用户名: 密码: 验证码:
可重构模块化机器人系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机电一体化产品设计的智能化、柔性化、个性化已成为当前产品开发的主要发展方向。可重构模块化机器人系统(Reconfigurable modular robot system, RMRS)由一系列不同功能和尺寸特征的、具有一定装配结构的关节模块、连杆模块、末端执行器模块以及相应的驱动、控制、通信模块等以搭积木的方式构成,能根据用户需求构成不同自由度和构型的机器人系统,能适应多种多样的任务需求和应用场合。可重构模块化设计不仅面向制造者,也是面向用户的,用户更容易按需定制,对构型进行自由设计、构造,具有更大的灵活性。对可重构机器人的构型设计、运动学、动力学、路径规划、轨迹规划及分布式控制系统等相关关键技术进行研究,使之进一步得到实用化,具有重要的理论和应用价值。
     可重构模块化机器人系统的适应性和可重构性取决于模块本身的性能及模块之间的匹配连接能力。在对机器人的模块进行合理划分的基础上,设计了一套由关节模块、连杆模块、夹持器模块及快速连接模块等构成的实验模块系统。将关节模块设计成集驱动、传动、控制及通信于一体的智能单元。在智能设计系统开发工具上开发了构型设计系统,以人机交互方式辅助实现构型的设计,采用层次分析法对构型设计方案进行评价和决策。
     由于可重构机器人构型的多样性,研究其运动学逆解的通用计算方法是应用中的关键问题。采用运动旋量和指数积公式建立可重构机器人的运动学模型,系统地分析指数积公式的化简方法、运动学逆解子问题的分类及其计算方法,为可重构机器人封闭形式的运动学逆解的自动生成提供一种可分解的计算方法,降低了求解的复杂性;由于并不是所有的构型都有封闭解,研究了基于雅可比矩阵的通用数值迭代法计算运动学逆解。采用降维搜索和二分法计算工作空间的边界点,并提出采用双向链表确定工作空间多连域截面封闭曲线的算法,实现了可重构机器人三维工作空间的自动计算。
     在运动螺旋与力螺旋的基础上,采用拉格朗日方程对可重构机器人进行动力学分析。将运动螺旋表示的指数积公式、雅可比矩阵,以及力螺旋及其变换应用到动力学的拉格朗日方程中,得到封闭显式的拉格朗日方程,可以分析复杂的受力情况,使可重构机器人系统的动力学计算形式简洁,易于程序化实现;便于进行构型的设计、校验以及控制系统的分析与综合。
     讨论了多自由度关节机器人在有障碍物的复杂工作环境中的路径规划问题。提出一种在机器人工作环境中建立数值人工势场的算法,结合数值人工势场提供的特征信息,采用遗传算法在关节空间进行分段路径规划,提高了计算效率和路径规划的质量,适合可重构机器人各种构型的路径规划。轨迹规划可以在笛卡尔空间进行,也可以在关节空间进行,但路径约束一般是在笛卡尔坐标中给定的,而关节驱动是在关节坐标中受控制的,因此提出了一种满足笛卡尔空间与关节空间混合约束的机器人平面曲线轨迹规划方法。根据规划的轨迹与要求的轨迹的偏离情况,非均匀地插入控制节点,通过增加有限的控制节点,来有效地控制偏差,减少计算量。
     由于可重构机器人的关节设计成智能关节,以及其自由度、构型的多样性,控制系统采用分布式控制系统。整个控制系统由三个子控制层组成。第一层为路径规划控制层,实现作业过程规划和路径指定;第二层为轨迹规划层,规划各关节的时基关节变量,产生各关节的运动指令,通过RS-485网络,采用Modbus协议,分发给各关节控制器;第三层为关节控制层,接收上位机的指令,完成各关节的运动控制。设计了各关节的控制器及驱动器硬件电路,各关节采用基于Anti-windup校正的PID控制器实现了带速度环和位置环的关节位置控制。最后通过可重构机器人系统的综合实验,验证了系统设计合理,能稳定可靠地运行,达到预期的目标。
Making machatronics products with intelligence, flexibility and individualization has currently become a main trend in products design. Reconfigurable modular robot system (RMRS) is made up of joint modules, link modules, end-effectors with different functions and size characteristics as well as the corresponding driving, controlling and communication modules. RMRS can be constructed various degree-of-freedom (DOF) and configurations robot system according to the user’s demand and application situations. The reconfigurable modular design is aiming at a higher-level design based on the conventional modular design, which is not only manufactures-oriented but also users-oriented. Users can customize modules and freely design and construct their desired configuration. So it is significant to study the key technologies for RMRS, including its configuration design, kinematics, dynamics, path planning, trajectory planning and distributed control system.
     The reconfiguration and adaptability of RMRS are determined by the performance and matching ability of the connectors between the module systems. Based on a rational decomposition of manipulator structure, an experimental module system is designed and implemented, which comprises joint module, link module, gripper and quick coupling mechanism etc. The active joint modules are self-contained unit, which integrate driving, control and communication functions. A computer-aided configuration design is developed by means of an interactive environment based on intelligent design software DEST. Analytic hierarchy process (AHP) is used to evaluation and decision-making of configuration schemes.
     Because of the variety of the configurations of RMRS, to obtain the generalized inverse kinematics is a challenging task. Motion screw and product-of-exponentials (POE) formula are employed to model the kinematics of reconfigurable robots, and systematically simplification methods of POE formula are investigated, classifying and computing of subproblems are also implemented. Thus a generalized, decomposable and reusable approach for closed-form inverse kinematics of reconfigurable robots is developed. For the redundant robot and some non-redundant robot, their closed-form inverse kinematics are not existent, Jacobian matrix based numerical iterative method are investigated. In addition, automatically determining the workspace of reconfigurable robots is also important in customizing the configurations of RMRS, two algorithms, i.e. determination of boundary points by dimension degradation and binary search, determination of closed-curves in multi-region cross section of the workspace based on double linked list are proposed, which implemented the automatically calculation of the three dimensions workspace of RMRS.
     Based on twist and wrenches representations, the Lagrangian equations are used for RMRS dynamics anylysis. By making all robot link frames unified and applying POE formula, Jacobian matrix, wrenches and their transformation to the Lagrangian equations, an explicit closed-form of the Lagrangian equations is obtained, which facilitates computer implementation and configuration design, dynamics verification and control analysis as well as synthesis.
     A novel approach for collision-free path planning of a multiple degree-of-freedom articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial pose to its destination. Trajectory planning can be conducted either in the joint variable space or in the Cartesian space. Generally the path is constrained in Cartesian coordinates, while the actuator torques and forces at each joint is bounded in joint space. Hence, it becomes an optimization problem with mixed constraints (path and torque constraints) in the two different coordinate systems. An approach for robot plane curve trajectory planning is proposed, which satisfies the mixed constraints in both Cartesian space and joint-variable space. In the Cartesian space, the determination of control knot points, the time assignment among the knots, and the deviation estimation between the planned trajectory and the desired trajectory are discussed; and in the joint-variable space, using cubic spline polynomials to fit the segment between two adjacent knots and how to satisfy the joint physical constraints (the velocity, acceleration, and torque constraints) are solved. According to the deviation between the planned trajectory and the desired trajectory, knot points are inserted unevenly among the predetermined knots. Thus the deviation is decreased significantly by adding small number of knots.
     Distributed control system (DCS) is used in RMRS, because the joints are smart and the DOFs and configuration of RMRS are variable. The whole control system includes three hierarchies, the first hierarchy is path planning, which implements process planning and path assignments; the second one is trajectory planning, generating the sequence of time-based joint variables, and distributing the motion instructions to all joint controllers using Modbus protocol through RS-485 network; the third one is joint controlling, which receives the commands form PC and finishes joint motion control. The control circuit and driver circuit are designed, and the position control software is developed based on PID controller with anti-windup correction. Some comprehensive experiments demonstrate the system is effective and reliable.
引文
1 梁福军,宁汝新.可重构制造系统理论研究.机械工程学报,2003,39(6):36-43
    2 王成恩.制造系统的可重构性.计算机集成制造系统,2000,6(4):1-5
    3 游有鹏,张晓峰,王珉,朱剑英.可重构机床的模块化设计.机械科学与技术,2001,20(6):815-818
    4 王战春,贾振元,张永顺.面向可重构制造系统的敏捷夹具设计.机械设计与制造,2003(2):57-59
    5 刘明尧,谈大龙,李斌.基于机器人的可重构装配系统.信息与控制,2001,30(7):640-643
    6 张伯鹏,孟威,赵大泉等.新型可重组机器人化机床的研究开发.中国机械工程,2002, 11(1-2):168-172
    7 A. Pamecha, C. J. Chiang, D. Stein. et al. Design and Implementation of Metamorphic Robots. Proceedings of the ASME Design Engineering Technical Conference and Computers in Engineering Conference, Irvine, CA, 1996: 1-10
    8 K. Kotay, D. Rus, M. Vona, et al. The Self-reconfiguring Robotic Molecule. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998: 424-431
    9 A. Castano, A. Behar, P. Will. The CONRO Modules for Reconfigurable Robots. IEEE/ASME Transactions on Mechatroncis, 2002, 7(4): 403-409
    10 XIA Ping, ZHU Xinjian, FEI Yanqiong, Mechanical Design and Locomotion Control of a Homogenous Lattice Modular Self-reconfigurable Robot. Journal of Zhejiang University (SCIENCE A). 2006, 7(3): 368-373
    11 C. J. J. Paredis. An Agent-based Approach to the Design of Rapidly Deployable Fault Tolerant Manipulators. Carnegie Mellon University, USA, 1996
    12 C. J. J. Paredis, P. Khosla. Kinematics Design of Serial Link Manipulators from Task Specifications. International Journal of Robotics Research, 1993,12(3): 274-287
    13 C. J. J. Paredis, H. B. Brown, P. K. Khosla. A Rapidly Deployable Manipulator System. Robotics and Autonomous Systems, 1997, 21(3): 289-304
    14 J. O. Kim, P. A. Khosla P. A Formulation for Task-based Design of RobotManipulators. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1991: 2 310-2 317
    15 C. J. J. Paredis, P. K. Khosla. Synthesis Methodology for Task Based Reconfiguration of Modular Manipulator Systems. International Symposium on Robotics Research, Hidden Valley, PA, 1993
    16 C. J. J. Paredis, P. K. Khosla. Agent-based Design of Fault Tolerant Manipulators for Satellite Docking. Proceedings of IEEE Conference on Robotics and Automation, New Mexico, USA, 1997: 3 473-3 480
    17 R. Cohen, M. G. Lipton, M. Q. Dai, B. Benhabib. Conceptual Design of a Modular Robot. ASME Journal of Mechanical Design, March 1992, (114): 117-125
    18 B. Benhabib, G. Zak, M. G. Lipton. A Generalized Kinematic Modeling Method for Modular Robots. Journal of Robotic Systems, 1989,6(5): 545-571
    19 K. H. Wurst. The Conception and Construction of a Modular Robot System. International Symposium on Industrial Robotics, 1986: 37-44
    20 T. Matsumaru. Design and Control of the Modular Robot System: TOMMS. Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, May 1995: 2 125-2 141
    21 S. R. Habibi, A. A. Goldenberg. Design and Control of a Reconfigurable Industrial Robot. Proceedings of IEEE International Conference on Robotics and Automation, 1995: 2 206-2 211
    22 R. O. Ambrose. Design, Construction and Demonstration of Modular Reconfigurable Robots. University of Texas at Austin, U.S.A, 1991
    23 R. O. Ambrose, D. Tesar. Modular Robot Connection Design. Proceedings of ASME Conference on Flexible Assembly Systems, Scottsdate, AZ, 1992: 41-48
    24 D. Tesar, M. S. Butler. A Generalized Modular Architecture for Robot Structures. ASME Journal of Manufacturing Review, 1989, 2(2): 91-117
    25 O. Chocron, P. Bidaud. Genetic Design of 3D Modular Manipulators. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico, April 1997: 223-228
    26 Han Jeongheon, Chung W K, Youm Y and Kim S H. Task Based Design of Modular Robot Manipulator Using Efficient Algorithm. Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, NewMexico, April 1997: 507-512
    27 R. Hui, N. Kircanski, A. Goldenberg et al. Design of the IRIS Facility – a Modular, Reconfigurable and Expandable Robot Test Bed. IEEE Robotics and Automation Laboratory Department of Mechanical Engineering, University of Toronto, 1993: 155-160
    28 Chen I M. Theory and Application of Modular Reconfigurable Robotic System. California Institute of Technology, CA, USA, 1994
    29 Chen I-Ming. Rapid Response Manufacturing through a Rapidly Reconfigurable Robotic Workcell. Robotics and Computer Intergrated Manufacturing. 2001(17): 199-213
    30 Chen I-Ming, Yang Guilin. Inverse Kinematics for Modular Reconfigurable Robots. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998: 1 674-1 652
    31 Chen I, Yang G. Configuration Independent Kinematics for Modular Robots. Proceedings of the IEEE International Conference on Robotics and Automation, 1996: 1 440-1 445
    32 Chen I, Yang G. Automatic Model Generation for Modular Reconfigurable Robot Dynamics. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, 1998,(120): 346-352
    33 Yang Guilin, Chen I-Ming. Task-based Optimization of Modular Robot Configurations: Minimized Degree-of-freedom Approach. Mechanism and Machine Theory, 2000, 35(4): 517-540
    34 Yang Guilin. Kinematics, Dynamics, Calibration, and Configuration Optimization of Modular Reconfigurable Robots. School of Mechanical and Production Engineering Nanyang Technological University. January 1999
    35 http://www.amtec-robotics.com/produkte_en.html, [2007-8-21]
    36 http://www.amtec-robotics.com/applikationen_en.html, [2007-8-21]
    37 Dexterous Manipulators and Advanced Control Systems. [2007-8-21] htttp://www.robotics- research.com
    38 http://www.esit.com/robotics_productDevelopment.php, [2007-8-21]
    39 费燕琼,赵锡芳,徐卫良.机器人模块化的结构设计研究.机器人,1999,21(3):223-228
    40 费燕琼,冯光涛,赵锡芳,徐卫良.可重组机器人运动学正逆解的自动生成.上海交通大学学报,2000,34(10):1 430-1 433
    41 费燕琼,况迎辉,赵锡芳,徐卫良.可装配的模块机器人动力学的自动生成.东南大学学报,2000,30(2):84-88
    42 郑浩峻,汪劲松,李铁民.可重构机器人单元结构设计及组合特性分析,机械工程学报,2003,39(7):34-37
    43 李斌,吴镇炜,谈大龙,王越超.可重构机器人技术的探讨.信息与控制, 2001, 30(7):684-688, 699
    44 刘明尧,谈大龙,李斌.可重构模块化机器人现状和发展. 机器人, 2001,23(5):275-279
    45 刘明尧,谈大龙,李斌,邹立.基于多 Agent 可重构机器人控制方法的研究.中国机械工程,2002,13(20):1 737-1 739
    46 李树军,张艳丽,赵明扬.可重构模块化机器人模块及构形设计.东北大学学报(自然科学版),2004,25(1):78-81
    47 任敬轶,孙汉旭.一种 9-DOF 模块化机器人的运动学反解.机器人,2001,23(4):300-304
    48 任敬轶,孙汉旭.一种新颖的笛卡尔空间轨迹规划方法.机器人,2002,24(3):217-221
    49 许彦峰,孙汉旭.用模糊数学方法对模块化机器人优化的控制方法.机电产品开发与创新,2003 (5):40-41
    50 杜启联.PowerCube 可重构模块化机器人系统的研究与开发.北京工业大学硕士论文,2004
    51 贺鑫元,马书根,李斌,王越超.可重构星球探测机器人的机构设计.机械工程学报,2005,41(12):190–195
    52 王明辉,马书根,李斌,王越超,贺鑫元.可重构星球探测机器人控制系统的设计与实现.机器人,2005,27(3):273-277
    53 Wang Minghui, Ma Shugen, Li Bin. Task Planning and Behavior Scheduling for a Reconfigurable Planetary Robot System. International Conference on Mechatronics and Automation,Niagara Falls, Canada, July 2005: 729-734
    54 刘金国,王越超,李斌,马书根.模块化变形机器人非同构构形表达与计数.机械工程学报,2006,42(1):98-105.
    55 王田苗,邹丹,陈殿生.可重构履带机器人的机构设计与控制方法实现.北京航空航天大学学报,2005,31(7):705-708
    56 刘思宁,陈永,章文俊.模块机器人及计算机辅助设计.机器人,1999,21(1):16-22
    57 史士财,刘伊威,张曦乔,刘宏.模块化方法在 HIT/DLR 机器人技术中的应用.组合机床与自动化加工技术,2006,(11):1-3,7
    58 吕常青.可重构机器人的机械结构与控制系统的设计.哈尔滨工业大学硕士学位论文,2005:10-23
    59 肖人彬,陶振武,刘勇.智能设计系统原理与技术.北京:科学出版社,2006:251-287
    60 赵松年,等.现代机械创新产品分析与设计.北京:机械工业出版社,2000:20-26
    61 艾肯特.微软 XML 技术指南.谢群英译.北京:中国电力出版社,2003
    62 顾兵.XML 实用技术教程.北京:清华大学出版社,2007:19-67
    63 P. H. Winston.人工智能,3 版,崔良沂,赵永昌译.北京:清华大学出版社,2005:88-120
    64 F. Chapelle, P. Bidaud. B. Philippe. Closed Form Solutions for Inverse Kinematics Approximation of General 6R Manipulators. Mechanism and Machine Theory, 2004, 39(3):323-338
    65 付京逊,冈萨雷斯 R C,李 C S G.机器人学,控制·传感技术·视觉·智能.杨静宇,李德昌等译.北京:中国科学技术出版社,1989:9-56
    66 理查德·摩雷,李泽湘,夏恩卡·萨思特里.机器人操作的数学导论.徐卫良,钱瑞明译.北京:机械工业出版社,1998:51-85
    67 Chen I M, Gao Y. Closed-form Inverse Kinematics Solver for Reconfigurable Robots. Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001:2 395-2 400
    68 Gao Y. Decomposable Close-form Inverse Kinematics for Reconfigurable Robots Using Product-of-exponentials. Singapore: Nanyang Technological University, 2000
    69 熊有伦,丁汉,刘恩沧.机器人学.北京:机械工业出版社,1993:253-272
    70 熊有伦,唐立新,丁汉,等.机器人技术基础.武汉:华中理工大学出版社,1996:43-45
    71 L. Kelmar, P. K. Khosla. Automatic Generation of Kinematics for a Reconfigurable Modular Manipulator System. Proceedings of IEEE Conferenceon Robotics and Automation. Philadelphia, PA, 1988:663-668
    72 Chen I M, Yang G L, Inverse Kinematics for Modular Reconfigurable Robots. Proceedings of IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998:1 647-1 652
    73 S. Tejomurtula, S. Kak. Inverse Kinematics in Robotics Using Neural Networks. Information Sciences, 1999, 116(2-44):147-164
    74 M. Ceccarelli, A. Vinciguerra. On the Workspace of General 4R Manipulators . International Journal of Robotics Research, 1995, 4 (2): 152-160
    75 K. Abdel-Malek, Yeh, H-J, N. Khairallah. Workspace, Void, and Volume Determination of the General 5DOF Manipulator. Mechanics of Structures and Machines, 1999,27(1): 91-117
    76 黄献龙,梁斌,陈建新,等.EMR 系统机器人工作空间与灵活性的分析.机械工程学报,2001,37 (2):12-16
    77 刘成良,张为公,翟羽健.RV12L6R 焊接机器人运动学正解及计算机仿真系统.东南大学学报,1998,28(5):84-87
    78 Yang G L, Chen I M, Lim W K, et al. Design and Kinematics Analysis of Modular Reconfigurable Parallel Robots. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, Michigan, 1999: 2 501-2 506
    79 严蔚敏,吴伟民.数据结构( C 语言版).北京:清华大学出版社.1997:35-39
    80 付京逊,冈萨雷斯 R C,李 C S G.机器人学,控制·传感技术·视觉·智能.杨静宇,李德昌等译.北京:中国科学技术出版社,1989:61-104
    81 熊有伦,丁汉.机器人动力学性能指标及其优化.机械工程学报,1989,25(2):9-15
    82 F. C. PARK, J. E. BOBROW. A Recursive Algorithm for Robot Dynamics Using Lie Group. Proceedings of IEEE Conference on Robotics and Automation, San Diego, USA, 1997, Piscataway, New Jersey: IEEE, 1997: 1535-1540
    83 F. C. PARK, J. E. BOBROW, S. R. PLOEN. A Lie Group Formulation of Robot Dynamics. International Journal of Robotics Research. 1995, 14(6): 609-618
    84 S. R. PLOEN. Geometric Algorithms for the Dynamics and Control of Multibody Systems. California, Irvine: University of California, Irvine, 1997
    85 理查德·摩雷,李泽湘,夏恩卡·萨思特里.机器人操作的数学导论.徐卫良,钱瑞明译.北京:机械工业出版社,1998:102-118
    86 O. KHATIB. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal Robotics Research, 1986, 5(1): 90-98.
    87 熊有伦,尹周平,熊蔡华,等.机器人操作.湖北:湖北科学技术出版社,2002:21-59
    88 P. Vadakkepat, KAY Chentan, WANG Mingliang. Evolutionary Artificial Potential Fields and Their Application in Real Time Robot Path Planning. Proceedings of the Congress on Evolutionary Computation, California, 2000: 256-263
    89 J. Barraquand, B. Langlois, J. C. Latombe. Numerical Potential Field Techniques for Robot Path Planning. IEEE Transactions on Systems, Man and Cybernetics, 1991, 22(2): 224-241.
    90 周明,孙树栋.遗传算法原理与应用. 北京:国防工业出版社,1999:18-64
    91 罗熊,樊晓平,等.具有大量不规则障碍物的环境下机器人路径规划的一种新型遗传算法.机器人,2004,26(1):11-16
    92 周明,孙树栋,彭炎午.基于遗传算法的多机器人系统集中协调式路径规划.航空学报,2000,21(2):146-149
    93 A. C. Nearchou. Solving the Inverse Kinematics Problem of Redundant Robots Operating in Complex Environments via a Modified Genetic Algorithm. Mechanism and Machine Theory, 1998, 33(3): 273-292
    94 F. Janabi-sharifi, D.Vinke. Integration of the Artificial Potential Field Approach with Simulated Annealing for Robot Path Planning. Proceedings of the IEEE International Symposium on Intelligent Control, Chicago, 1993: 536-541
    95 N. Sadati, J. Taheri. Genetic Algorithm in Robot Path Planning Problem in Crisp and Fuzzified Environments. IEEE International Conference on Industrial Technology, Bangkok, 2002: 175-180
    96 JIAO Licheng, WANG Lei. A Novel Genetic Algorithm Based on Immunity. IEEE Transactions on Systems, Man and Cybernetics, 2000, 30(5): 552-561
    97 高胜.基于分布式虚拟环境的多机器人遥操作研究.哈尔滨工业大学博士学位论文,2004:85-104
    98 V. DE LA Cueva, F. RAMOS. Cooperative Genetic Algorithms: a New Approach to Solve the Path Planning Problem for Cooperative RoboticManipulators Sharing the Same Workspace. IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, 1998: 267-272
    99 付西光,颜国正.7-DOF 核工业机器人的轨迹规划与仿真.系统仿真学报,2005,17 (8):1948-1950
    100 吴镇炜,谈大龙.机械手空间圆弧运动的一种有效轨迹规划方法.机器人,1999,21(1):8-11
    101 P. I. A. CORKE. Robotics Toolbox for MATLAB. IEEE Robotics and Automation Magazine, 1996,3(1): 24-32
    102 埃肯因(Akenine T)等.实时计算机图形学,2 版.普建涛译.北京:北京大学出版社,2004:26-31
    103 邓建中,刘之行. 计算方法. 2 版. 西安:西安交通大学出版社,2001:78-83
    104 Adept Cobra 600/800 Robot Instruction Handbook, Rev. B. [2006-03-12]. http://www.adept.com/main/KE/ DATA/adept_title_index.htm.
    105 D. Liberzon, A. S. Morse. Basic Problems in Stability and Design of Switched Systems. IEEE Control System Magazine, 1999, 19(1): 59-70
    106 杨明,徐殿国,贵献国.控制系统 Anti-Windup 设计综述.电机与控制学报,2006,10(6):622-626, 631
    107 K.Ohishi, T. Mashimo. Digital Robust Speed Servo System with Complete Avoidance of Output Saturation Effect. Power Conversion Conference, Nagaoka, 1997: 501-506
    108 T. Mmashimo, K. Ohishi, H. Dohmeki. High Speed Positioning System Considering Unknown Coulomb Friction and Windup Phenomenon. IECON '03, The 29th Annual Conference of the IEEE, 2003: 2 108 – 2 113
    109 XU Longya, LI Shengming. Torque Control Patching and Anti-windup and Bumpless Transfer Conditioning of Current Regulators for High-speed PMSM Systems. Power Electronics Specialists Conference, PESC, 2001:1 679-1 682
    110 K. Ohishi, Y. Sato, E. Hayasaka. High Performance Speed Servo System Considering Voltage Saturation of Vector Controlled Induction Motor. IECON’02, The 28th Annual Conference of the IEEE, 2002: 804-809
    111 董锡君,姚郁,王子才.基于滤波器的 Anti-Windup 设计及其在伺服系统中的应用.哈尔滨工业大学学报,2002,34(1):101-104
    112 董锡君,姚郁,王子才.电动转台 Anti-Windup 设计.黑龙江自动化技术与应用,1999,18(3):7-10
    113 朱善君,孙新亚,吉吟东.单片机接口技术与应用.北京:清华大学出版社,2005:359-366
    114 安杰利斯.机器人机械系统原理:理论、方法和算法[M].宋伟杰译.北京:机械工业出版社,2004:135-143
    115 熊有伦,唐立新,丁汉,等.机器人技术基础.武汉:华中理工大学出版社,1996:67-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700