用户名: 密码: 验证码:
保守GTP酶EF-G在蛋白质合成中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核桃体是蛋白质合成的中心,它是细胞内存在的一个大且复杂的分子机器。在翻译过程中,核桃体通过合成的多肽链将遗传信息传递出来。核糖体读取mRNA上的信息是按照既定的方向进行的,即从5’到3’端。核糖体的翻译过程是复杂的,为了保证这个过程的顺利进行,许多调控因子参与其中。GTPase是蛋白质合成过程中普遍存在的翻译因子,在这个过程中发挥重要作用。在多肽链的合成过程中,能量来自于GTP水解成GDP (?)释放无机磷的过程。核糖体上存在一个GTPase结合中心(GTPase-associated center, GAC)区域,GAC主要负责激活GTP酶的GTP水解活性。相关GTPase结合到GAC上调节蛋白质的翻译过程。
     GTP酶广泛存在于生物体内,控制许多关键的生物过程如细胞分化、信号转导、蛋白质合成及运输、能量代谢等,发挥重要的生物学功能。GTP酶被称之为分子关蛋白,以循环形式发挥功能。延伸因子G和Tu(Elongation factor G and Tu, EF-G and EF-Tu),起始因子2(Initiation factor2, IF2)等是自然界中普遍存在的GTPase,在蛋白质合成过程中发挥相应的功能。EF-G是蛋白质翻译过程中的一个保守的GTPase。蛋白质的序列和结构显示,EF-G是由五个结构域组成的,结构域Ⅰ、Ⅱ、Ⅲ和Ⅴ分别与延伸因子4(EF4)的Ⅰ到Ⅳ对应相似。与EF4相比,EF-G多子一个G’结构域和结构域Ⅳ,但是EF4拥有一个特殊的C端结构域。EF-G能够催化肽基(?)-tRNA从A位点转移到P位点以及脱酰基-tRNA从P位点转移到E位点,从而促进mRNA-(tRNA)2复合物的转位。此外它能够结合核糖体循环因子(Ribosome recycling factor, RRF)参与核糖体的再循环过程,从而保证下一轮蛋白质合成的顺利进行。
     本文通过同源模拟发现核糖体保护蛋白Tet(O)与EF-G具有相似的空问结构并且都包含五个结构域。通过序列比对发现E. coli EF-G和Campylobacter jejuni(空肠弯曲菌)Tet(O)结构域Ⅳ保守的两个环状区不同,从而通过分子克隆构建EF-G嵌合体。将突变基因克隆到pET-28a中,然后转化到E. coli BL21感受态细胞中进行蛋白质的表达纯化。纯化后的蛋白质突变体通过GTPase i活性检测、poly(U)指导的多聚苯丙氨酸的合成、多聚核糖体的解聚检测及相关的体内实验来检测EF-G在肽链合成中的作用。研究结果表明突变体能够影响肽链生成过程中mRNA-(tRNA)2复合物的移位但不影响核糖体的再循环过程。
     本文通过对EF-G嵌合体在大肠杆菌蛋白翻译过程中的功能研究来进一步了解其转位过程的发生,从而为研究原核生物核糖体上的一些靶点抗生素的作用机制奠定了理论基础。
Ribosome, which is central to protein synthesis, is a big and complicated molecular machine in cells. During translation, the ribosome moves along with mRNA in a one-way direction from5' to3'and converts the genetic information into a polypeptide chain. A variety of regulated factors function in the process of ribosome translation which is complicated in order to ensure accurate protein synthesis. GTPase is a series of translation factors and plays a crucial role in ptotein synthesis. During the polypeptide chain synthesis, the energy is generated from the process of GTP hydrolysis into GDP and releasing inorganic Pi. There is a GTPase-associated center (GAC) to where many related GTPases bind to regulate the protein synthesis in the ribosome. GAC is responsible for stimulating the hydrolysis activity of GTPase.
     GTPase is a large group of conservative enzymes in cell which is widely participated and plays an important biological function in cell differentiation, signal transduetion, protein synthesis and transport as well as energy metabolism. GTPase is called molecular switch protein with circulation form function. Elongation factor G (EF-G), elongation factor TU (EF-TU), initiation factor2(IF2) and others are common GTPase which function different in protein synthesis. EF-G is one of the conserved GTPases in protein translation. Sequence and structural data show that it is constituted of five structural domains, in which domains Ⅰ,Ⅱ,Ⅲ. and Ⅴ are homologous to domains Ⅰ to IV of elongation factor4(EF4). EF-G has regions of domains G' and IV to which EF4does not correspond,while it does not own a similar unique C-terminal domain of EF4. EF-G translocates the mRNA-(tRNA)2complex, moving the peptidyl-tRNA from the A to the P site and the deacylated-tRNA from the P to the E site. In addition, EF-G combines with RRF to participate in ribosome recycling, ensuring the next cycle of protein synthesis.
     In our study, homology-modelling indicates that the structure of ribosome protection protein C. jejuni Tet(O) has a high similarity to E. coli EF-G and both contain five domains. The two conserved loops of domain Ⅳ in both proteins are different via sequence alignment. So we cloned the mutant gene of EF-G into pET-28a, expressed in E. coli BL21, and then purified proteins. Through C? IP hydrolysis, Poly(U)-dependent poly(Phe) Synthesis. Polysome breakdown assay as well as in vivo experiments, we concluded that EF-G mutants can affect the transloeation of mRNA-(tRNA)2complex, hut have no influence on ribosome recycling.
     We learned more about the transloeation process through the function study of EF-G chimeras in E. coli protein synthesis in order to lay the theoretical basis lor researches on function mechanism of target antibiotics on prokaryotic ribosomes.
引文
1. Steitz, T.A., A structural understanding of the dynamic ribosome machine. Nature reviews. Molecular cell biology,2008.9(3):p.242-253.
    2. Schmeing. T.M. and V. Ramakrishnan, What recent ribosome structures have revealed about the mechanism of translation. Nature.2009.461(7268):p. 1234-1242.
    3. V.Ramakrishnan, Ribosome structure and the mechanism of translation, cell. 2002.108:p.557-572.
    4. Brodersen, D.E., W.M.C.Jr, A.P. Carter, B.T. Wimberly, and V.Ramakrishnan, Crystal Structure of the 30S Ribosomal Subunit from Thermus thermophilus:Strueture of the Proteins and their Interactions with 16S RNA.JMB,2002.316:p.725-768.
    5. Selmer. M., C.M. Dunham. F.V.t. Murphy, A, Weixlbaumer, S. Petry,A.C Kelley,... V. Ramakrishnan, Structure of the 70S ribosome complexed with mRNA and tRNA. Science.2006.313(5795):p.1935-1942.
    6. Wilson. D.N. and K.U. Nierhaus, The ribosome through the looking glass Angew Chem Int Ed Hngl,2003.42(30):p.3464-3486.
    7. Agrawal, R.K. and J. Frank, Structural studies of the translational apparatus, Curr Opin Struct Biol,1999.9:p.215-221.
    8. Weixlbaumer, A.. S, Petry, C.M. Dunham, M. Selmer. A.C. Kelley, and V. Ramakrishnan, Crystal structure of the ribosome recycling factor bound to the ribosome. Nat Struct Mol Biol,2007.14(8):p.733-737.
    9. Korostelev, A., S. Trakhanov. M. Laurberg, and H.F. Noller, Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell,2006.126(6):p.1065-1077.
    10. Yusupov, M.M.. G.Z. Yusupova, A. Baucom, K. Lieberman, T.N. Earnest, J.H. Cate, and H.F. Noller, Crystal structure of the ribosome at 5.5 A resolution. Science,2001.292(5518):p.883-896.
    11. Wilson. D.N. and K.H. Nierhaus. Ribosomal proteins in the spotlight. Crit Rev Biochem Mol Biol,2005.40(5):p.243-267.
    12. Wimberly, B.T., D.E;. Brodcrsen, W.M.C. Jr, R.J. Morgan-Warren. A.P. Carter, C. Vonrhein,... V.Ramakrishnan. Structure of the 30S ribosomal subunit. Nature,2000.407:p.327-339.
    13. Carter, A.P., W.M.C. Jr, D.E. Brodcrsen, R.J. Morgan-Warren, T. Hartsch, B.T. Wimberly, and V.Ramakrishnan. Crystal Structure of an Initiation Factor Bound to the 30S Ribosomal Subunit. Science.2001.291(5503):p.498-501.
    14. Frank, J., Toward an understanding of the structural basis of translation Genome Biology.2003.9:p.4:237.
    15. Ban. N., P. Nissen, J.Hansen, p.B. Moore, and T.A. Steitz, The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 A Resolution. Science,2000.289(5481):p.905-920.
    16. Karimi, R., M.Y. Pavlov, R.H. Buckingham, and M. Ehrenberg, Novel Roles for Classical Factors at the Interface between Translation Termination and Initiation. Molecular Cell,1999.3:p.601-609,
    17. Peske. F., M.V. Rodnina, and W. Wintermeyer, Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell,2005.18(4):p.403-412.
    18. Antoun. A., M. Pavlov, M. Lovmar. and M. Ehrenberg, How Initiation Factors Maximize the Accuracy of tRNA Selection in Initiation of Bacterial Protein Synthesis. Molecular Cell,2006.23(2):p.183-193.
    19. Milon, P., A.L. Konevega, C.O. Gualerzi, and M.V. Rodnina, Kinetic Checkpoint at a Late Step in Translation Initiation. Molecular Cell,2008. 30(6):p.712-720.
    20. Tomsic, J., L.A. Vitali, T. Daviter, A. Savelsbergh, R. Spurio, P. Striebeck, C.O. Gualerzi, Late events of translation initiation in bacteria a kinetic analysis. EMBO,2000.19(9):p.2127-2136.
    21. Simonetti. A., S. Marzi, L. Jenner. A. Myasnikov, P. Romby, G. Yusupova, M. Yusupov, A structural view of translation initiation in bacteria. Cell Mol Life Sci,2009.66(3):p.423-436.
    22. Sievers, A., M. Beringer, M.V. Rodnina, and R. Wolfenden, The ribosome as an entropy trap. Proceedings of the National Academy of Sciences,2004. 101(33):p.12397-12398.
    23. Shoji, S., N.M. Abdi. R. Bundschuh, and K. Fredrick, Contribution of ribosomal residues to P-site tRNA binding. Nucleic Acids Res,2009.37(12): p.4033-4042.
    24. Schmeing, T.M., K.S. Huang, D.E. Kitchen, S.A. Strobel, and T.A. Steitz, Structural Insights into the Roles of Water and the 2'Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction. Molecular Cell,2005.20(3):p. 437-448.
    25. Lang, K., M. Erlacher, D.N. Wilson, R. Micura, and N. Polacek, The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem Biol,2008.15(5):p.485-492.
    26. Moazed, D. and H.F. Noller, Intermediate states in the movement of transfer RNA in the ribosome. nature,1989.342(9):p.142-148.
    27. Frank, J. and R.K. Agrawal. A ratchet-like inter-subunit reorganization of the ribosome during translocation. nature,2000.406(20):p.318-321.
    28. Frolova, L.Y., R.Y. Tsivkovskii, and G.F. Sivolobova, Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. Rna,1999.5:p.1014-1020.
    29. Song, H., P. Mugnier, A.K. Das, H.M. Webb, D.R. Evans, M.F. Tuite,... D. Barford, The Crystal Structure of Human Eukaryotic Release Factor eRF1—Mechanism of Stop Condon Recognition and Peptidyl-tRNA Hydrolysis, cell,2000.100:p.311-321.
    30. Pai, R.D., W. Zhang, B.S. Schuwirth, G. Hirokawa, H. Kaji, A. Kaji, and J.H. Cate, Structural Insights into ribosome recycling factor interactions with the 70S ribosome. J Mol Biol,2008.376(5):p.1334-1347.
    31. Laurberg, M., H. Asahara, A. Korostelev, J. Zhu, S. Trakhanov, and H.F. Noller, Structural basis for translation termination on the 70S ribosome. Nature. 2008. 454(7206): p. 852-857.
    32.Pon. C.I.. and C.O. Gualerzi. Mechanism of protein biosynthesis in prokaryotic cells: H fleet ofinitiation lactor 1F1 on the initial rate of 30 S initiation complex formation. FKBS Letters, 1984. 175(2): p. 203-207.
    33.Sette. M. P.v. Tilborg. R. Spurio. R. Kaptein. M. Pad. C.O.Gualerzi, and R. Boelens, The structure of the translational initiation lactor IF1 from H.coli contains an oligomer-binding motif. KMBO. 1997. 16(6): p. 1436-1443.
    34.Bourne, H.R., D.A. Sanders, and F. McCormick, The GTPase superfamily: conserved structure and molecular mechanism, nature, 1991. 349( 10): p. 117-126.
    35.Roll-Mecak. A.. C Cao, T.E. Dever, and S.K. Burley, Ⅹ-Ray Structures of the Universal Translation Initiation Factor IF2/eIF5B: Conlbrmational Changes on GDP and GTP Binding, cell, 2000. 103: p. 781-792.
    36.Laursen, B.S., K.K. Mortenscn, H.U. Sperling-Petersen, and D.W. Hoffman, A conserved structural motif at the N terminus of bacterial translation initiation lactor IF2. .1 Biol Chem. 2003. 278(18): p. 16320-16328.
    37.Meunier, S.. R. Spurio, M. Czisch. R. Wechselberger. M. (iuenneugues. C.O. Gualerzi, and R. Boelens, Structure ofthe fMel-tRNA-binding domain of B.stearothermophilus initiation lactor 11-2. 1-MBO. 2000. 19(8): p. 1918-1926.
    38.Wienk, H., S. Tomaselli. C. Bernard, R. Spurio. D. Picone, CO. Gualerzi. and R. Boelens, Solution structure ofthe Cl-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci, 2005. 14(9): p. 2461-2468.
    39.Gualerzi, C.O., M. Severini, R. Spurio, A.L. Teana. and C.L. Pon. Molecular Dissection of Translation Initiation Factor IF2. JBC 1991. 268(25): p. 16356-16362.
    40.Moreno. J.M.P., L. Dyrskjotersen, J.E. Krislensen, K.K. Mortensen. and H.U. Sperling-Petersen, Characterization ofthe domain of E. coli initiation factor ll;2 responsible for recognition ofthe ribosome FLBS Letters. 1999. 455: p. 130-134.
    41.Moreno. J.M.P., H.P. Sorensen, K.K. Mortensen, and H.U. Sperling-Petersen, Macromolecular Mimicry in Translation Initiation:A Model for the Initiation Factor IF2 on the Ribosome. IUBMB Life, 2000. 50: p. 347-354.
    42.Caserta, E.,J. Tomsic, R. Spurio, A. La feana, CL. Pon, and C.O. Gualerzi. Translation Initiation I'"actor IF2 Interacts with the 30 S Ribosomal Subunit via Two Separate Binding Sites. Journal of Molecular Biology, 2006. 362(4): p. 787-799.
    43.Laursen, B.S., A.C. Kjaergaard, K.K. Mortensen, D.W. Ilollman, and H.U. Sperling-Petersen, The N-terminal domain (1F2N) of bacterial translation initiation lactor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Sci, 2004. 13(1): p. 230-239.
    44.Simonetti, A., S. Marzi, A.G. Myasnikov, A. Fabbretti, M. Yusupov, C.O. (iualerzi, and B.P. Klaholz. Structure ofthe 30S translation initiation complex. Nature. 2008. 455(721 1): p. 416-420.
    45. Kjeldgaard, M. and J. Nyborg, Refined structure of elongation factor EF-Tu from Escherichia coli. Journal of Molecular Biology.1992.223(3):p. 721-742.
    46. Schmeing, T.M., R.M. Voorhees, A.C. Kelley. Y.G. Clao, F.V.t. Murphy, J.R. Weir, and V. Ramakrishnan, The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science.2009.326(5953):p.688-694.
    47. Polehian, G., S. Thirup, M. Kjeldgaard, P. Nissen, C. Lippmann, and J. Nybord. Helix unwinding in the effector region of elongation factor EF-TU-GDP. Structure,1996.4:p.1141-1151.
    48. Kjeldgaard. M., P. Nissen, S. Thirup, and J. Nyborg, The crystal structure of elongation factor EF-Tu from Thermus aqualicus in the GTP conformation, structure.1993.1(1):p.35-50.
    49. Song. H., M.R. Parsons, S. Rowsell, G. Leonard, and S.E.V. Phillips, Crystal Structure of Intact Elongation Factor EF-TU from Escherichia coli in GDP Conformation at 2.05A Resolution. JMB,1999.285:p.1245-1256.
    50. Berchtold, H., L. Reshetnikova, C.O.A. Reiser, N.K. Schirmer, M. Sprinzi, and R. Hilgenfeld, Crystal structure of active elongation factor Tu reveals major domain rearrangements, nature,1993.365(9):p.126-132.
    51. Qin, Y., N. Polacek. O. Vesper, E. Staub, E. Einfeldt. D.N. Wilson, and K.H. Nierhaus, The Highly Conserved LepA Is a Ribosomal Elongation Factor that Back-Translocates the Ribosome. Cell,2006.127(4):p.721-733.
    52. Sprang. S.R., G protein mechanisms:Insights from Structural Analysis. Annual Review of Biochemistry.1997.66:p.639-678.
    53. Czworkowski, J. and P.B. Moore. The Conformational Properties of Elongation Factor G and the Mechanism of Translocation. Biochem J,1997. 36:p.10327-10334.
    54. A, A.E., E. Brazhnikov, M. Garber, J. Zheltonosova. Y. Chirgadze, S. al-Karadaghi,... A. Liljas, Three-dimensional structure of the ribosomal translocase:elongation factor G from Thermus thermophilus. EMBO J,1994. 13(16):p.3669-3677.
    55. Laurberg. M., O. Kristensen, K. Martemyanov, A.T. Gudkov, Ⅰ. Nagaev, D. Hughes, and A. Liljas, Structure of a Mutant EF-G Reveals Domain III and Possibly the Fusidic Acid Binding Site. JMB,2000.303:p.593-603.
    56. Katunin, V.I., A. Savelsbergh, M.V. Rodnina, and W. Wintermeyer, Coupling of GTP Hydrolysis by Elongation Factor G to Translocation and Factor Recycling on the Ribosome. Biochem J,2002.41:p.12806-12812.
    57. Valle, M., A. Zavialov, J. Sengupta, U. Rawat, M. Ehrenberg, and J. Frank, Locking and Unlocking of Ribosomal Motions. Cell.2003.114(1):p. 123-134.
    58. Agrawal, R., P. Penczek, R.A. Grassucci, and J. Frank, Visualization of elongation factor G on the Escherichia coli 70S ribosome:The mechanism of translocation. PNAS,1998.95:p.6134-6138.
    59. Frank, J. and R.K. Agrawal, A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature.2000.406:p.318-321.
    60.Stark, IL, M.V. Rodnina, IL.-J. Wiedcn. M.v. Iled. and W. Wintcrmcycr, Large-Scale Movement of Elongation Factor Ci and Extensive Conformational Change of the Ribosome during Translocation. Cell, 2000. 100: p. 301-309.
    61.Agirrezabala, Ⅹ. and J. Frank. Elongation in translation as a dynamic interaction among the ribosome, tRNA. and elongation factors EF-G and EF-Tu. Q Rev Biophys. 2009. 42(3): p. 159-200.
    62.Chopra. I. and M. Roberts, Tetracycline antibiotics: Mode of Action. Application. Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol Mol Biol Rev, 2001. 65(2): p. 232-260.
    63.Trieber. C.A.. N. Burkhardt. K.H. Nierhaus. and D.E. Taylor. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol Chem. 1998. 379(7): p. 847-855.
    64.M.T.Spahn. C. G. Blaha. R.K. Agrawal. P. Penczek. R.A. (irassucci. C.A. Trieber,…J. Frank, Localization of the Ribosome Protection protein Tet(O) on the Ribosome and the Mechanism of Tetracveline Resistance. Molecular Cell, 2001. 7: p. 1037-1045.
    65.Gavrilova, L.P. and A.S. Spirin. Stimulation of "non-enzymic" translocation in ribosomes by p-chloromercuribenzoate. FEBS Letters. 1971. 17(2): p. 324-326.
    66.Kaziro, Y., The role of guanosine 5'-triphosphate in polypeptide chain elongation. Biochim Biophys Acta, 1978. 505( 1): p. 95-127.
    67.V.Rodnina. M., A. Savelsbergh, V.I. Katunin. and W. Wintermeyer, Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature. 1997. 385(2): p. 37-41.
    68.Peske. F., N.B. Matassova. A. Savelsbergh. M.V. Rodnina. and W. Wintermeyer. Conlbrmationally Restricted Elongation Factor G Retains GTPase Activity but Is Inactive in I'ranslocation on the Ribosome. Molecular Cell. 2000.-6: p. 501-505.
    69.Savelsbergh. A., V.I. Katunin, D. Mohr, F. Peske, M.V. Rodnina. and W. Wintermeyer. An Elongation Factor G-lnduced Ribosome Rearrangement Precedes tRNA-mRNA Translocation. Molecular Cell. 2003. 11(6): p. 1517-1523.
    70.Wilden. B.. A. Savelsbergh. M.V. Rodnina. and W. Wintermeyer. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci USA, 2006. 103(37): p. 13670-13675.
    71.Czworkowski, J., J. Wang. T.A. Steitz, and P.B. Moore, The crystal structure of elongation factor G complexed with GDP. at 2.7 A resolution. Em bo J, 1994. 13(16): p. 3661-3668.
    72.Al-Karadaghi. S., A. Aevarsson, M. Garber. J. Zheltonosova, and A. Liljas, The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure, 1996. 4(5): p. 555-565.
    73.Hansson, S., R. Singh, A.T. Gudkov, A. Liljas, and D.T. Logan. Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett,2005.579(20):p.4492-4497.
    74. Jorgensen, R., P.A. Ortiz, A. Carr-Schmid, P. Nissen, T.G. Kinzy, and G.R. Andersen, Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nat Struct Biol,2003.10(5):p.379-385.
    75. Jorgensen, R., A.R. Merrill, S.P. Yates, V.E. Marquez, A.L. Schwan, T. Boesen, and G.R. Andersen, Exotoxin A-eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature,2005.436(7053):p.979-984.
    76. Connell, S.R., C. Takemoto, D.N. Wilson, H. Wang, K. Murayama, T. Terada,... C.M. Spahn, Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Molecular Cell,2007. 25(5):p.751-764.
    77. Semenkov, Y.P., M.V. Rodnina, and W. Wintermeyer, Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nature structural biology,2000.7(11):p.1027-1031.
    78. Corner, S., J.L. Brunelle, D. Sharma, and R. Green, The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat Struct Mol Biol,2006.13(3):p.234-241.
    79. Kim, H.D., J.D. Puglisi, and S. Chu, Fluctuations of transfer RNAs between classical and hybrid states. Biophys J,2007.93(10):p.3575-3582.
    80. Spahn, C.M., M.G. Gomez-Lorenzo, R.A. Grassucci, R. Jorgensen, G.R. Andersen, R. Beckmann,... J. Frank, Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO,2004.23:p.1008-1019.
    81. Schuwirth, B.S., M.A. Borovinskaya, C.W. Hau, W. Zhang, A. Vila-Sanjurjo, J.M. Holton, and J.H. Cate, Structures of the bacterial ribosome at 3.5 A resolution. Science,2005.310(5749):p.827-834.
    82. Taylor, D.J., J. Nilsson, A.R. Merrill, G.R. Andersen, P. Nissen. and J. Frank, Structures of modified eEF2.80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO,2007.26:p.2421-2431.
    83. Zhang, W., J.A. Dunkle, and J.H. Cate, Structures of the ribosome in intermediate states of ratcheting. Science,2009.325(5943):p.1014-1017.
    84. Kim, D.F. and R. Green, Base-Pairing between 23S rRNA and tRNA in the Ribosomal A Site. Molecular Cell,1999.4:p.859-864.
    85. Samaha, R.R., R. Green, and H.F. Noller, A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature,1995.377:p. 309-314.
    86. Fredrick, K. and H.F. Noller, Catalysis of ribosomal translocation by sparsomycin. Science,2003.300(5622):p.1159-1162.
    87. Pan, D., S.V. Kirillov, and B.S. Cooperman, Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell,2007. 25(4):p.519-529.
    88. Munro, J.B., R.B. Altman. N. O'Connor, and S.C Blanchard, Identification of two distinct hybrid state intermediates on the ribosome. Mol Cell,2007.25(4): p.505-517.
    89. Gao, H., J. Sengupta, M. Vallc, A. Korostclev, N. Kswar, S.M. Stagg,...J. Frank, Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement. Cell. 2003. 113(6): p. 789-801.
    90. Virumae, K., U. Saarma, J. Horowitz, and J. Remme. Functional importance of the 3'-terminal adenosine of tRNA in ribosomal translation. J Biol C'hem. 2002.277(27): p.24128-24134.
    91.Joseph, S. and H.F. Noller, LF-G-eatalyzed translocation ofanticodon stem-loop analogs of transfer RNA in the ribosome. HMBO, 1998. 17(12): p. 3478-3483.
    92.Savelsbergh. A., N.B. Matassova. M.V. Rodnina, and W. Wintermeyer. Role of Domains 4 and 5 in Elongation factor (i Functions on the ribosome. .1MB. 2000.300: p. 951-961
    93.R.Connell. S., C.A. Trieber, G.P. Dinos. M. Linfeldt. D.E. Taylor, and K.H. Nierhaus. Mechanism of Tet(o)-mediated tetracyeline resistance. LMBO. 2003. 22(4): p. 945-953.
    94.Tsuboi, M., H. Morita. Y. Nozaki, K. Akama, T. Ueda. K. Ito,…N. Takeuchi. EF-G2int is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell, 2009. 35(4): p. 502-510.
    95.Rao. A.R. and U. Varshney. Specific interaction between the ribosome recycling factor and the elongation factor G from Mycobacterium tuberculosis mediates peptidyl-tRNA release and ribosome recycling in Escficrichia coli. HMBO. 2001. 20(1 1): p. 2977-2986.
    96. Hirokawa. G.. R.M. Nijman. V.S. Raj, H. Kajl. K. Igarashi. and A. Kajl, The role of ribosome recycling factor in dissociation of 70S ribosomes into subunits. Rna. 2005. 11(8): p. 1317-1328.
    97. Nechifor. R. and K.S. Wilson. Crosslinking of translation factor LF-G to proteins of the bacterial ribosome before and after translocation. J Mol Biol. 2007.368(5): p. 1412-1425.
    98.Hauryliuk, V., V.A. Mitkevich. N.A. Hliseeva, I.Y. Petrushanko, M. Hhrcnberg, and A.A. Makarov, The prelranslocation ribosome is targeted by GIT-bound HF-G in partially activated form. Proc Natl Acad Sci USA, 2008. 105(41): p. 15678-15683.
    99. Diaconu. M., U. Kothe, F. Schlunzen. N. Fischer, J.M. Harms, A.G. Tonevitsky,…M.C. Wahl, Structural basis for the function of the ribosomal 1.7/12 stalk in factor binding and GTPase activation. Cell. 2005. 121(7): p. 991-1004.
    100.Chen, C. B. Stevens. J. Kaur. D. Cabral, H. Liu, Y. Wang,…B.S. Cooperman, Single-molecule fluorescence measurements of ribosomal iranslocation dynamics. Mol Cell, 2011. 42(3): p. 367-377.
    101.Li. W., L.G. Trabuco, K. Schultcn, and J. Frank. Molecular dynamics of LF-G during translocation. Proteins: Structure, Function, and Bioinformatics, 201 1. 79(5): p. 1478-1486.
    102.Ortiz, P.A.. R. Ulloque, G.K. Kihara, H. Zheng, and T.G. Kinzy, Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem,2006.281(43):p.32639-32648.
    103. Gao. Y.G., M. Selmer. C.M. Dunham. A. Weixlbaumer. A.C. Kelley, and V. Ramakrishnan,The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State. Science,2009.326(5953):p. 694-699.
    104. Kaji, A., M.C. Kiel, G.1 Iirokawa, A.R. Muto, Y. Inokuchi, and H. Kaji, The Fourth Step of Protein Synthesis:Disassembly of the Posttermination Complex Is Catalyzed by Elongation Factor G and Ribosome Recycling factor, a Near-perfect Mimic of tRNA. Cold Spring Harbor Symposia on Quantitative Biology,2001.66:p.515-530.
    105. Gao, N., A.V. Zavialov. M. Ehrenberg, and J. Frank, Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol,2007.374(5):p.1345-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700