用户名: 密码: 验证码:
油松稳定碳同位素遗传稳定性及环境影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇论文在国内首次应用稳定碳同位素技术对树木种内的稳定碳同位素分布特点和遗传特性进行了研究。在此基础上,结合生长调查、气体交换特性、气候条件和种源分布特点,从宏观生态分布到微观稳定碳同位素分布特点,从室内同位素分析到野外实地观测,从1a、18a到32a,在不同层次、不同条件、不同水平上,多角度全方位的对我国油松(Pinus tabulaeformis Carr.)的稳定碳同位素分布特点进行了深入的探索和研究。在油松种内稳定碳同位素特点、遗传特性、环境因子对δ~(13)C值的影响和δ~(13)C值与WUEi的关系等方面得出了一系列较为重要的结论,并对相关问题进行了探讨。
     对油松稳定碳同位素分析结果表明,随着水分状况的改善,油松的δ~(13)C值呈增加趋势。并且针叶和小枝δ~(13)C值季节间差异显著,分析认为这种差异主要是由于降水和温度原因引起的,其中降水占主导因素。2006年8月一龄叶的δ~(13)C值明显高于2006年8月二龄叶的δ~(13)C值,高出0.81‰,说明一龄叶的水分利用效率要高于二龄叶。油松种子园无性系间δ~(13)C值器官间也存在明显差异,变化趋势为δ~(13)C种子>δ~(13)C小枝>δ~(13)C针叶。不同树龄间油松针叶和小枝的δ~(13)C值差异表现一致,为32a﹥18a﹥1a,表明32a和18a油松水分利用效率大于1a油松,同时说明32a油松仍具有较高的水分利用效率。油松种源分布区油松δ~(13)C值与针叶长度呈显著正相关,说明针叶长度有可能作为δ~(13)C值的替代指标。
     油松种子园无性系2005年8月一龄叶的δ~(13)C值与Ci/Ca呈显著负相关关系,与WUEi呈显著正相关关系,相关系数分别为r=-0.4770和r=0.5152,表明我们可以把通过气体交换测定所获得的瞬时水分利用效率和油松的δ~(13)C值联系起来分析。
     种子园无性系、子代林和种源林δ~(13)C值年季间和家系间均有较高重复力或遗传力,利用亲子相关求得的亲子代之间遗传力也较高。油松种内δ~(13)C值具有较高的遗传力,说明利用δ~(13)C值对油松进行选择可以取得较好的效果。
     油松分布区种源的δ~(13)C值与空间特征和环境特征的相关分析表明,δ~(13)C值与海拔高度显著相关,δ~(13)C值随海拔高度的升高而表现出增大趋势。随经度的升高,δ~(13)C值有变轻的趋势,其中小枝δ~(13)C值与经度的关系显著相关,针叶δ~(13)C值与经度则相关不显著。油松δ~(13)C值与纬度之间的相关性不显著。δ~(13)C值与环境因子的关系中,与降水量、温暖指数和春季干燥度三者的相关系数最高,分别达到(r针叶=-0.7809, r小枝=-0.7130);(r针叶=-0.7901, r小枝=-0.8050);(r针叶=-0.9354, r小枝=-0.8853),说明水分状况和≥5℃的各月平均温度与5℃之差的和对油松的δ~(13)C值影响最大。
Stable carbon isotope technology was first applied in the characteristics of specific stable carbon isotope and heritability in trees. The stable carbon isotope characteristics of Pinus tabulaeformis were studied in depth combining with the results of growth investigation, gas exchanges, climate conditions and characteristics of provenances distribution. The study was carried out in laboratory and on-farm experiments on different scales, such as one year old, eighteen years old and thirty two years old Pinus tabulaeformis, and in different conditions and levels. A series of important results were obtained and discussed relative to the characteristics of specific stable carbon isotope and heritability in trees, tree drought tolerance ecology strategy, relation betweenδ~(13)C and instantaneous water use efficiency, and environmental effects onδ~(13)C etc.
     The results showed thatδ~(13)C was increasing with water status’improving. Significant seasonal changes were found in the needles’δ~(13)C and in twigs’δ~(13)C, which were due to precipitation and temperature, where precipitation was the dominant factors.δ13 C of one year needle’s was higher thanδ13 C of two year needle’s in August 2006 about 0.81‰,which showed that one year old needles had higher water use efficiency than two years old. There were significant differences in different organs and different years old Pinus tabulaeformis. The variety trends ofδ~(13)C in organs wereδ~(13)Cseeds>δ~(13)Ctwigs>δ~(13)Cneedles. The variety trends ofδ~(13)C in different years old Pinus tabulaeformis were 32a﹥18a﹥1a.The differentδ~(13)C in different old years Pinus tabulaeformis showed that 32a and 18a had higher water use efficiency than 1a and 32a had higher water use efficiency.δ~(13)C of Pinus tabulaeformis. provenance had significant positive correlation with needle length, which perhaps might be used as the substitution index for stable carbon isotope ratio.
     δ~(13)C of Pinus tabulaeformis. seed orchards clones had significant negative correlation with Ci/Ca and positive correlation with WUEi(r=-0.4770, r=0.5152), which showed that it could be correlated between instant water use efficiency andδ~(13)C of Pinus tabulaeformis.
     There were higher repeatabihty or hereditary in different season and different families and different provenance. The parent offspring had high hereditary by using correlation analysis.δ~(13)C of Pinus tabulaeformis.had high hereditary showed that it could be achieved better selecting effects.
     The correlation analysis showed that there was relationship betweenδ~(13)C of Pinus tabulaeformis. province and spatial characteristics、environmental characteristics. The value ofδ~(13)C increases with the increase of altitude, with significant difference. The value ofδ~(13)C decreases with the increase of longitude, in whichδ~(13)Ctwigs with significant difference andδ~(13)Cneedles with not significant difference.δ~(13)C had no significant correlation with latitude. The correlation coefficients betweenδ~(13)C and Precipitation as well as warm index and seasonal aridity degree were higher than those of others environmental factors. The results were rneedles= -0.7809 and rtwigs= -0.7130, rneedles= -0.7901 and rtwigs= -0.8050, rneedles = -0.9354 and rtwigs = -0.8853, respectively. The results showed that water status and≥5℃annual accumulated temperature was the most influential factor ofδ~(13)C values.
引文
[1] Kimball B A,朱建国,程磊,等.开放系统中农作物对空气CO2浓度增加的响应[J].应用生态学报,2002,13(10):1323-1338.
    [2] 曹军胜,刘广全.油松光合特性的研究[J].安徽农业科学,2005,33(4):608-609,718.
    [3] 陈兰, 张守仁.增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响[J].植物生态学报,2006,30(1):47-56.
    [4] 陈少良.杨树种间耐旱性差异的生理生化基础研究[D].北京林业大学,博士论文,1997,50-51.
    [5] 陈世苹,白永飞,韩兴国,等.沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化[J]. 植物生态学报,2004,28(4):515-522.
    [6] 陈拓 , 陈发虎 , 安黎哲 , 等.不同海拔祁连园柏树轮和叶片 δ~(13)C 值的变化 [J].冰川冻土,2004,26(6):767-771.
    [7] 陈拓,马健,冯虎元,等.阜康典型荒漠C3植物稳定碳同位素值的环境分析[J].干旱区地理,2002,25(4):342-345.
    [8] 陈拓,秦大河,任贾文,等.甘肃马衔山平车前叶片 δ~(13)C 的海拔和时间差异[J].西北植物学报,2000,20(4): 672-675.
    [9] 陈拓,杨梅学,冯虎元,等.青藏高原北部植物叶片碳同位素组成的空间特征[J].冰川冻土,2003,25(1):83-87.
    [10] 陈跃 , 周志春 , 吴吉富 , 等.马尾松优良种植材料现实遗传增益验证 [J].林业科学研究,2003,16(2):203-208.
    [11] 池喜梅.不同油松种源光合作用、蒸腾作用和耐旱性的研究[D].山西大学,生态学硕士论文.2006,33.
    [12] 邓松录,狄晓艳,王孟本,等.杨树无性系光合特征的研究[J].植物研究,2006,26(5):600-608.
    [13] 邓雄,李小明,张希明,等.多枝柽柳气体交换特性研究[J].生态学报,2003,23(1):180-187.
    [14] 狄晓艳,王孟本,陈建文,等.杨树无性系PV曲线水分参数的研究[J].西北植物学报,2007,27 (1):98-103.
    [15] 丁明明,苏晓华,黄秦军.欧洲黑杨基因资源稳定碳同位素组成特征[J].林业科学研究,2006,19(3):272-276.
    [16] 冯虎元,安黎哲,陈拓,等.马先蒿属 (Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系[J].冰川冻土,2002, 22(4):377-382.
    [17] 冯虎元,安黎哲,陈拓,等.马先蒿属植物稳定碳同位素组成与环境因子之间的关系[J].冰川冻土,2003,25(1):88-93.
    [18] 冯虎元,陈拓,徐世健,等.UV-B 辐射对大豆生长、产量和稳定碳同位素组成的影响[J].植物学报,2001,7:52-56.
    [19] G. 斯坦黑尔.以色列的灌溉-过去的成就、现在的挑战、未来的展望,农业用水有效性研究[M].北京:科学出版社,1992年.
    [20] 郭学斌,梁爱军,张新波,等.油松种源试验苗期研究初报[J].山西林业科技,1995,4:31-34.
    [21] 郭学斌,梁爱军,赵健康,等.山西北部半干旱地区主要树种基因资源的收集[J].陕西林业科技,1997,1:13-18.
    [22] 郭仲平.数量遗传学分析[M].北京:首都师范大学出版社,1993.
    [23] 韩兴国,严昌荣,陈灵芝,等.暖温带地区几种木本植物碳稳定同位素的特点[J].应用生态学报,2000,11(4):497-500.
    [24] 黄建辉,林光辉,韩兴国.不同生境间红树科植物水分利用效率的比较研究[J].植物生态学报2005,29(4):530-536.
    [25] 蒋 高 明 . 植 物 生 理 生 态 学 研 究 中 的 稳 定 碳 同 位 素 技 术 及 其 应 用 [J]. 生 态 学 杂志,1996,15(2):49-54.
    [26] 景蕊莲 . 耐旱、高 WUE 品种资源及利用 . 生物节水技术及发展前景.香山科学会议 http://www.xssc.ac.cn,2005.
    [27] 李俊,于沪宁,刘苏峡.冬小麦水分利用效率及其环境影响因素分析[J].地理学报,1997,52 (6):551-560.
    [28] 李明财,黎贞发,易现峰,等.青藏高原东部高寒草甸植物δ~(13)C年间变化及其环境分析[J].生态环境,2007,l6(4):1205-121.
    [29] 李世杰.油松局分布区种源地里变异研究初报[J].山西林业科技,1995a,1:12-17.
    [30] 李世杰,吕德勒.油松地理种源-林分—家系3水平的苗期遗传变异分析[J].林业科技通讯,1995b,1:25-26.
    [31] 李相博,陈践发,张平中,等.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J].沉积学报, 1999, 17(2):325-329.
    [32] 李秧秧.碳同位素技术在C3作物水分利用效率研究中的应用[J].核农学报,2000,14(2):115 -121.
    [33] 梁银丽,康绍忠,山仑.水分和氮素水平对小麦碳同位素分辨力和水分利用效率的影响[J].植物生态学报,2000,24(3):289-292.
    [34] 林植芳,林桂珠,孔国辉,等.生长光强对亚热带自然林两种木本植物稳定碳同位素比、细胞间CO2浓度和水分利用效率的影响[J].热带亚热带植物学报,1995,3(2):77-82.
    [35] 林植芳,彭长连,林桂珠.大豆和小麦不同基因型的碳同位素分馏作用与水分利用效率[J].作物学报,2001,27(4):409-414.
    [36] 刘光绣.沙棘(Hippophae L.)属植物的稳定碳同位素特征及遗传多样性研究[D].兰州大学,博士论文,2004a,81.
    [37] 刘光琇,陈拓,安黎哲,等.青藏高原北部植物叶片碳同位素组成特征的环境意义[J].地球科学进展,2004b,19(5):749-753.
    [38] 刘晓宏,秦大河,邵雪梅,等.西藏林芝冷杉树轮稳定碳同位素对气候的响应[J].冰川冻土,2002,24(5):574-578.
    [39] 刘晓宏,赵良菊,Menassie Gasaw等.东非大裂谷埃塞俄比亚段内C3植物叶片δ~(13)C和δ15N及其环境指示意义[J].科学通报,2007,52(2):199-206.
    [40] 陆 钊 华 , 徐 建 民 , 陈 儒 香 , 等 . 桉 树 无 性 系 苗 期 光 合 作 用 特 性 研 究 [J]. 林 业 科 学 研究,2003,16(5):575-580.
    [41] 马剑英,陈发虎,夏敦胜,等.荒漠植物红砂稳定碳同位素组成的空间分布特征[J].第四纪研究,2006,26(6):947-954.
    [42] 马利民,刘禹,赵建夫.贺兰山油松年轮中稳定碳同位素含量和环境的关系[J].环境科学,2003,24(5):49-53.
    [43] 彭鸿,BerndStimm.渭北黄土高原油松人工林生长过程及其与立地和人为干扰的关系[J].陕西林业科技,2003,1:1-6,26.
    [44] 彭祚登.油松种源/家系抗旱性评价与选择的研究[D].北京林业大学,博士论文,2000
    [45] 渠春梅,韩兴国,苏波,等.云南西双版纳片断化热带雨林植物叶片 δ~(13)C 值的特点及其对水分利用效率的指示[J].植物学报,2001,43(2):186-192.
    [46] 容丽.喀斯特石漠化区植物水分适应机制的稳定同位素研究[D].中国科学院研究生院(地球化学研究所),博士学位论文,2006,78.
    [47] 上官周平.小麦~(13)C分辨率和水分利用效率对氮素和水分的响应[J].植物营养与肥料学报,2000,6(3):345-348.
    [48] 苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ~(13)C值及水分利用效率对环境梯度的响应[J].植物生态学报,2000,24(6):648-655.
    [49] 苏培玺,陈怀顺,李启森,等.河西走廊中部沙漠植物δ~(13)C值的特点及其对水分利用效率的指示[J].冰川冻土,2003,25(5):597-602.
    [50] 孙谷畴,林植芳,林桂珠,等.亚热带人工林松树~(13)C/12C比率和水分利用效率[J].应用生态学报, 1993,4(3):325-327.
    [51] 孙双峰,黄建辉,林光辉,等.三峡库区岸边共存松栎树中水分利用策略比较[J].植物生态学报,2006,30(1):57-63.
    [52] 田有亮,郭连生.呼和浩特地区不同种源油松个体光合和水分生理特性的研究[J].干旱区资源与环境,1994,8(3):96-101.
    [53] 万雪琴,夏新莉,尹伟伦,等.不同杨树无性系扦插苗水分利用效率的差异及其生理机制[J].林业科学,2006,42(5):133-137.
    [54] 王国安,韩家懋,刘东生.中国北方黄土区 C3 草本植物碳同位素组成研究.中国科学(D 辑),2003,33(6):550-556.
    [55] 王国安,韩家懋.中国西北 C-3 植物的碳同位素组成与年降水量关系初探[J].地质科学,2001a,36(4):494-499.
    [56] 王国安.中国北方草本植物及表土有机质碳同位素组成[D].中国科学院地质与地球物理研究所博士论文.2001b.
    [57] 王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14 (10):1632-1636.
    [58] 王丽霞,李心清,郭兰兰.中东亚干旱半干旱区C3植物δ~(13)C值的分布及其对气候的响应[J].第四纪研究,2006,26(6):955-961.
    [59] 王沙生,李继刚等.兴城油松种子园无性系生长比较研究[J].北京林学院学报,1985(4):72-83.
    [60] 王思恭,窦春蕊,周信忠.油松不同种源造林效果分析[J].陕西林业科技,1994,4:1-3.
    [61] 旺罗,吕厚远,吴乃琴,等.青藏高原现生禾本科植物的δ~(13)C与海拔高度的关系[J].第四纪研究,2003,23(5):573-580.
    [62] 吴春荣,刘世增,金红喜,等.樟子松在西北干旱沙区的蒸腾日变化[J].西北林学院学报,2003,18(3):16-18.
    [63] 肖瑜.陕西省油松人工林的生产力与生态因素的相关分析[J].植物学报,1987,29(5):549-555.
    [64] 熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志,2005,24(4):417-421.
    [65] 胥晓,杨帆,尹春英,等.雌雄异株植物对环境胁迫响应的性别差异研究进展[J].应用生态学报,2007,18(11):2626-263.
    [66] 徐化成.油松地理变异和种源选择[M].北京:中国林业出版社,1992.
    [67] 徐世健,陈拓,冯虎元,等.新疆乌鲁木齐河上游植物叶片δ~(13)C空间分异的环境分析[J].自然科学进展,2002,12(6):617-620.
    [68] 续九如.林木数量遗传学[M].北京:高等教育出版社,2006:28-31,34-43.
    [69] 续九如.重复力及其在树木育种中的应用[J].北京林业大学学报,1988,10(4):97-101.
    [70] 薛慧勤,甘信民,孙明辉,等.干旱条件下花生水分利用效率与叶片碳同位素辨别力的相关性研究[J].中国油料作物学报,1999,21(1):27-34.
    [71] 严昌荣,韩兴国,陈灵芝,等.暖温带落叶阔叶林主要植物叶片中 δ~(13)C 值的种间差异及时空变化[J].植物学报,1998,40(9):853-859.
    [72] 严昌荣,韩兴国,陈灵芝,等.中国暖温带落叶阔叶林中某些树种的13 C自然丰度:13 C值及其生态学意义[J].生态学报,2002,22(12):2163-2166.
    [73] 严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境关系研究[J].生态学报,2001,21(11):1952-1956.
    [74] 杨成,刘丛强,宋照亮,等.贵州喀斯特山区植物叶片碳同位素组成研究[J].地球与环境,2007,35(1):33-38.
    [75] 杨利民,韩梅,周广胜,李建东.中国东北样带关键种羊草水分利用效率与气孔密度[J].生态学报,2007,27(1):16-24.
    [76] 殷树鹏,张成君,郭方琴,等.植物碳同位素组成的环境影响因素及在水分利用效率中的应用[J].同位素,2008,21(1):46-53.
    [77] 尹伟伦,万雪琴,夏新莉.杨树稳定碳同位素分辨率与水分利用效率和生长的关系[J].林业科学,2007,43(8):15-22.
    [78] 喻方圆,徐锡增 Robert D Guy.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44.
    [79] 张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    [80] 张正斌, 徐萍, 周晓果,等. 作物水分利用效率的遗传改良研究进展[J]. 中国农业科学 2006,39(2):289-294.
    [81] 张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社.2003:12,61.
    [82] 赵良菊,肖洪浪,刘晓宏,等.沙坡头不同微生境下油蒿和柠条叶片δ~(13)C的季节变化及其对气候因子的响应[J].冰川冻土,2005,27(5):747-754.
    [83] 郑凤英,彭少麟,赵平.两种山黄麻属植物在近一世纪里气孔密度和潜在水利利用率的变化植物[J].生态学报,2001,25(4):405-409.
    [84] 郑 淑 霞 , 上 官 周 平 . 近 70 年 来 黄 土 高 原 典 型 植 物 δ~(13)C 值 变 化 研 究 [J]. 植 物 生 态 学报,2005,29(2):289-295.
    [85] 朱 林 , 许 兴 , 李 树 华 , 等 . 春 小 麦 碳 同 位 素 分 辨 率 的 替 代 指 标 研 究 [J]. 西 北 植 物 学报,2006b,26(7):1436-1442.
    [86] 朱林,许兴,李树华,等.宁夏不同生态区小麦碳同位素分辨率与产量收获系数和物候期的相关研究[J].农业科学研究,2006a,27(3):11-15.
    [87] Akhter J, Mahmood K, Tasneem M A, et al.Comparative water use efficiency of Sporobolus arabicus and Leptochloa fusca and its relation with carbon-isotope discrimination under semi-arid conditions [J].Plant and Soil, 2003,249:263-269.
    [88] Anderson J E, Kriedemann P E, Austin M P,et al.Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment[J].Australian Journal of Botany, 2000,48(6):759-775.
    [89] Anyia AO, Archambault DJ, Slaski JJ, et al.Carbon Isotope Discrimination as a Selection Criterion for Improved Water Use Efficiency and Productivity of Barley on the Prairies. Agriculture and Food. North American Barley Researchers Workshop - Papers and Abstracts[A].18th North American Barley Researchers Workshop and 4th Canadian Barley Symposium,Red Deer, Alberta.2005:17-20.
    [90] Araus J L, Slafer G A, Romagosa I,et al.FOCUS: Estimated wheat yields during the emergence of agriculture based on the carbon isotope discrimination of grains: evidence from a 10th millennium BP site on the Euphrates[J].Journal of Archaeological Science.2001,28:341-350.
    [91] Araus J L,Villegas D, Apariclo N,et a1.Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions[J].Crop Science,2003,43(1):170-180.
    [92] Araus J L, Amaro T, Zuhair Y, et a1.Efect of leaf structure and water status on carbon isotope discriminationin field-grown durum wheat[J].Plant Cell and Environment,1997,20:1484-1494.
    [93] Barbour M M, Farquhar G D.Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves [J].Plant, Cell and Environment, 2000,23(5):473-685.
    [94] Bender M M.Variation in the ~(13)C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation [J].Phytochemistry, 1971,10:1239-1244.
    [95] Bert D, Leavitt S W, Dupouey J L.Variations of wood δ~(13)C and water-use efficiency of Abies alba during the last century[J].Ecology,1997,78:1588-1596.
    [96] Bolger T P,Turner N C. Transpiration effciency of threeMediterranean annual pasture species and wheat[J].Oecologia 1998,115:32-38.
    [97] Bonal D, Sabatier D, Montpied P, et al.Interspecific variability of δ~(13)C among trees in rainforests of French Guiana:functional groups and canopy integration[J].Oecologia,2000,124:454-468.
    [98] Brendel O, Pot D, Plomion C,et al.Genetic parameters and QTL analysis of δ~(13)C and ring width in maritime pine[J].Plant Cell Environ, 2002,25:945-953.
    [99] Brooks J R, Flanagan B, Buchmann N, et al.Carbon isotope composition of boreal plants: functional grouping of life forms[J].Oecologia,1997,110:301-311.
    [100] Buchmann N, Brooks JR, Ehleringer JR. Predicting daytime carbon isotope ratios of atmospheric CO2 within forest canopies[J].Functional Ecology,2002, 16:49–57.
    [101] Caldwell M M, Teramura A H, Tevini M,et al.Effects of increased solar ultraviolet radiation on terrestrial ecosystems[J].Journal of Photochemistry and Photobiology B: Biology,1998, 46:40-52.
    [102] Carol S G, Winner W E.Increased in δ~(13)C values of radish and soybean plants caused by ozone[J].New Phytologist,1988,108:489-494.
    [103] Carter K K, Adams G W, Greenwood M S, et al.Early family selection in Jack pine[J]. Canadian Journal of Forestry Research,1990.,20:285-291.
    [104] Cavender-Bares J , Bazzaz FA.Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees[J].Oecologia,2000,124:8-18 ..
    [105] Chen S P, Bai Y F, Han X G.Applications of stable carbon isotope techniques to ecological research[J].Acta Phytoecologca Sin,2002a, 26(5):549–560.
    [106] Chen S P, Bai Y F, Han X G.Variation of Water- Use Efficiency of Leymus chinensis and Cleistogenes squarrosa in Different Plant Communities in Xilin River Basin, Nei Mongol[J].Acta Botanica Sinica,2002b,44(12):1484-1490.
    [107] Chen S P, Bai Y F, Lin G H, et al.Variations in life form composition and foliar carbon isotope discrimination among eight plant communities under different soil moisture conditions in the Xilin River Basin, Inner Mongolia, China[J].Ecological Research, 2005,20:167-176.
    [108] Condon A G, Farquhar G D, Richards R A.Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies[J].Australian Journal of Plant Physiology,1990, 17(1):9-22.
    [109] Condon A G, Richards R A, Farquhar G D.Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat[J].Crop Science,1987,27:996-1001.
    [110] Condon A G, Richards R A, Farquhar G D.The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat[J].Australian Journal of Agricultural Research,1992, 43:935-947.
    [111] Condon AG, Richards R A, Rebetzke GJ, et al.Improving intrinsic water-use efficiency and crop yield. Crop Science,2002, 42:122–131.
    [112] Cordell S.Allocation of nitrogen and carbon in leaves of Met-rosideros polymorpha regulates carboxylation capacity and δ~(13)C along an altitudinal gradient[J]. Funct Ecol, 1999,13:811-818.
    [113] Cowan I R, Lange O L, Green T G A. Carbon dioxide exchange in lichens: determination of transport and carboxylation characteristics[J].Planta,1992,187:282-294.
    [114] Craufurd P Q, Austin R B, Acevedo E,et al.Carbon isotope discrimination and grain yield in barley[J].Field Crop Res,1991, 27:301-313.
    [115] Cregg B M, Olivas-Garcia J M, Hennessey T C.Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains[J].Canadian Journal of Forest Research, 2000,30:428-439.
    [116] Damesin C S, Rambal S, Joffre R.Between tree variations in leaf δ~(13)C of Quercu silex among Mediterranean habitats with different water availability[J].Oecologia, 1997, 111:26-35.
    [117] Damesin C S, Rambal S, Joffre R.Seasonal and annual changes in leaf δ~(13)C in two co-occurring Mediterranean oaks: relations to leaf growth and drought progression[J].Functional Ecology,1998,12:778-785.
    [118] Dawson TE, Mambelli S, Plamboeck AH,,et al.Stable isotopes in plant ecology[J].Annu Rev Ecol Sys,2002,33:507-59.
    [119] Delucia EH, Schlesinger WH.Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants [J].Ecology, 1991, 72:1533-1543.
    [120] Dingkuhn M, Farquhar G D, De Datta S K,et al.Discrimination of ~(13)C among upland rice having different water use efficiencies[J].Australian Journal of Agricultural Research,1991,42:1123-1131.
    [121] Duquesnay A,Breda N,Stievenard M,et al.Changes of tree-ring δ~(13)C and water use efficiency of beech(Fagus sylvatica.) in northeastern France during the past century[J].Plant,Cell and Environment,1998,21,565-572.
    [122] Ebdon J S, Petrovic A M, Dawson T E. Relationship between carbon isotope discrimination, water use efficiency, and evapotranspiration in Kentucky bluegrass[J].Crop Science. 1998,38:157–162.
    [123] Ehdaie B, Hall A E, Farquhar G D et al. Water-use efficiency and carbon isotope discrimination in wheat[J]. Crop Science,1991, 31:1282-1288.
    [124] Ehleringer J R, Cook C S, Tieszen L L. Comparative water use and nitrogen relationships in a mistletoe and its host [J]. Oecologia, 1986,68:279–284.
    [125] Ehleringer J R, Cook C S.Carbon isotope discrimination and xylem D/H ratios in desert plants.Stable Isotopes in Plant Nutrition, Soil Fertility, and Environmental Studies.Vienna, IAEA:1991, 489-497.
    [126] Ehleringer J R, Hall A E, Farquhar G D.Stable Isotopes and Plant Carbon-Water Relations[M].New York: Academic Press,1993,155-172.;247-267.
    [127] Ehleringer J R,Cooper T A.Correlations between carbon isotope ratio and microhabitat in desert plants[J].Oecologia,1988,76(4):562-566.
    [128] Ehleringer J R,Comstock J P, Cooper T A.Leaf-twig carbon isotope ratio differences in photosynthetic-twig desert shrubs[J].Oecologia,1987,71(2):318-320.
    [129] Ehleringer JR. Correlation between carbon isotope discrimination and leaf conductance to water vapor in common beans[J]. Plant Physiol. 1990,93:1422-1425.
    [130] Ehleringer JR.Variation in leaf carbon isotope discrimination in Encelia farinose: implications for growth, competition,and drought survival. Oecologia,1993b,95:340–346.
    [131] El-Sharkawy M A, De Tafur S M.Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics [J].Photosynthetica,2007,45(4):515-526.
    [132] Farmer J G. Problems in interpreting tree-ring δ~(13)C records[J].Nature,1979,279:229-231.
    [133] Farquhar G D, Ehleringer J R, Hubick K T.Carbon isotope discrimination and photosynthesis[J].Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:503-537.
    [134] Farquhar G D, O’Leary M H, Berry J A.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J].Australian Journal of Plant Physiology,1982,9:121-137.
    [135] Farquhar G D, Richards R A.Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes[J].Australian Journal of Plant Physiology, 1984, 11:539-552.
    [136] Flanagan LB, Johnsen KH.Genetic variations in carbon isotope discrimination and its relationship to growth under field conditions in full-sib families of Picea mariana[J].Canadian Journal of Forest Research,1995, 25:39-47.
    [137] Francey R J, Farquhar G D. An explanation of ~(13)C/12C in tree rings[J]. Nature, 1982,297:8-31.
    [138] Francey R J, Gifford R M, Sharkey T A,et al.Physiological influences on carbon isotope discrimination in huon pine (Lagastrobos franklinnu)[J].Oecologia, 1985,44:241-247.
    [139] Frederick C Meinzer, Guillermo Goldstein, et a1.Grantz.Carbon Isotope Discrimination in Coffee Genotypes Grown under Limited Water Supply[J]. Plant Physiol, 1990, 92(1):130–135.
    [140] Friend A D, Woodward F I, Switsur V R.Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and δ~(13)C along altitudinal gradients in Scotland[J].Functional Ecology,1989,3:117-122.
    [141] Garten C T, Taylor G E.Foliar δ~(13)C within a temperate deciduous forest: spatial, temporal,and species sources of variation[J].Oecologia,1992,90:1-7.
    [142] Gomez A G,Michael J S,Power R F,et a1.Soil compaction effects on water status of ponderosa pine assessed through ~(13)C/12C composition[J].Tree Physiology,2002,22(4):459-467.
    [143] Greenwood, Volkaert.Morphophysiological traits as markers for the early selection of conifer genetic families[J].Canadian journal of forest research, 1992,22(7):1001-1007.
    [144] Guehl J M, Fort C, Ferhi A.Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants[J].New Phytologist.1995, 131:149-157.
    [145] Guehl J, Domenach A, Bereau M, et al.Functional diversity in an Amazonian rainforest of French Guyana: A dual isotope approach (d15N and d~(13)C) [J].Oecol,1998,116:316-330.
    [146] Guillemette M, Stephen J B.Carbon isotopes in Ombrogenic peat bog plants as climatic indicators: calibration from and altitudinal transect in Switzerland[J].Organic Geochemistry, 2001,32:233–245.
    [147] Guo G M,Xie G D.The relationship between plant stable carbon isotope composition, recipitation and satellite data,Tibet Plateau,China[J].Quaternary International,2006,144(1):68-71.
    [148] Hafsi M, Pfeiffer WH, Monneveux P. Flag leaf senescence, carbon content and carbon isotope discrimination in durum wheat grown under semi-arid conditions[J].Cereal Research Communications, 2003, 31:161–168.
    [149] Hall A E, Ismail A M, Menendez C M.Implications for plant breeding of Genotypic and drought-induced differences in water-use efficiency, carbon isotope discrimination, and gas exchange.In: Ehleringer J R,et al.(eds.).Stable isotopes and plant carbon-water relation. Academic Press, San Diego, New York.1993, 349-369.
    [150] Hall A E, Mutters R G, Farquhar G D.Genotypic and drought-induced differences in carbon isotope discrimination and gas exchange of cowpea[J].Crop Science, 1992, 32:1-6.
    [151] Hall A E, Mutters R G, Hubick K T,et al.Genotypic differences in carbon isotope discrimination by cowpea under wet and dry field condition[J]. Crop Science, 1990, 30:300-305.
    [152] Hall A E.Adaptation of annual plants to drought in relation to improvements in cultivars[J]. Hort Science,1981,16:37-38.
    [153] Hamerlynck E P, Huxman T E, M cA uliffe J R, et al.Carbon isotope discrimination and foliar nutrient status of L arreatrid entata (creosote bush) in contrasting Mojave Desert soils[J]. Oecologia, 2004, 138:210-215.
    [154] Hubbard R M , Bond B J, Ryan M G.Evidence that hydraulic conductance limits photosynthesis in old Pinus pond erosa trees[J].Tree Physiology, 1999, 19:165-172.
    [155] Hubick K T, Farquhar G D, Shorter R.Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut(Arachis) germplasm[J].Australian Journal of PlantPhysiology,1986,13:803-816.
    [156] Hubick KT,Shorter R,Farquhar G D.Heritability and genotype environmental interaction of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogaea)[J].Australian Journal of Plant Physiology,1988,15:799-813.
    [157] Hultine K R,Marshall J D.Altitude trends in conifer leaf morphology and stable carbon isotope composition[J].Oecologia,2000,123:32-40.
    [158] Huxman T E, Smith M D, Fay P A, et al.Convergence across biomes to a common rain-use efficiency[J].Nature,2004,429:651-654.
    [159] http://www.conference.ac.cn/ictpb.htm
    [160] http://www.distagenomics.unibo.it/wuemed/index.htm
    [161] http://www.generationcp.org/index.php
    [162] http://www.nxkjt.gov.cn/detail.asp?n_id=8372
    [163] http://www.t7online.com
    [164] http://www.xssc.ac.cn
    [165] Impa S M,Nadaradjan S, Boominathan p, et al.Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice[J].Crop Science,2005, 45(6):2517-2522.
    [166] Ismail A M, Hall A E, Bray EA.Drought and Pot Size Effects on Transpiration Efficiency and Carbon Isotope Discrimination of Cowpea Accessions and Hybrids[J].Australian Journal of Plant Physiology, 1994,21(1):23–35.
    [167] Ismail A M, Hall A E.Inheritance of carbon isotope discrimination and water-use efficiency and in diverse cowpea genotypes and isogenic lines[J].Crop Science,1992, 32:7-12.
    [168] Ismail A M.Water-use efficiency, photosynthesis, transpiration and carbon isotope discrimination of contrasting cowpea genotypes[D].Ph.D. Dissertation, University of California, Riverside. 1992
    [169] James Edwin.Grissom. Growth and Physiology of Loblolly Pine (Pinus taeda L.) Seedlings as Affected by Genetics of the Root System[D].North Carolina State University.The Degree of Doctor of Philosophy.2003.
    [170] Johnsen K H, Flanagan L B, Huber D A, et al.Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees[J]. Canadian Journal of Forest Research,1999, 29:1727-1735.
    [171] Johnson D A, Tieszen L L, Tieszen L L.Carbon isotope discrimination: potential in screening cool-season grasses for water limited environments[J].Crop Science,1990,30:338-343.
    [172] Joshua LA,Ann SE.Physiological variation among Populus fremotii populations: short and longterm relationships between δ~(13)C and water availability[J].Tree Physiology, 2001,21:1149-1155.
    [173] Kao W Y,Chang K W.Stable carbon isotope ratio and nutrient contents of the Kandelia candel mangrove populations of different growth forms[J].Botanical Bulletin of Academia Sinica,1998,39:39-45.
    [174] Kao WY, Chiu Y Sh, Ch W H.Vertical Profiles of CO2 Concentration and δ~(13)C Values in a Subalpine Forest of Taiwan[J].Botanical Bulletin of Academia Sinica,2000,41(3):213-218.
    [175] Kim HY.Effects of UV-B radiation on carotenoids, polyamines and lipid peroxidation inrice(Oryza satiza L.)leaves[J].J Korean Environ Sci Soc,1996,5(5):635-642.
    [176] Kogami H,Hanba Y T,Kibe T,et al.CO2 transfer conductance,leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes[J].Plant,Cell and Environment, 2001,24:529-538.
    [177] Korner C, Diemer M.In situ photosynthesis responses to light, temperature, and carbon dioxide in herbaceous plants from low and high altitude[J].Functional Ecology, 1987,1:179-194.
    [178] K?rner C, Farquhar G D, Roksandic Z.A global survey of carbon isotope discrimination in plants from high altitude[J].Oecologia, 1988, 74:623-632.
    [179] K?rner Ch, Diemer M.Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2[J]. Functional Ecology,1994,8:58-68.
    [180] Korner CH, Farquhar GD,Wang S C.Carbon isotope discriminate by plants follows latitudinal and altitudinal trends[J].Oecologia, 1991, 88:30-40.
    [181] Korol R L, Kirschbaum M U F, Farquhar G D.Effects of water status and soil fertility on the C-isotope signature in Pinus radiate[J].Tree Physiology,1999, 19:551-562.
    [182] Kremer A, Xu Li.Relationship between first-season free growth components and later field height growth in maritime pine (Pinus pinaster) [J].Canadian Journal of Forestry Research, 1989,19:690-699.
    [183] Lajtha K, Getz J.Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New-Mexico[J]. Oecologia, 1993, 94:95–101.
    [184] Lauteri M, Pliura A, Monteverdi M C, et al.Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities[J].Journal of Evolutionary Biology, 2004,17(6):1286-1296.
    [185] Lauteri M, Scartazza A, Guido M C, et al. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments[J]. Functional Ecology,1997,11:675-683.
    [186] Leavitt S W, Long A. Evidence for ~(13)C/12C fractionation between tree leaves and wood[J].Nature,1982,298:742-743.
    [187] Leavitt S W,Long A. Stable carbon isotope variability in tree foliage and wood[J]. Ecology,1986, 67:1002-1010.
    [188] Li Ch Y, Ren J, Luo J X et a1.Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations[J].Acta Physiologiae Plantarum, 2004,26:123-129.
    [189] Li Ch Y.Population differences in water-use efficiency of Eucalyptus microtheca seedlings under different water regimes[J].Physiologia plantarum,2000,108: l34-139.
    [190] Li Ch Y, Xu G, Zang R G, et a1.Sex-related differences in leaf morphological and physiological responses of Hippophae rhamnoides along an altitudinal gradient[J].Tree Physiology,2006,27:399-406.
    [191] Li H T, Xia J, Xiang L, et al.Seasonal Variation of δ~(13)C of Four Tree Species:A Biological Integrator of Environmental Variables[J].Journal of Integrative Plant Biology,2005,47(12):1459-1469.
    [192] Marshall J D, Zhang J.Carbon isotope discrimination and water use efficiency in native plants ofthe north central Rockies[J].Ecology,1994,75:1887-1895.
    [193] Martin B, Thorstenson Y R.Stable carbon isotope composition(δ13 C),water-use efficiency and biomass productivity of Lycoperscon esculentum, Lycoperscon pennellii, and the F1 hybrid[J].Plant Physiology, 1988, 88:213-217.
    [194] Martinelli L A, Almeida S, Brown I F, et al.Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rond?nia, Brazil[J].Oecologia,1998,114:170-179.
    [195] Merah O, Deleens E,Souyris I,et al.Ash content might predict carbon isotope discrimination and grain yield in durum wheat[J].New Physiologist, 2001, 149:275-282.
    [196] Merah O,Delens E,Souyris I,et a1.Stability of carbon isotope discrimination and grain yield in durum wheat[J].Crop Science, 2002,41:677-681.
    [197] Miller J M, Williams R J, Farquhar G D.Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia[J].Functional Ecology,2001,15:222-232.
    [198] Monneveux P, Reynolds M P, Trethowan R, et al.Carbon isotope discrimination,leaf ash content and grain yield in bread wheat and durum wheat grown under full-irrigated conditions[J].Journal of Agronomy and Crop Science,2004,190:395-401.
    [199] Moore D J, Nowak R S, Tausch R J.Gas exchange and carbon isotope discrimination of Juniperus osteosperma and Joccidentalis across environmental gradients in the Great Basin of western North America[J].Tree Physiology, 1999, 19:421- 433.
    [200] Morecroft M D, Woodward F I, Marrs R H.Altitudinal trends in leaf nutrient contents, leaf size and δ~(13)C of Alchemilla alpina[J].Functional Ecology,1992,6:730-740.
    [201] Morecroft M D, Woodward F I.Experimental investigations on the environmental determination of δ~(13)C at different altitude [J].Journal of Experimental Botany, 1990,41(231):1303-1308.
    [202] O’Leary M H.Carbon isotope fractionation in plants[J].Phytochemistry,1981,20:553-567.
    [203] Oliver Brendel, Linda Handley, Howard Griffiths.The δ~(13)C of Scots pine (Pinus sylvestris L.) needles: spatialand temporal variations[J].Annals of Forest Science, 2003, 60:97–104.
    [204] Pate J S.Carbon isotope discrimination and plant water use efficiency. In: UnkovichM , Pate J , Mc Neill A, et al.eds. Stable Isotope Techniques in the Study of Biological Processes and Functioning of Ecosystems. Dordrecht: Kluwer Academic, 2001,19-36.
    [205] Pearman G I, Francey R J, Fraser P J B.Climatic implications of stable carbon isotopes in tree rings[J].Nature,1976,260:771-773.
    [206] Pedicino L C, Leavit S W, Betancourt J L, et al.Historical variationsin in δ~(13)Cleaf of herbarium Specimens in the southwestern U.S. [J].Wester North American Naturalist,2002,62(3):348-359.
    [207] Peng S, Laza R C, Khush G S,et al.Transpiration efficiencies of indica and improved tropical japonica rice grown under irrigated conditions[J].Euphytica,1998,103:103-108.
    [208] Pe?uelas J L, Filella I, Terradas J.Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley(Spain) characterized by leaf δ~(13)C and δ15N[J].Acta Oecologica,1999,20:119-123.
    [209] Picon C, Guehl J M., Ferhi A.Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) speciesunder present and elevated atmospheric CO2 concentrations[J].Plant,Cell Environment,1996,19(2):182–190.
    [210] Ponton S, Dupouey J L, Bréda N,et al.Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea[J].Plant,Cell and Environment,2001,24:861-868.
    [211] Prasolova N V, Xu z H, Lundkvist K, et a1.Genetic variation in foliar carbon isotope composition in relation to tree growth and foliar nitrogen concentration in clones of the F1 hybrid between slash pine and Caribbean pine[J].Forest Ecology and Management,2003,172:145-160.
    [212] Prasolova N V, Xu ZH, Farquhar G D, et al.Variation in branchlet delta ~(13)C in relation to branchlet nitrogen concentration and growth in 8-year-old hoop pine families (Araucaria cunninghamii) in subtropical Australia.Tree Physiol. 2000,20(15):1049-1055.
    [213] Rebetzke G J, Condon A G, Richards R A, et al.Selection for reduced carbon-isotope discrimination increases aerial biomass and grain yield of rain fed bread wheat [J]. Crop Science, 2002, 42:739-745.
    [214] Retuerto R, Fernandezlema B, Rodriguezmiloa S, et a1.Gender,light and water effects in carbon isotope discrimination,and growth rates in the dioecious tree Ilex aquifolium[J].Functional Ecology, 2000,14:529-537.
    [215] Rhodenbaugh E J, Pallardy S G.Water stress,photosynthesis and early growth patterns of cuttings of three Populus clones[J].Tree Physiology,1993,13:213-226.
    [216] Robert D Guy, Diane L Holowachuk.Population differences in stable carbon isotope ratio of Pinus contorta Dougl.ex Loud.:relationship to environment, climate of origin, and growth potential[J].Canadian Journal of Botany, 2001,79(3):274-283.
    [217] Sah S P, Brumme R. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal[J].Journal of Forest Science, 2003, 49 (1):19-26.
    [218] Saith K, Kikuirl M, Ishihara K.Relationship between leaf movement of trifoliolate compound leaf and environmental factors in the soybean canopy[J].Japanese Journal Crop Science,1995,64:259-265.
    [219] Saurer M, Fuhrer J, Siegenthaler U.Influence of Ozone on the Stable Carbon Isotope Composition, δ~(13)C, of Leaves and Grain of Spring Wheat (Triticum aestivum L.)[J].Plant Physiology, 1991, 97(1):313–316.
    [220] Saurer M, Siegenthaler U, Schweingruber F.The climate-carbon isotope relationship in tree rings and the significance of site conditions[J].Tellus, 1995,47:320-330.
    [221] Schleser G H, Helle G, Lücke A, et al.Isotope signals as climate proxies:the role of transfer functions in the study of terrestrial archives[J].Quaternary Science Reviews, 1999, 18:927-943.
    [222] Schleser G H, Jayasekera R.δ~(13)C-variations of leaves in forests as an indication of reassimilated CO2 from the soil [J].Oecoolgia, 1985,65:536-542.
    [223] Schulze E D,Williams R J,Farquhar G D,et a1.Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J].Australian Journal ofPlant Physiology, 1998, 25:413- 425.
    [224] Shangguan Z P, Shao M A, Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J].Environmental and Experimental Botany, 2000, 44(2):141-149.
    [225] Sharifi M R, Rundel P W.The effect of vapour pressure deficit on carbon isotope discrimination in the desert shrub Larreatrid entata (creosote bush) [J].Journal of Experimental Botany, 1993, 44:481- 487.
    [226] Smith BN, Madhaven S.Carbon isotope ratios in obligate and facultative CAM plants [A].In: Ting I P & M Gibbs eds.Crassulacean Acid Metabolism. Rockville: American Society of Plant Physiologists, 1982:231-243.
    [227] Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects[J].Oecologia,1997,109:362-367.
    [228] Stanhill G.Irrigation in a Israel:past achievements, present Challenges and future possibilities.In:Shalheveret J,Liu Changming,Xu Yuexian(eds),Water Use Efficiency in Agricultrue.Rehovot Israel:Priel Publishers,1992:63-77.
    [229] Stapper M H, Harris C.Assessing the productivity of wheat genotypes in a Mediterranean climate, using a simulation model[J].Field Crops Research,1989, 20:129-152.
    [230] Stewart G R, Turnbull M H, Schmidt S, et al.~(13)C natural abundance in plant communities along a rain fall gradient:a biological integrator of water availability[J].Australian Journal of Plant Physiology,1995,22:51-55.
    [231] Stuiver M, Braziunas T F.Tree cellulose ~(13)C /12C isotope ratios and climate change [J].Nature, 1987,328:58-60.
    [232] Sun B N,Dilcher D L,Beerling D J,et a1.Variation in Ginkgo biloba L.1eaf characters across a climatic gradient in China[J].Proceedings of the National Academy of Sciences(USA).2003,100:7141-7146.
    [233] Sun Z J, Livingston N J, Guy R D, et al.Stable carbon isotopes as indicators of increased water use efficiency and productivity in white spruce (Picea glauca (Moench) Voss) seedlings[J]. Plant,Cell and Environment,1996, 19:887-894.
    [234] Tamir Klein, Deborah Hemming, Tongbao Lin, et al.Association between tree-ring and needle δ~(13)C and leaf gas exchange in Pinus halepensis under semi-arid conditions[J].Oecologia,2005, 144: 45–54.
    [235] Tans P P, Mook W G.Past atmospheric CO2 levels and the ~(13)C/12C ratios in tree rings [J]. Tellus, 1980,32:268-283.
    [236] Teulat B, Merah O, This D.Carbon isotope discrimination and productivity in field grown barley genotypes [J]. Journal of Agronomy and Crop Science, 2001, 187:33-40.
    [237] Toft N L, Anderson J E, Nowak R S.Water use efficiency and carbon isotope composition of plants in a cold desert environment[J].Oecologia, 1989,80:11-18.
    [238] Vitousek P M, Field C B, Matson P A.Variation in foliar δ~(13)C in Hawaiian Metrosideros polymorpha:a case of internal resistance[J].Oecologia, 1990, 84:362-370.
    [239] Vogel J C, Grootes P M, Mook W G.Isotopic fractionation between gaseous and dissolvedcarbon dioxide [J]. Zeitschrift für Physik, 1970, 230:235-238.
    [240] Walcroft A S, Silvester W B, Grace J C, et al.Effects of branch length on carbon isotope discrimination in Pinus radiata [J].Tree Physiology, 1996,16:281-286.
    [241] Wang G H.Differences in leaf δ~(13)C among four dominant species in a secondary succession sere on the Loess Plateau of China[J].Photosynthetica,2003,41(4):525-531.
    [242] Wang G A, Han J M, Liu DS.The carbon isotope composition of C3 herbaceous plants in loess area of northern China[J].Sci China Ser D.2003b, 46(10):1069-1076.
    [243] Waring R H, Silvester W B.Variation in foliar δ~(13)C values with in tree crowns of Pinus radiata. trees[J]. Tree Physiology, 1994, 14:1203-1213.
    [244] Warren C R, Adams M A.Water availability and branch length determine δ~(13)C in foliage of Pinus pinaster[J].Tree Physiology,2000,20:637-643.
    [245] Warren C R, McGrath J F, Adams M A.Water availability and carbon isotope discrimination in conifers[J].Oecologia,2001,127:476-486.
    [246] Williams D G, Ehleringer J R.Carbon isotope discrimination in three semi-arid woodland species along a monsoon gradient[J].Oecologia,1996,106:455-460.
    [247] Winter K. Properties of phosphoenol pyruvate carbonxylase. In rapidly prepared, desalted leaf extracts of the crassulacean acid metabolism plant Mesembryanthemum crystallinum L.[J]. Planta, 1982,154:298-308.
    [248] Wright G C, Hubick K T, Farquhar G D, et al.Genetic and environmental variation in transpiration efficiency and its correlation with carbon isotopes discrimination and specific leaf area in peanut.In: Ehleringer J R et al.(eds.).Stable isotopes and plant carbon-water relation. Academic Press, San Diego, New York.1993, 247-267.
    [249] Zhang J W, Cregg B.M.Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska[J].USA.Forest Ecology and Management,1996, 83:181-187.
    [250] Zhang J W, Marshall J D, Jaquish B C.Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii[J].Oecologia,1993, 93:80-87.
    [251] Zhang J W, Marshall J D.Population differences in water-use efficiency of well-watered and water -stressed western larch seedlings[J].Canadian Journal of Forest Ressearch, 1994,24:92-99.
    [252] Zheng S X, Shangguan Z P.Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China[J].The Ecological Society of Japan,2007,22:342-353.
    [253] Zheng S X, Shangguan Z P.Studies on variety in the δ~(13)C value of typical plants in Loess Plateau[J]. Acta Phytoecologica Sinica, 2005,29(2):289-295.
    [254] Ziegler H.Stable isotopes in plant physiology and ecology[J].Progress in Botany, 1995,56:1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700