用户名: 密码: 验证码:
福建紫金山铜金矿床成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福建紫金山地区的罗卜岭斑岩铜钼矿床、紫金山高硫型铜金矿床和悦洋低硫型银矿床组成了-个斑岩-浅成低温热液成矿系统,其中紫金山铜金矿床是我国最大的高硫型浅成低温热液铜金矿床,赋矿围岩为燕山早期的紫金山岩体,而与成矿有关的是燕山晚期的次火山岩。LA-MC-ICP-MS锆石U-Pb测年显示紫金山岩体形成于165~157Ma之间,为中-晚侏罗世花岗岩,岩体属高钾或钾玄岩系列,具火山弧花岗岩或者活动大陆边缘花岗岩的特征,Sr-Nd-Pb-Hf同位素特征表明其岩浆主要来源于古元古代基底地壳物质。紫金山地区与成矿有关的侵入-火山岩年龄为102~112Ma,形于早白垩世;早白垩世岩浆岩属高钾或钾玄岩系列,同样具火山弧花岗岩或者活动大陆边缘花岗岩的特征,Sr-Nd-Pb-Hf同位素特征显示早白垩岩浆岩岩浆源区为地幔和中元古代基底的混合。
     紫金山铜矿体成矿流体从早阶段的CO2-H2O-NaCl体系向晚阶段简单的H20体系演化。流体从中高温(均一温度320~380℃)中低盐度(3.06~14.57wt%NaCl.eqv)向中温流体(均一温度240~320℃)高盐度(1.91~33.48wt%NaCl.eqv)演化,到晚阶段的低温(160~200℃)、低盐度(3.87~10.49wt%NaCl.eqv)流体。较高的均一温度显示深部铜矿体成矿作用可能不是属于浅成低温热液型,可能为中高温热液型,反映成矿可能与深部岩体直接相关。氢氧同位素特征显示紫金山铜金矿成矿流体水主要来自岩浆水,混合少量大气水:悦洋银矿床以大气降水为主,有少量的岩浆水加入。硫化物硫同位素和铅同位素特征显示紫金山铜金矿床成矿物质主要来源于岩浆,混合少量地壳基底物质;悦洋银矿床成矿物质主要来源于岩浆和沉积围岩或地壳基底。
     综合研究表明,紫金山地区从中-晚侏罗世时期开始,由于古太平洋板块的俯冲导致古元古代基底地壳物质部分熔融形成紫金山花岗岩体,此阶段无矿化。早白垩世时期,板块继续俯冲,导致地幔物质上涌和古洋壳物质的加入,与中元古代基底形成混合岩浆区,复杂的壳幔作用过程使得紫金山地区从106Ma(罗卜岭斑岩铜钼矿床辉钼矿Re-Os年龄)开始了大规模的Cu-Au-Mo-Ag成矿作用,并可能一直持续到92Ma。
Zijinshan mineral field is a large porphyry-epithermal Cu-Au-Mo-Ag mineralizationsystem located in thesouthwestern Fujian province, which containsLuoboling porphyry Cu-Mo deposit, Zijinshan high-sulfidation epithermalCu-Au deposit and Yueyang low-sulfidationepithermalAg-Au-Cu deposit, etc. The ZijinshanCu-Au depositis the China's largest high-sulfidation epithermal Cu-Au deposit, with the Zijinshan granite being the wall rock and vocanic rocksof the late Yanshanian related to mineralization. LA-MC-ICP-MS zircon U-Pb dating results and petrol geochemical characteristicsshow that the Zijinshan graniteformed in Middle-Late Jurassic (165-157Ma), and belongs to high potassium or shoshonitic series, with the characteristics of volcanic-arc granite or active continental margin granite. Sr-Nd-Pb-Hf isotopic features show that the granite was originated from Paleoproterozoic basement crust material. The intrusive-volcanic rocks related to the Cu-Au-Mo-Ag mineralization were formed in102to112Ma, and belongs to high potassium or shoshonitic series, with the characteristics of volcanic-arc granite or active continental margin granite. Sr-Nd-Pb-Hf isotopic features suggested that they were derived from the mixing of partial melting of the Mesoproterozoic basement and mantle-derived melts.
     According to the analysis of fluid inclusions in quartz veins, the ore-forming fluids of copper ore body in Zijinshan Cu-Au deposit was CO2-H2O-NaCl system, with the late stage of evolution simple H2O system. The homogeneous temperatures of ore fluid change from320~380℃to240~320℃. and finally to160~200℃, with the salinities from3.06~14.57NaCl.eqv to1.91~33.48NaCl.eqv, and to3.87-10.49NaCl.eqv respectively. Higher homogenization temperature display deep copper mineralization may not belong to the epithermal-type and reflect mineralization may be directly related to magmatic. The hydrogen and oxygen isotopic composition of quartz in Zijinshan Cu-Au deposit suggest that the ore-forming fluid was mainly derived from magmatic water, mixing a small amount of meteoric water, while the hydrogen and oxygen isotopic composition inYueyang deposit imply that the ore-forming fluid was mainly derived from meteoric water, mixing a small amount of magmatic water. The sulfur and lead isotopic characteristics of various metallic sulfides in Zijinshan Cu-Au deposit suggest that the ore-forming materials were mainly dereived from the magma, mixing a small amount of crustal base material, and the ore-forming materialsof Yueyang deposit derived from the magma and sedimentary wall rocks or crustal basement.
     It is therefore suggested that the Middle-Late Jurassic and the Early Cretaceous magmatic rocks in the Zijinshan region are the result of an active continental-margin setting related to the subduction of thePaleo-Pacific Plate beneath the Eurasian continent. Because of the continuous subduction andmixing of mantleand ancient oceanic crustmaterial, it makes a large-scale mineralization beganin the Zijinshan regionfrom106Ma (Re-Os age of the molybdenite from the Luoboling Cu-Mo deposit) to92Ma.
引文
Allen C M.1991. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California:Mineral, chemical, and isotopic evidence. American mineralogist,76:574-588.
    Ameline Y, Lee D C. Halliday A N.Pidgeon R T.1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons.Nature,399:252-255.
    Audrey B, Vervoort J D, Patchett P J.2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters,273:48-57.
    Blichert-Toft J, Albarede F,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148:243-258.
    Belousova E A, Griffin W L, O'Reilly S Y.2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling:Examples From Eastern Australian Granitoids. Journal ofPetrology,47(2):329-353.
    Bodnar R J.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Economic Geoogyl,78:535-542.
    Bouzari F. Clark A H.2006. Prograde Evolution and Geothermal Affinities of a Major Porphyry Copper Deposit:The Cerro Colorado Hypogene Protore,1 Region, Northern Chile. Economic Geology, 101:95-134.
    Brown P E. Lamb W M.1989. P-V-T properties of fluids in the system H2O-CO2-NaCl:New graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta 53,1209-1221.
    Chaussidon M, Lorand J P,1990. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege(N.E. Pyrenees, France):An ion microprobe study. Geochim. Cosmochim. Acta,54:2835-2846.
    Charvet J, Shu L, Shi Y, Guo L, Faure M.1996. The building of south China:collision of Yangzi and Cathaysia blocks, problems and tentative answers.Journal of Southeast Asian Earth Sciences,13(3): 223-235.
    Catherine C, Lewin E, Carpentier M, Arndt N T, Marini J C.2007. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature,1(1):64-67.
    Chen J F, Jahn B M.1998. Crustal evolution of southeastern China:Nd and Sr isotopic evidence. Tectonophysics,284:101-133.
    Chen C H, Lee C Y. Shinjo R.2008. Was there Jurassic paleo-Pacific subduction in South China?: Constraints from 40Ar/39Ar dating, element and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts. Lithos,106:92-93.
    Corbett G. Epithermal gold for explorationists. AlG Journal-Applied Geoscientific Practice and Research in Australia.2002,1-26.
    David R C, Caril D, Patrivk J W, Rene 1 G, Khin Z.2011. Evidence for Magmatic-Hydrothermal Fluids and Ore-Forming Processes in Epithermal and Porphyry Deposits of the Baguio District, Philippines. Economic Geology,106:1399-1424.
    Dobosi G, Kempton PD, Downes H, Embey-Isztin A, Thirlwall M, Greenwood P.2003. Lower crustal granulite xenoliths from the Pannonian Basin, Hungary, Part 2:Sr, Nd, Pb, Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust. Cotributions to Mineralogy and Petrology,144(6):671-683.
    Drummond S E, Ohmoto H.1985.Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology,80(1):126-147.
    Engebretson D, Cox A, Gordon R G.1985. Relative plate motions between ocean and continental plates in the Pacific basin. Geological Society of America Special Paper,206:1-59.
    Elhlou S, Belousova E, Griffin W L, Pearson N J, O'reilly S Y.2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta,70(18): A158.
    Griffin W L, Pearson N J, Belousova E, Jackson S E, Van Achterbergh E, O'Reilly S Y, Shee S R.2000. The Hf isotope composition of cratonicmantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64(1):133-147.
    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X, Zhou X.2002. Zricon chemistry and magma mixing, SC China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,61:237-269.
    Gilder S A, Gill J,Coe R S, Zhao X, Liu Z, Wang G, Wu H.1996. Isotopic andpaleomagnetic constraints on the Mesozoic tectonic evolution ofsouth China. Journal of Geophysical Research,101(B7): 16137-16154.
    Glenton J M, David R C, Ron F B, John L W, Andrew W L, Alan H C.2005. Fluid Chemistry, Structural Setting, and Emplacement History of the Rosario Cu-Mo Porphyry and Cu-Ag-Au Epithermal Veins, Collahuasi District, Northern Chile. Economic Geology,100:835-862.
    Hall D L. Sterner S M, Bodnar R J.1988. Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol,83:197-202.
    Heald P,Foley N K, Hayba D O.1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types. Economic Geology,82(1):1-26.
    Hedenquist J W, Antonio Arribas J R, T. James Reynolds.1998. Evolution of an Intrusion-Centered Hydrothermal System:Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippine. Economic Geology,93:373-404.
    Hedenquist J W, Arribas R A, Gonzalez U E.2000 Exploration for epithermal gold deposits. In S. Hagemann and P.E. Brown(eds), Gold in 2000. Society of Economic Geologists, Reviews in Economic Geology,13,245-77.
    Hedenquist J W, Henley R W.1985. The importance of CO2 on freezing point measurements of fluid inclusions:evidence from active geothermal systems and implications for epithermal ore deposition. Economic geology,80(5):1379-1406.
    Heinrich C A.2007. Fluid-Fuid Interactions in Magmatic-Hydrothermal Ore Forming. Mineralogy & Geochemistry,65:363-387.
    Heinrich C A, Driesner T, Stefansson A, Seward T M.2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology,32:761-764.
    Holden P, Halliday A N, Stephes W E.1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid prododuction. Nature,330:53-56.
    John L M, Marco T E.2001. Porphyry-Epithermal Transition:Maricunga Belt, Northern Chile. Economic Geology,93:743-772.
    Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Y.2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D:Earth Sciences,43(1): 1-68.
    Jahn B M, Wu F Y, Lo C, Tsai C H,1999. Crust-mantle interaction induced by deepsubduction of the continental crust:geochemical and Sr-Nd isotopic evidencefrom post-collisional maficultramafic intrusions of the northern Dabie complex,central China. Chem. Geol.157,119-146.
    Jiang S H, Liang Q L, Bagas L, Wang S H, Nie F J. Liu Y F.2013. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, SW Fujian Province, China:constrains from the geochronology and geochemistry of the igneous rocks. Ore Geology Reviews.53:287-305.
    Lesher C E.1990. Decoupling of chemical and isotopic exchange during magma mixing.Nature,344: 235-237.
    Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G, Chen H H.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257:34-43.
    Laurence R.2005. Introduction to Ore-Forming Processes. Australia:Blackwell Publishing.117-119.
    Li Z X., Li X H.2007. Formation of the 1300 km-wide intracontinental orogen andpostorogenic magmatic province in Mesozoic South China:aflat-slab subductionmodel. Geology 35,179-182.
    Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S.2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on ageand origin of Jurassic Ⅰ- and A-type granites from centralGuangdong, SE China:A major igneous event inresponse to foundering of a subducted flat-slab?. Lithos,96:186-204.
    Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C M.2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6):772-792.
    Mao J W, Pirajno F, Cook N.2011. Mesozoic metallogeny in East China and corresponding geodynamic settings-an introduction to the special issue. Ore Geol. Rev.43,1-7.
    Middlemost E A K.1985. Magmas and Magmatic Rocks. Longman, London, p.266.
    Nesbitt H W, Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299(5885):715-717.
    Northrup C J, Royden L H, Burchfiel B C.1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology,23(8):719-722.
    Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Dor W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y, Gotze J, Hoger T, Kroner A, Valley J.2008. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research,32:247-265.
    Pearce J A, Harris N BW, Tindle A G.1984. Trace element discrimination diagramsfor the tectonic interpretation of granitic rocks. J. Petrol.25,956-983.
    Patchett P J, Tatsumoto M.1981a. The hafnium isotopic evolution oflunar basalts. Lunar and Planetary Science,12:819-821.
    Patchett PJ, Tatsumoto M.1981b. Lu/Hf in chondrites and definition of a chondritic hafnium growth curve. Lunar and Planetary Science,12:822-824.
    Patchett PJ, Vervoort J D.Soderlund U, Salters V J M.2004. Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth. Earth and Planetary Science Letters,222(1):29-41.
    Patchett PJ, Kuovo O, Hedge C E, Tatsumoto M.1982. Evolution of continental crust and mantle heterogeneity:evidence from Hf isotopes. Contributions to Mineralogy and Petrology,78(3):279-297.
    Pirajno F, Bagas L.2002. Gold and silver metallogeny of the South China Fold Belt:a consequence of multiple mineralizing events? Ore Geology Reviews 20:109-126.
    Pudack C, Halter W E. Heinrch C A, Pettke T.2009. Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid:The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina. Economic Geology,104(4):449-477.
    Qiu Y Z, Tu G C, Byron R. Berger.2008. Epithermal gold deposits of China. Geochimica,37(4):329-343.
    Ren Jianye, Tamaki K, Li S, Junxia Z.2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics,344:175-205.
    Roedder.1984. Fluid inclusions. Reviews in Mineralogy,12:438-439.
    Scherer E E, Cameron K L, Blichert-Tofe J.2000. Lu-Hf garnet geochronology:closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta,64:3413-3432.
    Schwartz M O.1989. Determining phase volumes of mixed CO2-H2O inclusions using microthermometric measurements. Mineral Deposita,24:43-47.
    Shepherd S M F, Rankin A H, Alderton D H M.1985.A Practical Guide to Fluid Inclusion Studies. Blackie: Chapman&Hall.1-239.
    Sillitoe R H, Bonham Jr H F.1990. Sediment-hosted gold deposits:Distal product of magmatic-hydrothermal systems. Geology,18:157-161.
    Slama J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J.2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249:1-35.
    Sillitoe R H.1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region.Australian Journal of Earth Sciences,44(3),373-388.
    Sillitoe R H.1990. Intrusion-related gold deposits[M]//Gold metallogeny and exploration. Springer US,: 165-209.
    Sillitoe R H.2010. Porphyry copper systems. Economic Geology,105(1):3-41
    So Chil-Sup, Zhang D Q, Yun S T, Li D X.1997. Alteration-Mineralization Zoning and Fluid Inclusions of the High Sulfidation Epithermal Cu-Au Mineralization at Zijinshan, Fujian Province, China. Economic Geology,93:961-980.
    Sun Y, Ma C Q, Liu Y Y, She Z B,2011. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. Journal of Asian Earth Sciences 42, 1117-1131.
    Sun S S, McDonough W F.1989. Chemic al and isotopic systematics of oceanic basalts:implications for mantle compositi on and processes. In:Saunders, A.D., Norry, M.J. (Eds.), Magmati sm in the Ocean Basins, Special Publications, vol.42. GeologicalSociety, London, pp.313-345.
    Shu L S, Faure M, Yu J H, Jahn B M.2011. Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187:263-276.
    Soderlund U, Patchett P J, Vervoort J D, Isachsen C E.2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219:311-324.
    Sun Y, Ma C Q, Liu Y Y, She Z B.2011. Geochronological and geochemical constraints on the petrogenesis of late Triassic aluminous A-type granites in southeast China. Journal of Asian Earth Sciences,42: 1117-1131.
    Taylor S R, Mclennan S M,1985. The Continental Crust:Its Composition and Evolu-tion. Blackwell Scientific Publications, Oxford, p.312.
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition. Economic Geology,69:843-884.
    Williams-Jones A E, Heinrich C A.2005.100th Anniversary Special Paper:Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology,100:1287-1312.
    Xie X, Xu X S, Zou H B, Jiang S, Ming Z, Qiu J.2006. Early J2 basalts in SE China:Incipience of large-scale late Mesozoic magmatism. Science in China Series D:Earth Sciences.49(8):796-815.
    Xu X S, O'Reilly S Y, GriffinW L, Wang X, Pearson N J, He Z.2007. The crust of Cathaysia:Age, assembly and reworking of two terranes. Precambrian Research,158:51-78.
    Yu J H, O'Reilly Y S, Wang L J, Griffin W L, Jiang S, Wang R, Xu X.2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chinese Science Bulletin,52(1): 13-22.
    Yu J H, Wang L J, O'Reilly S Y, Griffin W L, Zhang M, Li C, Shu L.2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China.Precambrian Research,174:347-363.
    Zheng J P, Griffin W L,O'Reilly S Y, Zhang M, Pearson N, Pan Y.2006. Widespread Archean basement beneath the Yangtzecraton. Geology,34 (6):417-420.
    Zhou X M, Li W X.2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,326:269-287.
    Zhou X M, Sun T, ShenW Z, Shu L S, Niu Y L.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution. Episodes 29,26-33.
    Zind ler A, Hart S R.1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci.14,493-571.
    陈根文.夏斌,肖振宇,喻亨祥.王核,钟志洪,王国强.2001.浅成低温热液矿床特征及在我国的找矿方向.地质与资源,10(3):165-171.
    陈景河.1999.紫金山铜(金)矿床成矿模式.黄金,20(6):6-11.
    陈静,陈衍景,钟军,孙艺,李晶,祁进平2011.福建省紫金山矿田五子骑龙铜矿床流体包裹体研究.岩石学报.27(5):1425-1438.
    陈骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用.高校地质学报,14(4):459-473.
    陈润生,林东燕,江剑丽.2008.福建早侏罗世火山作用的动力学机制及大地构造学意义探讨.福建地质,2:009.
    陈毓川,李兆鼐,毋瑞身.2001.中国金矿床及其成矿规律.北京:地质出版社,102-181.
    杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊.1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,68(4):339-347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001Carius管溶样和负离子热表面电离质谱准确测定辉 钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252.
    福建省地质矿产局.1985.福建省区域地质志.地质出版社.
    高天均,黄仁生.1998.福建省上杭县紫金山矿田铜金银矿床类型及对比.火上地质与矿产,19(4):283-294.
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604.
    侯可军,李延河,田有荣.2009LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481-492.
    黄文婷,李晶,梁华英,梁华英,伍静,王春龙,包志伟.2013.福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICP-MS U-Pb年龄及成矿岩浆特征研究.岩石学报,29(1):283-293.
    黄萱,孙世华,Depaolo D J,吴克隆.1986.福建省白垩纪岩浆岩Nd、Sr同位素研究.岩石学报,2(2):50-63.
    华仁民,陈培荣,张文兰,刘晓东,陆建军,林锦富,顾晟彦.2003.华南中、新生代与花岗岩有关的成矿系统.中国科学(D辑),33(4):335-343.
    华仁明,陈培荣,张文兰,姚军明,林锦富,张展适,顾晟彦.2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报,11(3):291-304.
    华仁明,胡金化,黄耀生,李振敏.1998.福建紫金山矿床流体运移-反应模式及其氧同位素示踪研究.地球化学,27(2):187-195.
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发.矿床地质,18(4):300-308.
    华仁民,陈培荣,张文兰,陆建军.2005a.论华南地区中生代3次大规模成矿作用.矿床地质,24(2),99-107.
    华仁民.2005b.南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义.地质论评,51(6):633-639.
    胡春杰,黄文婷,包志伟,梁华英,王春龙.2012.福建紫金山矿田晚中生代英安玢岩形成时代及其成矿意义.大地构造与成矿学,36(2):284-292.
    黄仁生.1994.福建省紫金山铜金矿床成矿物理化学条件的研究.福建地质,13(3):159-173.
    黄春鹏,刘庆生,张克尧.1999.福建紫金山铜金矿田地球物理地球化学特征及找矿模型.福建地质,18(4):189-206.
    黄仁生.2008.福建紫金山矿田火成岩系列与浅成低温热液-斑岩金银成矿系统.地质力学学报,14(1):74-86.
    李献华.1999.华南白垩纪岩浆活动与岩石圈伸展.见:中国科学院地球化学研究所,等,编.资源环境与可持续发展.北京:科学出版社.256-263.
    李永峰.5005.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)矿成矿作用:博士学位论文.北京:中国地质大学(北京)
    林全胜.2006.福建武平悦洋银多金属矿床特征及成因探讨.福建地质,25(2):82-88.
    林书平,刘莎,王春龙,黄文婷,李振杰.王翠芝,祁进平,梁华英.2012.紫金山矿田二庙沟铜多金属矿点隐爆角砾岩活动中心的厘定及意义,大地构造与成矿学,36(3):450-456.
    凌洪飞,沈渭州,黄小龙.1999.福建省花岗岩类Nd-Sr同位素特征及其意义.岩石学报,15(2):255-262.
    刘晓东.2005.紫金山-碧田浅成热液贵金属成矿体系及其成矿流体.[博士学位论文].南京:南京大学.
    刘晓东,华仁民.2005.福建碧田金银铜矿床冰长石的40Ar/39Ar年龄.地质论评,51(2):151-155.
    刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社:1-290.
    刘潜,于津海,苏斌,王勤,唐红峰,许海,崔翔.2011.福建锦城187Ma花岗岩的发现-对华南沿海早侏罗世构造演化的制约.岩石学报,27(12):3575-3589.
    刘羽,刘文元,王少怀.2011.紫金山金铜矿二元铜硫化物成分特点的初步研究.矿床地质,30(4),735-741.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,205-226.
    毛建仁,陶奎元,李寄嵎,谢芳贵,徐乃政.2002.闽西南晚中生代四方岩体同位素年代学、地球化学及其构造意义.岩石学报,18(4):449-458.
    毛建仁,徐乃政,胡青.刑光福,杨祝良.2004.福建省上杭-大田地区中生代成岩成矿作用与构造环境演化.岩石学报,20(2):285-296.
    毛景文,谢桂青,李晓峰,张长青,梅燕雄.2004b.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,11(1):45-55.
    毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景,岩石学报,23(10):2329-2338.
    毛景文,华仁民, 李晓波.1999.浅议大规模成矿作用与大型矿集区.矿床地质,18(4):291-299.
    毛景文,谢桂青,郭春丽,袁顺达,程彦博,陈毓川.2008.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,14(4):510-526.
    毛景文,李晓峰,Lehmann B.2004湖南芙蓉锡矿地质特征、锡矿石和有关花岗岩的测年及其成岩成矿的地球动力学意义.矿床地质,22(2):164-175.
    邱小平,蓝岳彰,刘羽.2010.紫金山铜矿床深部成矿作用研究和找矿前景评价的关键.地球学报,31(2):209-215.
    邱检生,肖娥,胡建,徐夕生,蒋少涌,李真.2008.福建东北沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报,24(11):2468-2484.
    屈文俊,杜安道.2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄.岩矿测试,22(4):254-262.
    沈渭洲,凌洪飞,李武显.2000.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑)30(5):471-478.
    沈渭洲,朱金初,刘昌实,徐士进,凌洪飞.1993.华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约.岩石学报,9(2):115-124.
    沈渭洲,于津海,赵蕾,陈泽霖,林亨才.2003.南岭东段后太古宙地层的Sm-Nd同位素特征与地壳演化.科学通报,48(16):1740-1745.
    沈渭洲,王德滋,刘昌实.1995.华南含锡斑岩的同位素地球化学特征与物质来源.地质学报.69(4):349-359.
    石礼炎,李子林.1989.福建上杭紫金山次火山热液铜金矿床地质特征初探.福建地质,8(4):286-299.
    舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报,12(4):418-431.
    舒良树.2012.华南构造演化的基本特征.地质通报,31(7):1035-1053.
    苏水生.2002.福建上杭铜矿沟-罗卜岭斑岩型铜矿床地质特征及远景评价.福建地质,22(2):69-77.
    徐夕生,王孝磊,贺振宇.2006.华夏地块东部基底及其晚中生代大规模改造.2006年全国岩石学与地球动力学研讨会论文摘要集
    陶建华,许春林.1992.福建上杭紫金山铜金矿床控岩控矿构造分析.福建地质,11(3):186-203.
    涂光炽.1994.中国火山岩型金矿床.中国金矿研究新进展,第1卷(上篇).北京:地质出版社,65-82.
    王少怀.2011.紫金山矿集区地球化学异常特征及找矿潜力预测.大地构造与成矿学,35(1):156-160.
    王少怀,裴荣富,曾宪辉,邱小平,魏民.2009.再论紫金山矿田成矿系列和成矿模式.地质学报,83(2):145-157.
    王少怀,张国兰,裴荣富.2010.紫金山矿集区铜地球化学块体特征及找矿潜力.地球学报,31(1):90-94.
    王绍雄.1995.福建紫金山铜(金)矿与台湾金瓜石金(铜)矿的对比及其意义.福建地质,14(2):85-94.
    吴淦国,张达,彭润民,吴建设,高天钧,陈柏林,汪群峰,狄永军,张祥信.2004.东南沿海成矿带矿床形成的时间演化规律研究.地学前缘,2004,11(1):237-247.
    吴福元,李献华,郑永飞,高山.2007. Lu-Hf同位素体系及其岩石学应用.岩石学报.23(2):185-220.
    吴开兴,胡瑞忠,毕献武, 彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学,30(3):73-81.
    肖爱芳,黎敦朋,柳小明.2012.福建省紫金山铜金矿田石帽山群下组火山岩锆石LA-ICP-MS U-Pb测年与白垩纪岩浆活动期次.大地构造与成矿学,36(4):613-623.
    谢昕,徐夕生,邹海波,蒋少涌,张明,邱检生.2005.中国东南部晚中生代大规模岩浆作用序幕:J2早期玄武岩.中国科学(D辑),35(7):587-605.
    邢光福,陶奎元.1998.壳幔作用过程中Sr含量对岩浆岩Sr同位素组成的影响—兼论东南沿海白垩纪双峰式火山岩成因.火山地质与矿产,19(1):24-33.
    邢光福,卢清地,陈荣,张正义,聂童春,李龙明,黄家龙,林敏.2008.华南晚中生代构造体制转折结束时限研究.地质学报,82(4):451-463.
    徐文艺,郭国璋.1997.福建紫金山铜金矿床成矿流体演化数值模拟:混合和沸腾过程研究.矿床地质,16(2):163-169.
    徐夕生,周新明,王德滋.1999.壳幔作用与花岗岩成因——以中国东南沿海为例.高校地质学报,5(3):241-250.
    徐夕生,谢昕.2005.中国东南部晚中生代—新生代玄武岩与壳幔作用.高校地质学报.11(3):318-334.
    薛凯,阮诗昆.2008.福建紫金山矿田罗卜岭铜(钼)矿床地质特征及成因探讨.资源环境与工程,22(5):491-496.
    于津海,周新民, O'Reilly Y S.2005南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报,50(16):2080-2089.
    于津海,王丽娟,周新民,蒋少涌,王汝成,徐夕生,邱检生.2006a.粤东北基底变质岩的粤组成和形成时代.地球科学,31(1):38-48.
    于津海,魏震洋,王丽娟,舒良树,孙涛.2006b.华夏地块:一个由古老物质组成的年轻陆块.高校地质学报,12(4):440-447.
    于津海,O'Reilly Y S,王丽娟,王汝成,徐夕生.2007.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,52(1):11-18.
    余学东,邵跃,李应桂.1995.福建紫金山铜金矿床地质地球化学找矿模型及应用.物探与化探,19(5):321-331.
    谢承涛,周美进.1994.福建省上杭县罗卜岭斑岩型铜(铝)矿床地质特征.福建地质,13(3):151-157.
    张达,吴淦国.1999.福建龙岩中甲锡多金属矿床地质特征及成因机理.有色金属矿产与勘查,8(3):129-135.
    赵爱林,李景春,王力,金成洙.2003.金矿床研究的回顾与展望.地质与资源,12(2):125-128.
    赵希林.2007.福建省上杭地区中生代花岗岩体的年代学、岩石学、地球化学特征及其地质意义.硕士论文,北京:中国地质科学院
    赵希林,毛建仁,陈荣,徐乃政,曾庆涛,叶海敏.2007.闽西南地区才溪岩体锆石SHRIMP定年及其地球化学特征.岩石矿物学杂志,26(3):223-231.
    赵希林,毛建仁, 叶海敏,徐乃政,胡青.2009.福建上杭地区晚中生代花岗质岩体黑云母的地球化学特征及成因意义.矿物岩石地球化学通报,28(2):162-168.
    张德全,李大新,赵一鸣,陈景河,李子林,张克尧.1991.福建紫金山矿床—我国大陆首例石英-明矾石型浅成低温热液铜-金矿床.地质评论,37(6):481-491.
    张德全,佘宏全,李大兴,丰成友.2001a.紫金山地区中生代岩浆系统的时空结构及其地质意义.地球学报,22(5):403-408.
    张德全,佘宏全,阎升好,徐文艺.2001b.福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据.地质评论,47(6):608-616.
    张德全,佘宏全,李大兴,丰成友.2003.紫金山地区的斑岩-浅成热液成矿系统.地质学报,77(2):253-261.
    张德全,丰成友,李大兴,佘宏全,董英君.2005.紫金山地区斑岩-浅成热液成矿系统的成矿流体演化.地球学报,26(2):127-136.
    张德全,王文桂.1996.五子骑龙矿床--被改造的斑岩铜矿上部带.矿床地质,15(2):109-122.
    张理刚.1988.长石铅和矿石铅同位素组成及其地质意义.矿床地质,7(2):55-64.
    张江.2001.紫金山铜金矿床地质地球化学特征.地质与勘探,37(2):17-22.
    张文淮, 张志坚.1996.成矿流体及成矿机制.地学前缘,3(4):245-252.
    张岳桥,董树文,李建华,崔建军,施炜,苏金宝,李勇.2012.华南中生代大地构造研究新进展.地球学报,33(3):257-279.
    钟军,陈衍景,陈静,李品,祁进平,戴茂昌.2011.福建省紫金山矿田罗卜岭斑岩型铜钼矿床流体包裹体研究.岩石学报,27(5):1410-1424.
    周肃,陈好寿.1996.紫金山铜金矿同位素年代学及其地质意义.矿物岩石地球化学通报,15(4): 216-219.
    周肃,邱瑞照,陈好寿.1998.福建紫金山铜金矿床氢氧同位素组成特征及与成矿关系的研究.福建地质,2:94-100.
    朱春林,龙斌.1997.华南花岗岩类的演化特征.大地构造与成矿学,21(2):181-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700