用户名: 密码: 验证码:
真空法制备冰浆的数值模拟和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,对生活舒适性的要求也越来越高,所以对空调等电器的使用也越频繁,电网的耗能以及电网峰谷差愈来愈大。为了缓解电网的用电压力,具有温度稳定、易于控制、蓄冷密度高、热设计灵活性强、相对湿度较低和较高的空调品质的静态冰蓄冷技术应运而生,但是其同时又具有一些不可避免的缺陷。因此,为了改变这一现状,动态冰蓄冷技术逐渐成为近些年来国内外学者争相研究的对象。
     实现动态冰蓄冷的介质—冰浆,俗称二元冰,一般是指含有大量的平均直径小于1mm的悬浮冰晶粒子的固液两相溶液。它是一种新型的性能优良的载冷和蓄冷介质,可以广泛运用于建筑空调供冷、高温矿井降温、食品储藏、消防以及医疗上的器官迅速冷却等。目前,冰浆的制取方法主要有过冷水法、刮削法、真空喷雾法、直接接触法以及流化床法,其中真空法具有很多其它方法不具备的优势,且国内外关于其的研究还不是很完善,所以本文进行的主要是真空法制取冰浆的相关研究。真空法制取冰浆的原理是,利用水所处的压力与其沸点一一对应的关系,压力越低,水的沸点也随之降低,降低压力使水达到三相点,同时通过喷嘴喷水增大水的表面积,实现水滴表面在低压下迅速吸热蒸发而其内部同时降温,拥有一定的过冷度,并最终破坏过冷度,实现结晶生成冰浆。
     为了研究真空喷雾法制取冰浆的性能,本文通过理论分析、数值模拟与设计,同时结合已有的实验结果以及参数进行系统能效分析,对其进行研究。
     首先,为了分析影响真空室内喷雾过程的各控制参数,探究其对于冰晶生成的影响,本文对于真空室内压力旋流喷嘴的外部雾化流场进行了数值模拟,同时分析了喷雾过程对喷嘴外部流场产生的影响,总结出压力旋流雾化喷嘴的选择参照依据。
     其次,通过对真空室内喷雾制冷的传热传质过程的进一步研究,建立了数学模型,推导出稳态条件下喷头喷射入真空室内的水滴的内部温度随着下降距离的变化关系。
     另外,在已有的真空喷雾法制备冰浆的实验设备基础上,本文设计出了可以实现冰浆连续制备的实验系统。
     最后,本文采用已有的计算冷量(?)以及(?)损失的公式,对实验室用真空喷雾制取冰浆系统制取冰浆过程中的四个关键环节(冷水冰水混合、真空室内喷雾闪蒸、捕水器内蒸汽凝结成霜、制冷机制备低温盐水)进行计算,得出各个环节(?)损失以及整个系统的(?)效率。结果表明:实验用真空室内喷雾闪蒸环节的(?)效率较高,捕水器内蒸汽凝结成霜的(?)效率较低,制冷机组制备低温盐水(?)效率最低,(?)损最大,导致整个系统的(?)效率相对较低。为了提高真空闪蒸制取冰浆系统的能耗,应对低温盐水制备环节进行优化或采用其他方式替代该环节。
     本文针对真空喷雾法制取冰浆系统开展理论分析及模拟计算,对系统传热传质有了更深入的认识,同时设计出了能够实现连续制取冰浆的真空制冰浆系统,对于真空法的研究具有重要的理论价值和指导意义。
As people's living standard is enhanced, the comfort of life requirement also becomes much higher. What's more, as the more frequent use of air conditioning appliances, the energy consumption of power grid becomes more and more big, so is the peak to valley difference of power grid. In order to alleviate the pressure of the grid electricity, static ice-making cold energy storage system, which has some advantages like temperature stability, easy to control, high energy storage density, hermal design flexibility and low relative humidity, emerges at the historic moment. But at the same time, it also has some inevitable defects. So in order to change this, dynamic ice storage technology has gradually become the object of scholars to research both at home and abroad in recent years.
     Dynamic ice storage medium—ice slurry, which is also called binary ice, is the mixture of water and ice particles with diameters less than lmm. It is a new kind of good performance of cold transport and storage medium, which can be widely applied in life and large centralized cooling, food storage, fire rescue, medical and health care. At present, there are many methods of making ice slurry, for example, the super-cooling method, the scraping method, the direct contact method and so on. Among all those methods, the vacuum spray method has the advantages that many other methods do not have. But the research about it has not been very perfect. So this study mainly investigates the vacuum method of making ice slurry. And it is a kind of effective method. According to the relationship of the boiling point of water and pressure, when pressure decreases, the boiling point also decreases. As reducing pressure to make water reach the triple point, it is atomized through the tiny nozzle which increases the surface area of water. When the water falls down through the vacuum room, the surface of the water drop will evaporate while the temperature of the inside drops. And it even may get a certain degree of supercooling which ultimately will be destroyed, and most of the remaining water will turn into ice at the bottom of the vacuum room.
     In order to study the performance of the vacuum method of making ice slurry theoretical analysis, parts simulation and design, and the analysis of the parameters of system energy efficiency combining with the existing experimental results, have been carried out.
     Firstly, in order to analyze the influence of the control parameters on the vacuum spray process, and explore its effect on the ice crystal formation, the main factors effecting the atomizing performance of the nozzle were studied, and the reference evidence for the selection of pressure swirl atomizer were summed up.
     Secondly, this paper gives a further study on the process of freezing by vacuum evaporation. A physical model was developed to theoretically study the vacuum cooling of liquid in insulated and stable system. And the evolution of the water drop temperature along with the position was derived.
     Thirdly, based on the established experimental system of vacuum method, a continuous dynamic ice slurry production system by vacuum water spray method was designed.
     Finally, Based on existing formula for cold exergy and exergy loss, exergy analysis was performed for a laboratory-scale vacuum evaporation system to produce ice slurry.
     All the mentioned studies can provide the guidance on the optimization and operation efficiency basis of design and operation for the vacuum spray ice slurry making system.
引文
[1]Gray B.F., Johnson C.A., Schoenau GJ., et al. Energy consumption and commercial building[J]. A SHRAE Trans,1988,94(1):412-424.
    [2]Wang M.J., Kusumoto N. Ice slurry based thermal storage in multifunctional buildings[J]. Heat and Mass Transfer,2001,37:597-604.
    [3]汤美玉.某化工厂冰蓄冷空调系统的节能分析[J].制冷与空调,2011,11(4).
    [4]冯自平.建筑节能新技术—动态冰蓄冷[J].建筑,2009,(3):38-40.
    [5]张寅平,邱国.冰蓄冷研究的现状与展望[J].暖通空调,1997,27(6):25-30.
    [6]肖睿,黄冲,宋文吉等.动态冰蓄冷系统的无预热制冰运行研究[C].第九届海峡两岸制冷空调技术交流会论文集.2009.
    [7]刘岩.自然冷资源辅助空调系统研究[D].2007.
    [8]Sari O., Vuarnoz D., Meili F.. Visualization of ice slurries and ice slurry flows[C]. Proceedings of the Second Workshop. France:Ice Slurries of the International Institute of Refrigeration.2000,68-81.
    [9]Peter W. Egolf, Michael Kauffeld. Fromphysical properties of ice slurries to industrial ice slurry applications [J]. International Journal of Refrigeration,2005, 28(1):4-12
    [10]Kauffeld M., Wang M.J., Goldstein V., et al. Ice slurry applications, international journal of refrigeration,2010,33.
    [11]Wang M.J., Hansen T.M., Kauffeld M., et al. Application of ice slurry technology in fishery. Proceedings of the 20th International Congress of Refrigeration, IIF/IIR, vol. Ⅳ,1999,569.
    [12]何国庚,吴锐,柳飞.冰浆生成技术研究进展实验初探[J].建筑热能通风空调,2006,25(4):22-27.
    [13]杨丽,陈宁,刘芳,等.矿井降温的新方法[J].煤矿机械,2008,29(6):140-143.
    [14]董凯军,冯自平,郑瑞芸,等.冰浆潜热输送矿井空调设计及其经济分析[J].制冷与空调,2011,25(1).
    [15]刘圣春,饶志明,孙志利.动态冰浆在多领域上的应用[J].制冷技术,2011,39(9):71-76.
    [16]Paul J. Innovative applications of pumpable ice slurry, Paper given at Institute of Refrigeration,7 Feb, London, UK,2002.
    [17]Stamatiou E., Meewisse J.W., Kawaji M. Ice slurry generation involving moving parts. International Journal of Refrigeration-Revue Internationale Du Froid.2005,28:60-721.
    [18]沈小顶.过冷水冰浆连续制取装置研究[D].华中科技大学,2008.
    [19]Meewisse J.W.. Fluidized Bed Ice Slurry Generator for Enhanced Secondary Cooling Systems [D]. DELFT:Delft University of Technology,2004.
    [20]葛轶群,章学来,刘剑宁,等.二元冰真空制备技术分析与研究[J].暖通空调,2007,37(3):10-14.
    [21]Kim B.S., Shin H.T., Lee Y.P.. Study on ice slurry production by water spray. International Journal of Refrigeration-Revue Internationale Du Froid.2004,24: 176-84.
    [22]Asaoka T., Saito A., Okawa S., et al. Vacuum freezing type ice slurry production using ethanol solution 1st report:Measurement of vapor-liquid equilibrium data of ethanol solution at 20℃ and at freezing temperature[J]. International Journal of Refrigeration,2009,32(3):387-393.
    [23]Asaoka T., Saito A., Okawa S., et al. Vacuum freezing type ice slurry production using ethanol solution 2nd report:Investigation on evaporation characteristics of ice slurry in ice production[J]. International Journal of Refrigeration,2009,32(3):394-401.
    [24]Satoh I., Fushinobu K.. Freezing of a water droplet due to evaporation-Heat transfer dominating the evaporation-freezing phenomena and the effect of boiling on freezing characteristics. International Journal of Refrigeration,2002. 25(2):226-234.
    [25]Satoh I., Saito T.. Performance of the cold transport system utilizing evaporation-freezing phenomena with a cold trap. International Journal of Refrigeration,2004.27(3):255-263.
    [26]Lugo R., Fournaison L., Guilpart J.. Ice-liquid-vapour equilibria of amm-onia and ethanol aqueous solutions applied to the production of ice-slurries: Prediction and experimental results[J].2006,45(1):66-72.
    [27]章学来.二元冰真空制备技术分析与研究[J].暖通空调,2006,37(3):10-14.
    [28]张绍志,王剑锋,陈光明.水制冷系统闪蒸器特性的理论分析[J].低温工程,2000,(3):12-18.
    [29]刘伟民,毕勤成,杨冬,等.低压闪蒸液滴温度与相变过程的研究[J].应用基础与工程科学学报,2005,13(4):381-387.
    [30]刘伟民,毕勤成,刘璐,等.低压闪蒸液滴形态和温度变化的研究[J].工程热物理学报,2007,28(6):957-960.
    [31]郭轶群,章学来,刘建宁,等.二元冰真空制备技术分析与研究[J].暖通空调,2007,37(3):10-14.
    [32]徐爱祥.新型真空液滴制冰特性研究[D].中南大学,2010.
    [33]金从卓,赵莲晋,马腾跃.真空喷雾法制取冰浆的理论分析研究[J].流体机械,2011,39(5):61-65.
    [34]孙冰洁.真空室内压力旋流喷头雾化的数值仿真研究[C].2011中国制冷学会学术年会论文集.2011.
    [35]张少峰,宋立丽.压力旋流喷头雾化性能的仿真[J],安徽农业科学,2009,37(17):8098-8100.
    [36]宋立丽,张少峰.喷动床中雾化喷嘴的数值仿真[C].中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集.2008.
    [37]李德睿,王文.实心圆锥喷嘴喷雾单相区冷却性能模拟研究[J].流体机械,2010,38(6)
    [38]宁德亮.利用FLUENT进行空气雾化喷嘴的数值研究[C].第三届工程计算流体力学会议文集.2006.
    [39]MOON S., ABO-SERIE E., BAE C.. The spray characteristics of a pressure swirl injector with various exit planetilts[J]. International journal of multiphase flow,2008,34:615-627.
    [40]高继慧,陈国庆,高建民,等.半干法压力旋流式喷嘴雾化性能数值模拟[J],哈尔滨工业大学学报,2010,42(3):437-441.
    [41]PHAM T.. A computer Tool for Spray Modeling Using Langrange Droplet Tracking in a Homogenous Floe Model[D]. West Lafayette, IN:Purdue University,2000.
    [42]ANDRESSI L., UBERTINI S., Experimental and numerical analysis of high pressure diesel spray-wall interaction[J]. International journal of multiphase flow,2007,33:742-765.
    [43]李海燕,冯瑞成,芮执元,等.基于数值模拟的旋转燃烧室的性能分析[J].兰州理工大学学报,2008,34(5)
    [44]Dostal M., Petera K., Vacuum cooling of liquids:mathematical model. Journal of Food Engineering.2004,61(4):533-539.
    [45]章学来,李晓菲,高文忠,等.真空制冰过程中水滴动态特性[J].化工学报,2012,63(5):1373-1378.
    [46]徐绍红,金保国.通过火用分析法评价换热器性能问题的研究[J].河南师范大学学报,2002,30(4):112-114.
    [47]沈维道,童钧耕.工程热力学(第四版)[M].北京:高等教育出版社,2007.
    [48]马军.真空法制取冰浆[D].山东大学,2011.
    [49]张丹,李菊香,陶汉忠.换热器的综合火用效率分[J].低温与超导,2009,37(5):72-75.
    [50]孙冰洁,赵红霞,韩吉田.真空闪蒸制取冰浆系统火用分析.中国科技论文在线.
    [51]杨芳,菅从光,张晓磊.高温矿井冰浆制冷系统火用分析[J].矿山机械,2010,38(18):54-56.
    [52]傅秦生,肖跃雷,冯霄.换热器中的不可避免火用损失[J].华北电力大学学报,2003,30(5):79-82
    [53]何壁生.旋片式真空泵的结构原理和设计计算(下篇)[J].通用机械,2003,6:22-25.
    [54]刘玉波.旋片式真空泵的研究[D].兰州理工大学,2010.
    [55]吴双应,李友荣,刘泽筠.流体入口温度对换热器热力学性能影响的分析[J].重庆大学学报,1999,22(3):69-74.
    [56]曲凯阳.高性能过冷水连续制冰系统[J].太阳能学报,2002,23(3):317-321.
    [57]陆天柱,杜凯.动态蓄冰系统原理及其火用分析[A].2006:556-559.
    [58]Satoh I., Saito T., Shima K., Performance of the cold transport system utilizing evaporation-freezing phenomena with a cold trap[J]. International Journal of Refrigeration,2004,27 (3):255-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700