr.Zsolt Schleder,2010.Deformation mechanisms of deeply buried and surface-piercing.Late.Pre-cambrian.to.Early.Cambrian.Ara.Salt.from.interio,Oman.Earth,Sci( Geol Rundsch)99:1007-1025.
    [61]W.L.Griffin.Lherzolite,1973.Nodules.from.the.Fen.AlkalineComplex,NorwayContr.Mineral.a nd Petrol.38.135-146.
    [62]H.N.A.Priem,1979.Isopotic Dating of the Emplacement of the Utramafic Masses in the Serrania de Ronda,Southern Spain.Contrib.Mineral.Petrol.70,103-109.
    [63]Jean-Pierre.Brun,2008.Salt.rollers:Structure.and.Kinematics.from.analoguemodelling.Marine and Pttroleum Geology,,V.26,NO.2,PP.249-258.
    [64]Gerald P.Roberst,2007.Fault orientation.variations along the strike of active normal fault systems.in.Italy.and.Greece:Implications.for.predicting.the.orientations.ofsubseismic-resolutio n.faults.inhydrocarbon.reservoirs,AAPGBulletin,v.91,NO.1 (JANUARY,PP.1-20
    [65]Orlandoortega,RandallA.Marrett,andStephenE.Laubach,2006.Ascale-independent approachto fracture.intensity.and.average.spacing.measurement.AAPGBulletin,V.90,NO.2,PP.193-208.
    [66]KajariGhoshandShankarMitra,2009.Structurcal controls of fracture orientations,intensity,and connectivity, Tetonanticline,SawtoothRange,Montana,AAPGBulletin,V.93,NO.8,pp.995-1014.
    [67]N.Fredman,J.Tveranger,N.Cardozo,A.Braathen,H.Soleng,P.Roe,A.Skorstad,andA.R.Syversve en,2008.fault facies modeling:technique and approch for 3-D conditioning and modeling of faulted grids,AAPG Bulletin,V.92,NO.11PP.1457-1478
    [68]张文佑,1986.中国及邻区海陆大地构造[M].科学出版社.
    [69]薛良清,W.E.Galloway,1991.扇三角洲,变状河三角洲与三角洲体系[J],沉积学报.(4.):109-153.
    [70]赵翰卿,2007..大型河流-三角洲沉积储层精细描述方法[J].石油学报,V.7,NO.4,141-153.
    [71]邱家骧,1999.国际地科联火成岩分类学分委会推荐的火山岩分类简介[J].现代地质,V.5,NO.4,457-468.
    [72]卢颖忠,黄智辉,1998.储层裂缝特征测井解释方法综述[J],地质科技情报.V.17,NO.1,85-90.
    [73]张文辉,黄仁春,2008.川东北地区毛坝场构造飞仙关组三段裂缝型储层预测[J].石油天然气学报,V.30,NO.3,228-231.
    [74]付晓飞,2007.断裂和裂缝的分形特征[J].地球科学-中国地质大学学报.V.32,NO.2,227-234.
    [75]周新柱,2007.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然气地质学,V.18,NO.3,328-333.
    [76]李志勇,曾佐勋,2004.褶皱构造的曲率分析及其裂缝估算-以江汉盆地王场褶皱为例[J],吉林大学学报,V.34,NO.4,517-521.
    [77]曾联波,2007.川西南部须二段低渗透砂岩储层裂缝类型及其形成序列[J].地质科学,V.32,NO.2,194-200.
    [78]刘丽丽,赵中平,2008.变尺度分形技术在裂缝预测和储层评价中的应用[J],石油与天然气地质,V.29,NO.1,31-37.
    [79]潘保芝,2002.测井曲线剩余变化的分维描述火成岩裂缝发育情况[J].吉林大学学报, V.32,NO.4,399-403.
    [80]邓攀,魏国齐,2006.储层构造裂缝定量预测中地质数学模型的建立与应用研究[J].天然气地球科学,V.17,NO.4,480-484.
    [81]杨克绳,2006.中国含油气盆地结构和构造样式地震解释[M].石油工业出版社.
    [82]吴巧生,王华,吴冲龙,1998.沉积盆地构造应力场研究综述[J],地质科技情报V.17,NO.1,8-12.
    [83]宋惠珍,曾海容,1999.储层古应力场的数值模拟[J],地震地质,V.21,NO.3,PP.193-203.
    [84]刘聪,2008.塔中地区奥陶系现今构造应力场模拟及裂缝预测[J],新疆石油地质,V.29,N0.4,PP.475-477.
    [85]Ichert-Toft,J.Chauvel.C.and Albarede,F.1997.Separation f Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib.Mineral. Petrol,127(3):248-260.
    [86]Keqing,zhong,Liu, Y., Hu,.and Gao, S.,2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite:Refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China.Chemical gology,269,237-251.
    [87]Liu, Y.S., Hu, Z.C., Gao, S., Gunther, D., Xu, J., Gao, C.G. and Chen, H.H.,2008b. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol.,257(1-2):34-43.
    [88]McCulloch, M.T., Rosman, K.J.R. and De Laeter, J.R,1977. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochim. Cosmochim. Acta, 41(12):1703-1707.
    [89]Yuan, H.L., Gao, S., Dai, M.N., Zong, C.L, Gunther, D., Fontaine, G.H., Liu, X.M. and Diwu, C.R.,2008.Simultaneous determinations of U-Pb age,Hf isotopes and trace element ompositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem. Geol.,247(1-2):100-118.
    [90]Zajacz,Z.and Halter,W,2007.LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals:Quantifi cation, data analysis and mineral/melt partitioning. Geochim. Cosmochim. Acta,71(4):1021-1040.
    [91]Yongsheng Liu, Shan Gao, Changgui Gao, Dongbing Wang, Keqing Zong, Zhaochu Hu, 2009.Timing of melt-peridotite interactions in xenoliths of the Trans-North China Orogen: U-Pb dating,Hf isotopes and trace elements in zircon. Journal of Petrology.
    [92]Scott P.Cooper,Laurel B.Goodwin,and john C.Lorenz,2006 Fracture and Fault patterns associated with basement-cored anticlines:The example of Teapot Dome,Wyoming, AAPG Bulletin,v.90,NO.12(DECEMBER,PP.1903-1920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700