用户名: 密码: 验证码:
HX_N5型内燃机车动力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实施以多体系统为核心的机车动力学性能的虚拟测试技术,可以通过动力学仿真促进产品设计优化,加快新产品研制进程,大幅降低研制成本。因此,通过仿真建模,分析研究新研制机车的动力学性能,对优化设计具有重要意义。
     HXN5型内燃机车是由中国南车制造的新一代大功率交流传动内燃机车,转向架是在2006年从美国GE公司进口用于青藏铁路的NJ2型内燃机车转向架基础上改进设计而成,为全面评估该车的动力学性能,本文采用SIMPACK动力学分析软件,建立了机车多体动力学模型,主要对机车的稳定性、直线运行平稳性、曲线通过性能、轴重转移等动力学性能指标进行了研究和评价。仿真计算结果表明:1)理论上机车的非线性临界速度勉强可以满足120km/h设计要求。由于采用导框式轴箱定位方式,驱动及制动工况下,机车的轮对横向振动存在一系横向止挡4mm内的稳定极限环。2)机车的平稳性要视实际线路的情况而定。在AAR5和较差线路上,机车以40km/h-140km/h运行,其横向平稳性和加速度指标为优良,轮轴横向力均小于极限值。机车垂向平稳性指标在AAR5线路上以40km/h-120km/h速度运行,垂向加速度在40km/h-140km/h内都是优良。在较差线路上,60km/h速度以下运行的垂向平稳性指标和加速度是优良,100km/h速度下垂向平稳性指标和加速度在合格范围。3)机车可以安全地通过125m半径曲线。4)机车通过R300m和R800m曲线的各动力学指标小于极限值。R300m工况的最大轮轴横向力达到88.07kN。5)机车的粘着利用率为94.05%。
     本文还分析研究了导框摩擦系数、一系纵向间隙、悬挂参数对机车动力学性能影响情况。分析表明:1)直线运行时,导框摩擦系数对制动工况的影响显著大于牵引工况;对垂向性能的影响明显大于横向性能;曲线通过时,导框摩擦系数对机车动力学性能影响较大,尤其是垂向动力学性能;建议导框摩擦系数小于0.35。2)增大一系纵向间隙对机车非线性稳定性不利,对机车曲线通过横向性能有利。3)为了获得良好的动力学性能,应该保证实际悬挂刚度和阻尼参数值与设计值基本一致。按照目前的悬挂参数设计刚度参数,各阻尼的设计值是合理的。
     相关研究结果对评估HXN5型内燃机车的动力学性能,机车的运用和改进产品设计具有参考价值。
By adopting virtual testing technology of locomotive's dynamic performance that take multi-body system as the core, dynamic simulation can promote product design optimization, accelerate new product's development process and reduce development cost greatly. Therefore, analyzing and studying the dynamic performance of new-developed locomotive by simulation modeling has important significance for optimizing design.
     HXN5diesel locomotive is a new generation of high-power AC transmission diesel locomotive made by CSR. Which bogie is an improved design based on the bogie of the NJ2diesel locomotive for Qinghai-Tibet railway imported from American GE company in2006. In order to evaluate this locomotive's dynamic performance, some dynamic performance indexes are researched and appraised such as the locomotive's running stability, running comfort on straight line, curving performance, axle load transfer and so on by using the SIMPACK dynamic analysis software to set locomotive multi-body dynamic model in this paper. The computed results of simulation show that:1) the non-liner critical speed of the locomotive can barely satisfy the design required speed120km/h in theory. As the using of guide frame for axle-box guidance, on traction and brake condition, the lateral vibration of wheelset exists a stable limit cycle within the scope of4mm of primary lateral stop.2) The locomotive's running comfort is conditional upon actual tracks. On the AAR5tracks and inferior tracks, the locomotive can run at the speed of40km/h-140km/h, with the lateral ride index and acceleration are good, and the lateral wheelset force is less than the limit value. On the AAR5tracks, the locomotive's vertical ride index is good at the speed of40km/h-120km/h, and its vertical acceleration is good at the speed of40km/h-140km/h. On the inferior tracks, the locomotive's vertical ride index is good under the speed of60km/h, its vertical ride index and acceleration is within the acceptable limit under the speed of100km/h.3) The locomotive can negotiate safely the curve of125m radius.4) When the locomotive negotiates the curve of300m and800m radius, all dynamic indexes are less than the limit value. Under the working condition, when the radius is300m, maximum lateral wheelset force can reach88.07kN.5) The locomotive's utilization coefficient of adhesion is94.05%.
     The influences of pedestal friction coefficient, primary longitudinal clearance and suspension parameter on the dynamic performance of locomotive has also been analyzed and researched in this paper. The analysis indicates that:1) While running on straight line, the influence from the pedestal friction coefficient on brake condition is significantly higher than the influence on traction condition; The influence on vertical performance is obviously higher than that on lateral performance; when negotiating a curve, there is a great influence on locomotive's dynamic performance from pedestal friction coefficient, especially on vertical dynamic performance.2) Increasing primary longitudinal clearance is unfavorable for locomotive's non-linear stability, but it is beneficial for locomotive's curve negotiating lateral performance3) In order to acquire favorable dynamic performance, it should be ensured that there is no excessive difference between the actual value and design value of each suspension's stiffness and damping. The design value of each damping will be reasonable if the stiffness parameter is designed as per existing suspension parameter.
     The related research results have certain reference value for evaluating the dynamic performance of HXN5diesel locomotive and for further optimizing and improving product design.
引文
[1]郝金伟.HXN型大功率交流传动内燃机车[J].机车电传动,2009年第2期.
    [2]詹斐生.机车动力学[M].北京:中国铁道出版社,1990.
    [3]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [4]翟婉明.车辆-轨道耦合系统动力学[M].2版.北京:中国铁道出版社,2003.
    [5]王开云,翟婉明,蔡成标.机车车辆横向动力学仿真—车辆-轨道耦合模型与传统车辆模型的比较[J].西南交通大学学报,2003,38(1):17-21.
    [6]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [7]张卫华.准高速接触网动态特性的研究[J].西南交通大学学报,1997,32(2):187-192.
    [8]DAI Huanyun,ZHANG Weihua.A Study of the Dynamic Behavior of Locomotive and Pantograph-Catenary Coupled System on Curved Track[C]//Prco. of 13th IAVSD.Chengdu:Southwest Jiaotong University Press,1993:84-87.
    [9]王光远.论工程优化[J].计算结构力学及其应用,1994,11(2):200-204.
    [10]HE Yuping,John M P.Design Optimization of Rail Vehichls with Passive and Active Suspensions:A Combined Approach Using Genetic Algorithms and Mutibody Dynamics,2002,37(Suppl.):397-408.
    [11]曾京,邬平波.高速客车动力学性能参数的参数灵敏度分析[J].西南交通大学学报,1996,31(增刊):186-198.
    [12]臧其吉.车辆动力学的研究和发展[J].中国铁道科学,1994,15(2):1-15.
    [13]刘建新,王开云,封全保.机车车辆二系横向止档结构参数[J].西南交通大学学报,2008,4(43)
    [14]孟宏,翟婉明,王开云.二系悬挂对机车动力学性能的影响[J].铁道机车车辆,2005,5(25)
    [15]陈国胜,罗赟.HXD1型机车转向架悬挂系统研究[J].铁道机车车辆,2008,12(28增刊)
    [16]王新锐.高速客车转向架悬挂参数灵敏度和耦合关系探讨[J].铁道机车车辆,2000(2):13-18.
    [17]WU Pingbo,ZENG Jing, DAI Huanyun. Dynamic Response.Analysis of Railway Passenger Car with Flexble Carbody Model Based on Semi-Active Suspension [C]//18th IAVSD Symposium of Vehicles on Roads and Tracks.Japan:Kanagwa Insititute of Technology,2003:249-251.
    [18]H.True.On the theory of nonlinear dyndmics and its applications in vehicles systems dynamics[J].Vehicle Systems Dynamics,1999,31:393-421.
    [19]H.True.Chaotic Motion of Railway Vehicles.Proceedings of 11th IAVSD Symposium on Vehicle Systems Dynamics,Swets & Zeitlunger.1989:578-587.
    [20]原亮明,宫相太等.铁道车辆空气弹簧垂向动态特性分析方法的研究[J].中国铁道科学,2004,25(6):9-14.
    [21]Rahu S R,Kim H D,Setoguchi T.Aerodynamics of High-Speed Railway Train[J].Progress in Aerospace Sciences,2002,38(6-7):469-514.
    [22]刘堂红,田红旗,鲁寨军.列车交汇压力波对高速磁悬浮列车横向动态响应的影响分析[J].中国铁道科学,2004,25(6):9-14.
    [23]Nalecz A GApplication of Sensitivity Methods to Analysis and Synthesis of Vehicle Dynamic Systems[J].Vehicle Systems Dynamics,1989 (18):1-44.
    [24]ZHANG Weihua,LIU Yi,MEI Guiming.A Study on Dynamic Stress of Cateary[J].Vehicle Systems Dynamics,2006,44(8):645-658.
    [25]张曙光,池茂儒,刘丽.机车车辆动力学研究及发展[J].中国铁道科学,2007,1(28)
    [26]卜继玲,刘友梅,李芾.机车系统动力学仿真模型研究[J].机车电传动,2004,4.
    [27]Roberson Re.,S chwertassek R.Dynamics of Multi-body Systems [M].Berlin:Spring-Verlag,1988.
    [28]Wittenburg J多刚体系统动力学[M].北京:航空航天大学出版社,1986.
    [29]候传伦.重载铁路曲线段磨耗状态下轮轨相互作用分析[D].西南交通大学硕士学位论文,2009.
    [30]缪炳荣,罗仁,王哲,阳光武编著.SIMPACK动力学分析高级教程[M].成都:西南交通大学出版社,2010.
    [31]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真[J].铁道学报,2000,22(6):40-45.
    [32]任尊松,孙守光,刘志明.构架作弹性体处理时的客车系统动力学仿真[J].铁道学报,2004,26(04):31-35.
    [33]王文静,孙守光,李强.柔性构架的动力仿真[J].铁道学报,2006,28(01):44-49.
    [34]严隽耄,傅茂海.车辆工程[M].第3版.北京:中国铁道出版社,2008.
    [35]洪嘉振著.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [36]孙世基,黄承旭.机械系统刚柔动力学分析及仿真[M].武汉:人民交通出版社,1999.
    [37]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [38]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析[J].中国 铁道科学,1997,18(2):77-85.
    [39]姚金山.车辆强度和动力性能测试技术[M].北京:中国铁道出版社,1993.
    [40]曲广吉,程道生.复合柔性结构动力学建模研究[J].中国工程科学,1999,(2):52-56.
    [41]傅秀通.专家级动力学分析软件-SIMPACK[J]. CAD/CAM与制造业信息化,2004,(4):69-70.
    [42]缪炳荣,肖守讷,金鼎昌.应用Simpack对复杂机车系统建模与分析方法的研究[J].机械科学与技术,2005,7(25)
    [43]洪嘉振.计算多体动力学[M].北京:高等教育出版社,2004.
    [44]陈泽深,王成国.铁道车辆动力学与控制[M].北京:中国铁道出版社,2004.
    [45]贺启庸,倪纯双,王卫东.多体系统动力学与车辆动力学[J].铁道车辆,1995,(1).
    [46]Stribersky A,Moster F,Rulka W.Structural dynamics and ride comfort of a rail vehicle system[J].Advance in Engineering Software,2002,33:541-552.
    [47]Schiehlen, W.(1990). Multibody Systems Handbook. Springer, Berlin.
    [48]Kortum, W. Sharp, R.S., editors(1993). Multibody Computer Codes in Vehicle System Dynamics, volume 22 of Supplement to Vehicle Sytem Dynamics.
    [49]刘宏友等.我国机车车辆动力学仿真工作所面临的问题及建议[J].铁道车辆,2008年第2期.
    [50]Dietz, S., Netter, H., and Sachau, D. Fatigue Life Predictions by Coupling Finite Element and Multibody Systems Calculations. In Proceedings of DETC'97 ASME Design Engineering Technical Conferences, Sacramento, USA.
    [51]Veitl, A.and Kortum, W. Pantograph/Catenary Dynamics and Control. In The Dynam-ics of Vehicles on Roads and Tracks,15thIAVSD-Symposium, Budapest, Hungary,1997.
    [52]罗赞,杨勇军,张红军,张开林.中间车轴自由横动量对A—1—A架悬动车的影响.中国铁道科学,2009(5).
    [53]姚建伟,孙琼,李国顺,金炜.提速机车动力学性能测试及安全性和平稳性评估指标的探讨.铁道机车车辆,2002(12).
    [54]鲍维千.机车总体及转向架。北京:中国铁道出版社,2012.
    [55]丁雪萍,李冠军,宋昊,罗赞.宽轨机车运输转向架设计及动力学性能分析.机车电传动,2012(9).
    [56]张健,魏春阳.HX5型机车一系悬挂改进.内燃机车,2012(8).
    [57]陈国胜,罗赞.HXD1型机车转向架悬挂系统研究.中国铁道学会牵引动力委员会机车动力学及强度学组2008年学术年会——大功率交流传动机车/动车组总体、车体及转向架关键技术研讨会论文集,2008(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700