用户名: 密码: 验证码:
金属晶格稳定性与热学性质第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的方向是应用基于密度泛函理论及密度泛函微扰理论的第一原理方法研究金属在压力下的相稳定性及热学性质。材料需要在不同的环境中使用,而压力和温度是描述环境的两个重要参量,因而研究材料在不同压力下的相稳定性与热学性质具有重要的理论意义与实用价值。
     应用基于密度泛函理论的平面波赝势方法计算了部分金属(W、Pt、Be、Mg、Sc、Y、Ti、Zr)在零温下不同结构的总能随压力变化关系,根据焓值得出相转变压力,得到了状态方程。计算了电子结构如态密度曲线及电子布居数,对可能的相变途径进行了讨论。利用密度泛函微扰理论计算了这些金属部分结构的声子谱、弹性常数,据此讨论了不同结构在压力下的力学稳定性。
     利用密度泛函微扰理论在准谐近似下计算了部分金属的自由能与温度关系,由此得出它们的热学性质,如热膨胀系数、定容及定压摩尔热容,讨论了电子对热膨胀及热容的贡献,根据Gruneisen关系讨论了各向异性热膨胀的起因。
     本文的研究结果表明:
     1.在压力下Be将发生hcp→9R→bcc相变,根据焓值判断转变压力分别为4570KBar及5480 KBar。9R相在压力下的出现是其它理论工作未曾考虑的。与其它理论计算不同,本文的计算表明零点能对转变压力的影响可以忽略。Mg在压力下直接发生hcp→bcc相变,转变压力为520 KBar,理论计算与实验符合。根据弹性常数及声子谱计算,Be与Mg的fcc及hcp相在所计算的压力范围内都是力学稳定的。低压下Be的bcc相弹性常数虽然满足稳定性要求,但短波长的横模声子T_([110])[ξξ0]频率为虚数,不满足稳定性要求,因而早期理论工作仅根据弹性常数判断稳定性是不充分的。
     2.在压力下Sc将发生hcp→9R→dhcp→distorted-fcc→Sc-V相变,根据焓值判断转变压力分别为170 KBar、320 KBar、730 KBar及2440 KBar。总能计算表明Y的基态为9R结构,Y在压力下将发生9R→dhcp→distorted-fcc→Sc-V相变,转变压力为70KBar、520 KBar及2200 KBar。计算的零压下Y平衡体积9R相总能仅比hcp相低1meV,而本文的计算收敛精度也是1 meV,因而需要更精确的计算方能做出判断。可以肯定的是零温零压下这两相的总能或焓相差极小,室温下的hcp稳定相应该是热稳定的效应。本文对Sc-V相的计算是其他理论工作没有的。对Sc计算得出的Sc-V相将稳定于2440 KBar以上,与实验得出的2400 KBar相吻合。对Y在高压将出现Sc-V相的结论则有待实验验证。
     3.总能与焓的计算得出W随着压力增加,将发生bcc→fcc相变,转变压力为10840KBar。对Pt的计算表明在14950 KBar将发生fcc→bcc相变。声子谱计算还表明Pt的fcc及hcp相在所计算的压力范围(0~16000 KBar)是力学稳定的。
     Ti随着压力增加,将发生ω→γ→δ→bcc相变,而实验结论为hcp→ω→γ→δ相变。理论计算给出零温下稳定态为ω结构,与实验测得的有限温度下hcp→ω相变数据外推至零温结果一致。实验未能观察到δ→bcc相变,很可能是实验未能保持静水压力,切应力使δ相保持稳定。对Zr的理论计算结果则与实验符合得很好,随着压力增加,将发生hcp→ω→bcc相变。
     4.在密度泛函微扰理论及准谐近似基础上计算的材料热学性质,包括各向异性热学性质,在较宽的温度范围内与实验符合。计算表明Be有一定的各向异性线膨胀,而Mg的性质接近各向同性。对非谐振动各向异性及弹性各向异性的分析表明Be在α方向有更大的热膨胀,主要是因为α方向的柔顺系数更大。Mg的非谐振动与弹性在α与c方向相差很小,因而在相当大的温区有着几乎各向同性的热膨胀。Y的弹性各向异性很小,其各向异性热膨胀源于非谐振动的各向异性。根据弹性的各向异性,Ti和Zr似乎都应在α方向有更大的热膨胀,但它们在c方向的非谐振动更强,Ti的弹性各向异性很小,因而Ti在c方向的热膨胀更大。对Zr,高温时非谐振动的各向异性起了主要作用,使其在c方向的热膨胀更大,而在低温时,弹性各向异性起主要作用,使其α方向有更大的热膨胀。
     5.对热容的计算表明在电子常数较大时电子对热容的贡献不能忽略。在这些金属中只有Be由于电子常数很小,电子的贡献几乎可以完全忽略。Mg与W的电子常数不大,温度不太高时电子的贡献较小,但由于对W的计算温度范围为0~2000 K,因而必须考虑电子对热容的贡献。至于Pt、Y、Ti、Zr,由于电子常数较大,电子对热容的贡献很大,甚至在室温就有显著的贡献。
The dissertation is devoted to the study of phase stabilities under pressure and thermal properties of some metals from first principles within density functional theory (DFT)and density functional perturbation theory(DFPT).Materials are always used under certain circumstance which is often described by pressure and temperature,so the study of phase stabilities under pressure and thermal properties is of great theoretical and practical significance.
     The pressure dependencies of total energy and enthalpy of different structures for some metals(W,Pt,Be,Mg,Sc,Y,Ti,Zr)are calculated with plane wave pseudopotential methods based on density functional theory,and the phase transition pressures are determined.The equations of state(EOS)are obtained.The electronic structures such as density of state(DOS)and electronic population are calculated,and different possible transition paths are discussed.The phonon spectra and elastic constants of some structures are calculated with the density functional perturbation theory(DFPT),and the mechanical stabilities of some structures under pressure are discussed according to these calculations.
     The thermal properties of some metals are investigated by performing DFT and DFPT calculations within the quasiharmonic approximation.The temperature dependence of various quantities such as the anisotropic thermal expansion and the heat capacity are calculated.The electronic contribution to the thermal expansion and heat capacity are discussed.
     The results of this paper show that:
     1.Be undergoes a transition from hcp to bcc via the intermediate phase 9R at 4570 KBar and 5480 KBar respectively.It has never been considered in earlier work that 9R phase might occur under pressure.Unlike earlier work,our calculation shows zeropoint vibration can be neglected when determining transition pressure.Mg undergoes a transition from hcp to bcc at 520 KBar.The calculated and experimental results agree satisfactorily.According to the calculated elastic constants and phonon spectra,both fcc and hcp phases of Be and Mg are mechanical stable under high pressure.The bcc phase of Be is not mechanical stable under ambient pressure because of the softening of its[ξξ0]transverse phonon modes,although its elastic constants satisfies the conditions of mechanical stability.It shows that earlier work which judges phase stability only by elastic constants is not sufficient.
     2.The structures of Sc follow a systematic sequence,from hcp→9R→dhcp→distorted-fcc→Sc-V.The transition pressures are 170 KBar,320 KBar,730 KBar,and 2440 KBar,respectively.Sc-V phase has never been considered in earlier work.The total energy and enthalpy show that 9R phase is the ground state of Y,and discover successive transitions to dhcp,distorted-fcc,Sc-V at 70 KBar,520 KBar,and 2200 KBar, respectively.The observed hcp phase under ambient temperature might be due to the thermal effect.
     3.W undergoes a transition from bcc to fcc at 10840 KBar and Pt from fcc to bcc at 14950 KBar.The calculations of phonon spectra and bcc→fcc and bcc→hcp phase transform path are agreement with the results of total energy and enthalpy.The fcc and hcp phases of Pt are mechanical stable under pressure(0~16000 KBar)according to the phonon spectra.
     Ti undergoesω→γ→δ→bcc transition under pressure according to calculation and the experiment results are hcp→ω→γ→δ.Theωphase is found to be the ground state of Ti and it shows successive transitions toγ,δ,bcc.However,the theoreticalδ→bcc occurs at 1310 KBar,which is not in agreement with the experiment result thatδphase is stable up to 2200 KBar.We suggest that the stability ofδmay be due to nonhydrostatic conditions.
     Zr undergoes a transition from hcp toωand bcc.The theoretical and experimental results agree satisfactorily.
     4.The calculated thermal properties are in good agreement with available experimental data in a wide range of temperature.The different anisotropy of thermal expansion is due to their different anisotropy in elasticity and anharmonicity of vibrations.Be shows larger thermal expansion in a-axis because of its smaller elastic rigidness in the same direction,while the larger thermal expansion in c-axis for Y can be attributed to the larger anharmonicity of vibrations in the same direction.The anisotropic thermal expansion of Ti and Zr are due to their anisotropic Gruneisen parameters,while Mg has almost isotropic thermal expansion because of its isotropic Gruneisen parameters and elasticity.
     5.The calculated specific heat at constant pressure shows that the electronic contribution is negligible for simple metals Be and Mg but not for transition metals,because the electronic constants are very small in considering range of temperature for Be and Mg but large for transition metals.We can expect that the electronic contribution to specific heat is important when the electronic constant is large or the temperature is very high.
引文
[1]Computational and Theoretical Techniques for Materials Science.http://www2.nsa.edu/nsb/20fa.html,1995
    [2]熊家炯.材料设计.天津:天津大学出版社,2000
    [3]Hohenberg P,Kohn W.Inhomogeneous electron gas.Phys.Rev.B,1964;136(3B):864-871
    [4]Kohn W,Sham L J.Self-Consistent Equations including Exchange and Correlation Effects.Phys.Rev.A,1965;140(4A):1133-1138
    [5]Perdew J P,Wang Y.Accurate and simple analytic representation of the electrongas correlation energy.Phys.Rev.,B,1992;45:13244-13249
    [6]Perdew J P,Burke K,Ernzerhof M.Generalized Gradient Approximation Made Simple.Phys.Rev.Lett.,1996;77(18):3865-3868
    [7]Car R,Parrinello M.Unified Approach for Molecular Dynamics and Density-Functional Theory.Phys.Rev.Lett.,1985;55(22):2471-2474
    [8]Andersen O K.Linear methods in band theory.Phys.Rev.B,1975;12(8):3060-3083
    [9]Blaha P,Schwarz K,Sorantin P,Trickey S B.Full-potential,linearized augmented plane wave programs for crystalline systems.Comput.Phys.Commun.,1990;59(2):399-415
    [10]Hedin L.New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem.Phys.Rev.,1965;139(3A):A796-A823
    [11]Hybertsen M S,Louie S G.Electron correlation in semiconductors and insulators:Band gaps and quasiparticle energies.Phys.Rev.B,1986;34(8):5390-5413
    [12]Foulkes W,Mitas L,Needs R,Rajagopal G.Quantum Monte Carlo Simulations of Solids.Rev.Mod.Phys.,2001;73:33
    [13] Liu A, Cohen M. Prediction of New Low Compressibility Solids. Science, 1989; 245(4920): 841-842
    
    [14] Niu C, Lu Y, Lieber C. Experimental Realization of the Covalent Solid Carbon Nitride. Science, 1993; 261(5119): 334-337
    
    [15] Cohen M. Predicting Useful Materials. Science, 1993; 261(5119): 307-308
    
    [16] Corkill J L, Cohen M L. Calculated quasiparticle band gap of β-C3N4. Phys. Rev. B, 1993; 48(23): 17622-17624
    
    [17] Baroni S, Giannozzi P, Testa A. Green's-function approach to linear response in solids. Phys. Rev. Lett., 1987; 58(18): 1861-1864
    
    [18] Giannozzi P, de Gironcoli S, Pavone P, Baroni S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 1991; 43(9): 7231-7242
    
    [19] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H, Abrahams E. Calculated Phonon Spectra of Plutonium at High Temperatures. Science, 2003; 300(5621): 953-955
    
    [20] Moruzzi V L, Janak J F, Schwarz K. Calculated thermal properties of metals. Phys. Rev. B, 1988; 37(2): 790-799
    
    [21] Jin H M, Wu P. First-princiles calculation of thermal coefficient Part 1. Cubic metals. Journal of Alloys and Compounds, 2002; 343(1-2): 71-76
    
    [22] Lu X G, Selleby M, Sundman B. Theoretical modeling of molar volume and thermal. Acta Material, 2005; 53: 2259-2272
    
    [23] Mayer B, Antona H, Botta E, et al. Ab initio calculation of the elastic constants and thermal expansion coeffcients of Laves phases. Intermetallics, 2003; 11(12): 23-32
    
    [24] Narasimhan S, de Gironcoli S. Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA. Phys. Rev. B, 2002; 65(6): 064302(7)
    
    [25] Quong A A, Liu A Y First-principles calculations of the thermal expansion of metals. Phys. Rev. B, 1997; 56(13): 7767-7770
    [26]Xie J,de Gironcoli S,Baroni S,Scheffler M.First-princiles calculation of the thermal properties of silver.Phys.Rev.B,1999;59(2):965-969
    [27]Debernardi A,Alouani M,Dreysse H.Ab initio thermodynamics of metals:Al and W.Phys.Rev.B,2001;63(6):064305(7)
    [28]Wang S Q.First-principles study of the anisotropic thermal expansion of wurtzite ZnS.Appl.Phys.Lett,2006;88(6):061902(3)
    [29]Childs B G.The Thermal Expansion of Anisotropic Metals.Rev.Mod.Phys.,1953;25(3):665-670
    [30]马勤,阎秉钧,康沫狂,杨延清.金属硅化物的应用与发展.稀有金属材料与工程,1999;28(1):10-13
    [31]易丹青,杜若昕,曹昱.Mo5Si3型硅化物的研究及相关的物理冶金学问题.金属学报,2001;37(11):1121-1130
    [32]PB Celis E K,Ishizaki K.Design and Production of the Zr3Ti2Si3 Intermetallic Compound.J.Mater.Res.,1991;6(10):2077-2083
    [33]Ikarashi Y,Ishizaki K,Nagai T,et al.Reduction of thermal expansion anisotropy for intermetallic silicides of 16H crystal structure.Intermetallics,1996;4(Supplement 1):S141-S145
    [34]Schneibel J H,Rawn C J,Watkins T R,Payzant E A.Thermal expansion anisotropy of ternary molybdenum silicides based on Mo_5Si_3.Phys.Rev.B,2002;65(13):134112
    [35]Schneibel J H,Rawn C J.Thermal Expansion Anisotropy of Ternary Titanium Silicides Based on Ti5Si3.Acta Meterialia,2004;52(13):3843-3848
    [36]Schneibel J H,Rawn C J,Payzant E A,Fu C L.Controlling the thermal expansion anisotropy of Mo5Si3 and Ti5Si3 silicides.Intermetallics,2004;12(7-9):845-850
    [37]Fu C L,Schneibel J H.Reducing the thermal expansion anisotropy in Mo5Si3by Nb and V additions:theory and experiment.Acta Materialia,2003;51(17):5083-5092
    [38] Fu C L, Wang X, Ye Y Y, Ho K M. Phase stability bonding mechanism, and elastic cnstants of Mo5Si3 by first-principles calculation. Intermetallcs, 1999; 7(2): 179-184
    
    [39] Fu C L, Wang X. Thermal expansion coefficients of Mo-Si compounds by first-principles calculations. Phil.Mag.Lett., 2000; 80(10): 683-690
    
    [40] Moriarty J A. Ultrahigh-pressure structural phase transitions in Cr, Mo, and W. Phys. Rev. B, 1992; 45(5): 2004-2014
    
    [41] Jayaraman A, Sherwood R C. Pressure-Induced Phase Transformation in Gadolinium and Its Effect on the Magnetic Behavior. Phys. Rev. Lett., 1964; 12(1): 22-23
    
    [42] Jayaraman A, Sherwood R C. Phase Transformation in Samarium Induced by High Pressure and Its Effect on the Antiferromagnetic Ordering. Phys. Rev., 1964; 134(3A): A691-A692
    
    [43] McWhan D B, Stevens A L. Magnetic Properties of Some Rare-Earth Alloys at High Pressures. Phys. Rev., 1967; 154(2): 438-445
    
    [44] Singh N. Effective pair potential and structural phase transitions of Cr, Mo, and W Phys. Rev. B, 1992; 46(1): 90-97
    
    [45] Soderlind P, Ahuja R, Eriksson O, Johansson B, Wills J M. Theoretical predictions of structural phase transitions in Cr, Mo, and W. Phys. Rev. B, 1994; 49(14): 9365-9371
    
    [46] Ruoff A L, Rodriguez C O, Christensen N E. Elastic moduli of tungsten to 15 Mbar, phase transition at 6.5 Mbar, and rheology to 6 Mbar. Phys. Rev. B, 1998; 58(6): 2998-3002
    
    [47] Bercegeay C, Bernard S. First-principles equations of state and elastic properties of seven metals. Physical Review B (Condensed Matter and Materials Physics), 2005; 72(21): 214101
    
    [48] Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa. Physical Review B (Condensed Matter and Materials Physics), 2004; 70(9): 094112
    [49] Holmes N C, Moriarty J A, Gathers G R, Nellis W J. The equation of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics, 1989; 66(7): 2962-2967
    
    [50] Xiang S, Cai L, Bi Y, Jing F, Wang S. Thermal equation of state for Pt. Physical Review B (Condensed Matter and Materials Physics), 2005; 72(18): 184102
    
    [51] Gray D E. American Institude of Physics Handbook. USA: McGraw-Hill Book Company, third edition, 1972
    
    [52] Lam P, Chou M, Cohen M. Temperature- and pressure-induced crystal phase transitions in Be. J.Phys.C, 1984; 17: 2065-2073
    
    [53] Meyer-ter Vehn J, Zittel W. Electronic structure of matter at high compression: Isostructural transitions and approach of the Fermi-gas limit. Phys. Rev. B, 1988; 37(15): 8674-8688
    
    [54] Palanivel B, Rao R, Godwal B, Sikka S. On the relative stability of orthorhombic and hcp phases of beryllium at high pressures. J.Phys.:Condens.Matter, 2000; 12: 8831-8836
    
    [55] Nakano K, Akahama Y, Kawamura H. X-ray diffraction study of Be to megabar pressure. J.Phys.:Condens.Matter, 2002; 14: 10569-10573
    
    [56] VeUsavljevic N, Chesnut G N, Vohra Y K, Weir S T, Malba V, Akella J. Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils. Phys. Rev. B, 2002; 65(17): 172107
    
    [57] Marder A. Beryllium: Effect of Ultra-High Pressure on Resistance. Science, 1963; 142(3593): 664
    
    [58] Schiber J E, O'Sullivan W J. Effect of Pressure on the Fermi Surface of Be. Phys. Rev., 1969; 184(3): 628-634
    
    [59] Reichlin R. Measuring the electrical resistance of metals to 40 GPa in the diamond- anvil cell. Rev. Sci. Instrum., 1983; 54(12): 1674-1677
    [60] Evans W J, Lipp M J, Cynn H, Yoo C S, Somayazulu M, Hausermann D, Shen G, Prakapenka V. X-ray diffraction and Raman studies of beryllium: Static and elastic properties at high pressures. Physical Review B (Condensed Matter and Materials Physics), 2005; 72(9): 094113
    
    [61] Sin'ko G V, Smirnov N A. Relative stability and elastic properties of hcp, bcc, and fcc beryllium under pressure. Physical Review B (Condensed Matter and Materials Physics), 2005; 71(21): 214108
    
    [62] Moriarty J A, McMahan A K. High-Pressure Structural Phase Transitions in Na, Mg, and Al. Phys. Rev. Lett., 1982; 48(12): 809-812
    
    [63] McMahan A K, Moriarty J A. Structural phase stability in third-period simple metals. Phys. Rev. B, 1983; 27(6): 3235-3251
    
    [64] Wentzcovitch R M, Cohen M L. Theoretical model for the hcp-bcc transition in Mg. Phys. Rev. B, 1988; 37(10): 5571-5576
    
    [65] Olijnyk H, Holzapfel W B. High-pressure structural phase transition in Mg. Phys. Rev. B, 1985; 31(7): 4682-4683
    
    [66] Althoff J D, Allen P B, Wentzcovitch R M, Moriarty J A. Phase diagram and thermodynamic properties of solid magnesium in the quasiharmonic approximation. Phys. Rev. B, 1993; 48(18): 13253-13260
    
    [67] Wentzcovitch R M. hcp-to-bcc pressure-induced transition in Mg simulated by ab initio molecular dynamics. Phys. Rev. B, 1994; 50(14): 10358-10361
    
    [68] Greeff C W, Moriarty J A. Ab initio thermoelasticity of magnesium. Phys. Rev. B, 1999; 59(5): 3427-3433
    
    [69] Jona F, Marcus P M. Hexagonal and tetragonal states of magnesium by first principles. Phys. Rev. B, 2002; 66(9): 094104
    
    [70] Errandonea D, Meng Y, Hausermann D, Uchida T. Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction. J.Phys.:Condens.Matter., 2003; 15(3): 1277-1289
    [71] Daane A, Rundle R, Smith H, Spredding F. The Crystal Structure of Samarium. Acta. Cryst, 1954; 7(7): 532-535
    
    [72] Johansson B, Rosengren A. Generalized phase diagram for the rare-earth elements: Calculations and correlations of bulk properties. Phys. Rev. B, 1975; 11(8): 2836-2857
    
    [73] Duthie J C, Pettifor D G. Correlation between d-Band Occupancy and Crystal Structure in the Rare Earths. Phys. Rev. Lett., 1977; 38(10): 564-567
    
    [74] Vohra Y K, Grosshans W, Holzapfel W B. High-pressure phase transformation in scandium. Phys. Rev. B, 1982; 25(9): 6019-6021
    
    [75] Pettifor D G. Theory of the crystal structures of transition metals. Journal of Physics C: Solid State Physics, 1970; 3(2): 367-377
    
    [76] Vohra Y. Electronic basis for omega phase stability in group IV transition metals and alloys. Acta Metall., 1979; 27(10): 1671-1675
    
    [77] Pravica M G, Romano E, Quine Z. X-ray diffraction study of elemental erbium to 70 GPa. Physical Review B (Condensed Matter and Materials Physics), 2005; 72(21): 214122
    
    [78] Vohra Y K, Olijnik H, Grosshans W, Holzapfel W B. Structural Phase Transitions in Yttrium under Pressure. Phys. Rev. Lett., 1981; 47(15): 1065-1067
    
    [79] Wittig J. Pressure-Induced Superconductivity in Cesium and Yttrium. Phys. Rev. Lett., 1970; 24(15): 812-815
    
    [80] Melsen J, Wills J M, Johansson. Prediction of a bcc structure in compressed yttrium. Phys. Rev. B, 1993; 48(21): 15574-15577
    
    [81] Hamlin J J, Tissen V G, Schilling J S. Superconductivity at 17K in yttrium metal under nearly hydrostatic pressures up to 89GPa. Phys. Rev. B, 2006; 73(9): 094522
    
    [82] Wittig J, Probst C, Schmidt F A, Gschneidner K A. Superconductivity in a New High-Pressure Phase of Scandium. Phys. Rev. Lett., 1979; 42(7): 469-472
    [83]Zhao Y C,Porsch F,Holzapfel W B.Evidence for the occurrence of a prototype structure in Sc under pressure.Phys.Rev.B,1996;54(14):9715-9720
    [84]Akahama Y,Fujihisa H,Kawamura H.New Helical Chain Structure for Scandium at 240 GPa.Phys.Rev.Lett.,2005;94(19):195503
    [85]Fujihisa H,Akahama Y,Kawamura H,Gotoh Y,Yamawaki H,Sakashita M,Takeya S,Honda K.Incommensurate composite crystal structure of scandium-Ⅱ.Physical Review B(Condensed Matter and Materials Physics),2005;72(13):132103
    [86]McMahon M I,Lundegaard L F,Hejny C,Falconi S,Nelmes R J.Different incommensurate composite crystal structure for Sc-Ⅱ.Phys.Rev.B,2006;73(13):134102
    [87]冯端,金国钧.凝聚态物理学.北京:高等教育出版社,2003
    [88]许爱国,王光瑞,陈世刚,杨展如.不公度相及公度-不公度相变:一维情形.物理学进展,1999;19(2):201
    [89]McMahon M I,Degtyareva O,Nelmes R J.Ba-W-Type Incommensurate Crystal Structure in Group-V Metals.Phys.Rev.Lett.,2000;85(23):4896-4899
    [90]Schwarz U,Akselrud L,Rosner H,Ormeci A,Grin Y,Hanfland M.Structure and stability of the modulated phase Sb-Ⅱ.Phys.Rev.B,2003;67(21):214101
    [91]Ormeci A,Koepernik K,Rosner H.First-principles electronic structure study of Sc-Ⅱ.Phys.Rev.B,2006;74(10):104119
    [92]Koepemik K,Eschrig H.Full-potential nonorthogonal local-orbital minimumbasis band-structure scheme.Phys.Rev.B,1999;59(3):1743-1757
    [93]Jamieson J C.Crystal Structures of Titanium,Zirconium,and Hafnium at High Pressures.Science,1963;140(3562):72-73
    [94]Jayaraman A,Klement W,Kennedy G C.Solid-Solid Transitions in Titanium and Zirconium at High Pressures.Phys.Rev.,1963;131(2):644-649
    [95]Ahuja R,Wills J M,Johansson B,Eriksson O.Crystal structures of Ti,Zr,and Hf under compression:Theory.Phys.Rev.B,1993;48(22):16269-16279
    [96] Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pol-laine S M, Albers R C. Extended X-Ray Absorption Fine Structure Measurements of Laser-Shocked V and Ti and Crystal Phase Transformation in Ti. Phys. Rev. Lett., 2004; 92(9): 095504
    
    [97] Skriver H L. Crystal structure from one-electron theory. Phys. Rev. B, 1985; 31(4): 1909-1923
    
    [98] Sikka S K, Vohra Y K, Chidambaram R. Omega phase in materials. Prog. Mater. Sci., 1982; 27: 245-310
    
    [99] Xia H, Duclos S J, Ruoff A L, Vohra Y K. New high-pressure phase transition in zirconium metal. Phys. Rev. Lett., 1990; 64(2): 204-207
    
    [100] Xia H, Parthasarathy G, Luo H, Vohra Y K, Ruoff A L. Crystal structures of group IVa metals at ultrahigh pressures. Phys. Rev. B, 1990; 42(10): 6736-6738
    
    [101] J S Gyanchandani S C Gupta S K S, Chidambaram R. Structural stability of hafnium under pressure. Journal of Physics: Condensed Matter, 1990; 2(30): 6457-6459
    
    [102] Petry W, Heiming A, Trampenau J, Alba M, Herzig C, Schober H R, Vogl G. Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium. Phys. Rev. B, 1991; 43(13): 10933-10947
    
    [103] Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Schober H R, Vogl G. Phonon dispersion of the bcc phase of group-IV metals. II. bcc zirconium, a model case of dynamical precursors of martensitic transitions. Phys. Rev. B, 1991; 43(13): 10948-10962
    
    [104] Trampenau J, Heiming A, Petry W, Alba M, Herzig C, Miekeley W, Schober H R. Phonon dispersion of the bcc phase of group-IV metals. HI. bcc hafnium. Phys. Rev. B, 1991; 43(13): 10963-10969
    
    [105] Ye Y Y, Chen Y, Ho K M, Harmon B N, Lindgrd P A. Phonon-phonon coupling and the stability of the high-temperature bcc phase of Zr. Phys. Rev. Lett., 1987; 58(17): 1769-1772
    [106]Rudin S P,Jones M D,Albers R C.Thermal stabilization of the hcp phase in titanium.PRB,2004;69(9):094117(4)
    [107]Silcocok J.An X-ray examination of the to phase in TiV,TiMo and TiCr alloys.Acta Metall.,1958;6(7):481-493
    [108]Rabinkin A,Talianker M,Botstein O.Crystallography and a model of the α→ω;phase transformation in zirconium.Acta Metall.,1981;29(4):691-698
    [109]Dobromyslov A,Taluts N.Phys.Met.Metallogr.,1990;69:98
    [110]Dammak H,Dunlop A,Lesueur D.Study of the irradiation-induced a to ω phase transformation in titanium:Kinetics and mechanism.Philos.Mag.A,1999;79(1):147-166
    [111]Trinkle DR,Hennig RG,Srinivasan SG,Hatch DM,Jones MD,Stokes HT,Albers R C,Wilkins J W.New Mechanism for the α to ω Martensitic Transformation in Pure Titanium.Phys.Rev.Lett.,2003;91(2):025701
    [112]Olijnyk H,Jephcoat A P.Effect of pressure on Raman phonons in zirconium metal.Phys.Rev.B,1997;56(17):10751-10753
    [113]Ostanin S A,Salamatov E I,Trubitsin V Y.Pressure effect on the transverse Γ-point optical phonon in hcp Zr.Phys.Rev.B,1998;58(24):R15962-R15964
    [114]Olijnyk H,Nakano S,Jephcoat A P,Takemura K.Lattice-dynamical studies of Ti in the hcp- and omega-phase by Raman scattering at high-pressure.Physical Review B(Condensed Matter and Materials Physics),2006;74(10):104302
    [115]Vohra Y K,Spencer P T.Novel γ-Phase of Titanium Metal at Megabar Pressures.Phys.Rev.Lett.,2001;86(14):3068-3071
    [116]Akahama Y,Kawamura H,Le Bihan T.New δ(Distorted-bcc)Titanium to 220GPa.Phys.Rev.Lett.,2001;87(27):275503
    [117]Joshi K D,Jyoti G,Gupta S C,Sikka S K.Stability of γ and δ phases in Ti at high pressures.Phys.Rev.B,2002;65(5):052106
    [118]Kutepov A L,Kutepova S G.Crystal structures of Ti under high pressure:Theory.Phys.Rev.B,2003;67(13):132102
    [119]Ahuja R,Dubrovinsky L,Dubrovinskaia N,Guillen JMO,Mattesini M,Johansson B,Le Bihan T.Titanium metal at high pressure:Synchrotron experiments and ab initio calculations.Phys.Rev.B,2004;69(18):184102
    [120]Zener C.Contributions to the Theory of Beta-Phase Alloys.Phys.Rev.,1947;71(12):846-851
    [121]Friedel J.On the stability of the body centred cubic phase in metals at high temperatures.Journal de Physique Lettres,1974;35(4):L59-L63
    [122]Wendel H,Martin R M.Theory of structural properties of covalent semiconductors.Phys.Rev.B,1979;19(10):5251-5264
    [123]谢佑卿.金属材料系统科学.长沙:中南大学出版社,1998
    [124]谢佑卿.金属材料系统科学框架.材料导报,2003;1:1-7
    [125]谢佑卿.确定晶体电子结构的单原子状态子恰法.科学通报,1992;16:1529-1532
    [126]彭浩,谢佑卿,彭坤.用DV-X_α方法与用单原子理论计算单质铁电子结构及性质的比较.有色金属学报,2001;3:477-480
    [127]谢佑卿,杨欣欣,彭坤.贵金属铑和铱的电子结构和物理性质.贵金属,2001;22(4):7-12
    [128]谢佑卿,张晓东.金属Cu的电子结构和物理性质.中国科学A,1993;8:875-880
    [129]谢佑卿,张晓东.金属Ag的电子结构和物理性质.中国科学A,1992;4:418-422
    [130]谢佑卿,张晓东.金属Au的电子结构和物理性质.有色金属学报,1992;2:51-55
    [131]吕维洁,谢佑卿,张迎九.金属锌的电子结构和物理性质.中南工业大学学报,1997;28(1):60-63
    [132]Born M,Huang K.Dynamical Theory of Ctrstal Lattices.Oxford:Clarendon,1954
    [133]von Barth U,Hedin L.A local exchange-correlation potential for the spin polarized case.J.Phys.C,1972;5:1629-1642
    [134]Vosko S J,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis.Can.J.Phys.,1980;58:1200-1211
    [135]Ceperley D M,Alder B J.Ground State of the Electron Gas by a Stochastic Method.Phys.Rev.Lett.,1980;45:566-569
    [136]Hamann D R,Schluter M,Chiang C.Norm-Conserving Pseudopotentials.Phys.Rev.Lett.,1979;43:1494-1497
    [137]Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B,1990;41(11):7892-7895
    [138]Blochl P E,Jepsen O,Andersen O K.Improved tetrahedron method for Brillouinzone integrations.Phys.Rev.B,1994;49(23):16223-16233
    [139]丁大同.固体理论讲义.天津:南开大学出版社,2000
    [140]Barrera G D,Bruno J A O,Barron T H K,et al.Negative thermal expansion.J.Phys.:Condens.Matter,2005;17(4):R217-R252
    [141]Kresse G,Furthmüller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput.Mat.Sci.,1996;6(1):15-50
    [142]Kresse G,Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.Rev.B,1996;54(16):11169-11186
    [143]Perdew J P,Wang Y.Accurate and simple analytic representation of the electrongas correlation energy.Phys.Rev.B,1992;45(23):13244-13249
    [144]Pulay P.Convergence acceleration of iterative sequences,the case of scf iteration.Chem.Phys.Lett.,1980;73(2):393-398
    [145]Mermin N D.Thermal Properties of the Inhomogeneous Electron Gas.Phys.Rev.,1965;137(5A):A1441-A1443
    [146]Methfessel M,Paxton A T.High-precision sampling for Brillouin-zone integration in metals.Phys.Rev.B,1989;40(6):3616-3621
    [147]Gonze X,Beuken J M,Caracas R,et al.First-principles computation of material properties:the ABINIT software project.Computational Materials Science,2002;25(3):478-492
    [148]Troullier N,Martins J L.Efficient pseudopotentials for plane-wave calculations.Phys.Rev.B,1991;43(3):1993-2006
    [149]经福谦.实验物态方程导引.北京:科学出版社,1999
    [150]He D,Duffy T S.X-ray diffraction study of the static strength of tungsten to 69GPa.Physical Review B(Condensed Matter and Materials Physics),2006;73(13):134106
    [151]Wang J,Li J,Yip S,Phillpot S,Wolf D.Mechanical instabilities of homogeneous crystals.Phys.Rev.B,1995;52(17):12627-12635
    [152]Sin'ko G V,Smirnov N A.Ab initio calculations of elastic constants and thermodynamic properties of bcc,fcc,and hcp Al crystals under pressure.J.Phys.:Condens.Matter.,2002;14:6989-7005
    [153]Bain E C.Trans AIME,1924;70:25
    [154]Burgers W G.Physica,1934;1:561
    [155]Kraft T,Marcus P M,Methfessel M,Scheffler M.Elastic constants of Cu and the instability of its bcc structure.Phys.Rev.B,1993;48(9):5886-5890
    [156]Einarsdotter K,Sadigh B,Grimvall G,Ozolins V.Phonon Instabilities in fcc and bcc Tungsten.Phys.Rev.Lett.,1997;79(11):2073-2076
    [157]Ekman M,Sadigh B,Einarsdotter K,Blaha P.Ab initio study of the martensitic bcc-hcp transformation in iron.Phys.Rev.B,1998;58(9):5296-5304
    [158]Chen Y,Fu C L,Ho K M,Harmon B N.Calculations for the transverse N-point phonons in bcc Zr,Nb,and Mo.Phys.Rev.B,1985;31(10):6775-6778
    [159]Gonze X.First-principles responses of solids to atomic displacements and homogeneous electric fields:Implementation of a conjugate-gradient algorithm.Phys.Rev.B,1997;55(16):10337-10354
    [160] Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 1997; 55(16): 10355-10368
    
    [161] Hultgren R. Selected Values of the Thermodynamic Properties of the Elements. USA: American Society For Metals, 1973
    
    [162] Wang Y R, Overhauser A W. Lattice dynamics of lithium at low temperature. Phys. Rev. B, 1986; 34(12): 8401-8405
    
    [163] Gooding R J, Ye Y Y, Chan C T, Ho K M, Harmon B N. Role of non-symmetry-breaking order parameters in determining the martensitic energy barrier: The bcc-to-9R transformation. Phys. Rev. B, 1991; 43(16): 13626-13629
    
    [164] Gooding R, Krumhansl J. Theory of the bcc-to-9R structural phase transformation of Li. Phys. Rev. B, 1988; 38(3): 1695-1704
    
    [165] Smith H G, Berliner R, Jorgensen J D, Trivisonno J. Pressure effects on the martensitic transformation in metallic sodium. Phys. Rev. B, 1991; 43(5): 4524-4526
    
    [166] Fleming G S, Liu S H, Loucks T L. Fermi Surfaces for dhcp La, Nd, and Pr: Relationship to Magnetic Ordering and Crystal Structure. Phys. Rev. Lett., 1968; 21(22): 1524-1526
    
    [167] Schnell I, Jones M D, Rudin S P, Albers R C. Tight-binding calculations of the elastic constants and phonons of hep Zr: Complications due to anisotropic stress and long-range forces. PRB, 2006; 74(5): 054104(12)
    
    [168] Stedman R, Amilius Z, Pauli R, Sundin O. Phonon spectrum of beryllium at 80K. 1976; 6:157-166
    
    [169] Pynn R, Squires G. Proc. R. Soc. Lond. A., 1972; 326: 347-360
    
    [170] Olijnyk H. Unusual broadening and splitting of the K≈0 transverse-optical phonon in hcp Mg at high pressure. J.Phys.:Condens.Matter., 1999; 11: 6589-6594
    
    [171] Kechin V V. Shear modulus collapse of lattices at high pressure. Journal of Physics: Condensed Matter, 2004; 16(10): L125-L129
    [172]Wang L G,Sob M.Structural stability of higher-energy phases and its relation to the atomic configurations of extended defects:The example of Cu.Phys.Rev.B,1999;60(2):844-850
    [173]Mishin Y,Mehl M,Papaconstantopoulos D,Voter A,JDKress.Structural stability and lattice defects in copper:AB initio,tight-binding,and embedded-atom calculations.Phys.Rev.B,2001;63(22):224106
    [174]Monkhorst HJ,Pack J D.Special points for Brillouin-zone integrations.Phys.Rev.B,1976;13(12):5188-5192
    [175]Persson K,Ekman M,Ozolins V.Phonon instabilities in bcc Sc,Ti,La,and Hf.Phys.Rev.B,2000;61(17):11221-11224
    [176]Hamaya N,Sakamoto Y,Fujihisa H,Fuji Y,Takemura K,Kikegawa T,Shimomura O.Crystal strucutre of the distorted FCC high-pressure phyase of praseodymium.J.Phys.:Condens.Matter.,1993;5:L369-L374
    [177]Chesnut G N,Vohra Y K.Phase transformation in lutetium metal at 88 GPa.Phys.Rev.B,1998;57(17):10221-10223
    [178]Grosshans W A,Vohra Y K,Holzapfel W B.Evidence for a Soft Phonon Mode and a New Structure in Rare-Earth Metals under Pressure.Phys.Rev.Lett.,1982;49(21):1572-1575
    [179]Grosshans W A,Holzapfel W B.Atomic volumes of rare-earth metals under pressures to 40 GPa and above.Phys.Rev.B,1992;45(10):5171-5178
    [180]de Fontaine D,Buck O.A Monte Carlo simulation of the omega phase transformation.Philos.Mag.,1973;27(4):967-983
    [181]Sinha S K,Brun T O,Muhlestein L D,Sakurai J.Lattice Dynamics of Yttrium at 295 K.Phys.Rev.B,1970;1(6):2430-2441
    [182]Maradudin A A,Fein A E.Scattering of Neutrons by an Anharmonic Crystal.Phys.Rev.,1962;128(6):2589-2608
    [183]Stassis C,Arch D,Harmon B N,Wakabayashi N.Lattice dynamics of hcp Ti.Phys.Rev.B,1979;19(1):181-188
    [184]Stassis C,Zarestky J,Arch D,McMasters O D,Harmon B N.Temperature dependence of the nomal vibratioanl modes of hcp Zr.Phys.Rev.B,1978;18(6):2632-2642
    [185]Fisher E S,Renken C J.Single-Crystal Elastic Moduli and the hcp→bcc Transformarion in Ti,Zr,and Hf.Phys.Rev.,1964;135(2A):A482-A494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700