用户名: 密码: 验证码:
直流激电反演中的线性与非线性方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球物理反演理论和方法发展至今,凝聚了历代科学家和实践者的智慧,已成为今天人们用于揭示地球奥秘的有效工具。地球物理反演作为地球物理学科的重要组成部分,已成为地球物理勘探数据处理中的一项核心技术,其反演结果为地质推断解释提供了有利的依据。直流激电法作为地球物理勘探方法的一个重要分支,在能源、矿产及工程勘查中发挥着重要作用。近年来,随着高密度、高精度电法仪器发展,其应用领域也在逐步拓宽,观测位置也从地面向水中、坑道及井中等复杂情况发展。与此同时,人们对其勘探和解释精度的要求也在不断提高,那么作为直流激电数据处理的一项核心技术——反演,也将面临着新的挑战。本文主要针对直流激电数据反演中的线性与非线性方法进行研究,着重探讨如何提高反演结果的分辨率,减少反演的多解性,以及如何增强反演过程的稳定性和健全性等问题。
     在第二章中,首先从最小二乘广义线性反演方程出发,引出正则化的概念及正则化技术的基本思想;然后从正则化参数的选择、稳定化泛函的构造、引入某种先验约束及修正迭代步长等几个方面探讨了广义线性反演的正则化技术,以此改善反演方程的病态特征,抑制反演过程的不稳定性,最终达到提高反演分辨率的目的。
     在第三章中,考虑到在地球物理勘探过程中,由于受非高斯噪音的影响,使采集的数据含有突变噪音,如果仍然采用基于最小二乘准则的广义线性反演方法进行反演,将会造成反演假象,进而可能导致错误解释。据此,笔者提出了混合范数的最优化方法,即根据观测数据品质的优劣,对数据空间和模型空间分别采用不同的范数进行测度,达到压制干扰突出有用异常的目的。由于混合范数的引入,增加了线性反演方程的复杂性,对其求解更加困难。因此,通过将加权矩阵规范化,并采用混合范数下迭代再加权阻尼共轭梯度算法进行求解,使得问题得到解决。最后,通过对含有和不含有猝发噪音的模拟电阻率数据进行反演,验证了混合范数下最优化反演方法的可行性和有效性。
     在第四章中,从最小二乘广义线性反演的角度,探讨了直流激电数据的广义线性反演方法;在偏导数矩阵的计算过程中,通过将互换原理与Broyden拟牛顿技术相结合的计算方式,可大大提高反演的运算速度。然后对三种观测方式的直流激电数据反演中所涉及到一些技术问题加以解决和完善。对于垂直激电测深(VES)二维反演,主要从正反演所采用的双网格系统、正演模拟的误差校正以及反演中初始模型的给定三个方面探讨如何提高正演的精度和反演的分辨率;对于电阻率最小二乘间歇反演,提出了一种同时反演所有不同时刻观测数据的新方法,即通过一次反演过程来获得所有不同时刻的地下模型。在反演过程中,引入时间和空间稳定化泛函,将不同时刻的观测数据联系起来,可极大的提高反演的分辨率和减少反演的多解性;对于复杂条件下的三维直流激电数据反演,可以说它是一个复杂的系统工程,要涉及到多个重要环节,如起伏地表大量网格节点的高程插值、地下介质的网格剖分、正演中刚度矩阵元素的存储及其方程的求解以及正演的计算精度和效率问题等。笔者对这些问题逐一进行了研究,使三维直流激电反演中所涉及的问题得到进一步完善。最后,对起伏地形条件下的三维直流激电数据进行反演,验证方法的有效性。
     在第五章中,由于地球物理反问题大多都具有多参数、多极值和非线性的特点,线性或拟线性反演方法往往得到的只是局部最优解,并且反演结果常常与初始模型有关,如果初始模型选择的合适,它可以得到较好的结果,反之,还可能造成反演的假象。而以随机过程为基础的全局最优化反演方法不受确定规则的限制,自由的在模型空间内随机搜索,这种较强的搜索能力能够保证反演结果基本上是全局最优或次最优解。本章主要对非线性全局最优化方法中的模拟退火算法和遗传算法进行研究。在简单介绍方法原理的基础上,着重对全局与局部优化方法以及全局与全局优化方法相结合的混合方法进行深入研究,以提高算法的全局寻优性能。最后通过对直流激电测深曲线进行反演,验证了非线性混合反演方法的有效性。
Theory and methods of geophysical inversion developed up to now, agglomerating the intelligence of many scientists and practicers, and it had became a valid tool that people revealed the profound mystery of the Earth. Geophysical inversion was an important section of geophysical branch of knowledge, and it had become a core technique of the geophysical data processing, the inverted result provided a beneficial basis for the geological interpretation. Direct current induced polarization method was an important branch of geophysical exploration methods, which played an important part in the energy, mineral resources and engineering exploration. In recent years, with the development of the high density and high precision instrument of electrical method, the applied field of electrical surveying is in continuous evolution, the survey space is gradually expanding from ground to some complex quomodo of underwater, sap and borehole etc. At the same time, people's request for the exploration and interpretation precision is also raising continuously, so, the inversion acting as a core technique of data processing of direct current induced polarization, which will be also facing with new challenge. In this dissertation, we will carry on an investigation in the linear and nonlinear inversion methods of direct current induced polarization measurements, emphasizing to study how to improve the resolution and reduce the multisolution of inverted result, and how to enhance the stabilization and robustness etc.
     In the chapter 2, firstly, the concept of regularization and idea of regulation technique were introduced beginning with the generalized linear inversion equation of least squares method. Then, we studied the regularization techniques of generalized linear inversion from several aspects, for instance, the choice of regularization parameter, the design of stabilizing functionals, the introduce of some prior restriction and the modification of iteration step etc, whicd can improve the ill-posedness of inversion equation and restrain the non-stability of inversion process and heighten the resolution of inversion result finally.
     In the chapter 3, we considered that geophysical exploration work was often influenced by the non-Gaussian noise and made the data set of acquisition contain some false data, it could lead to the artifact of inversion and the mistake of interpretation if the data set containing non-Gaussian noise was inverted using generalized linear inversion method based on the least squares principle. Thereby we put forward the optimized inversion method using mixed norm, that is to say, according to the good or poor quality of observed data, the data and model space is measured by different norm, which can gain the ends of inhibiting the disturbance and giving prominence to the useful abnormity. Because of the introduction of mixed norm, which increases the complexity of linear inversion equation, it is more difficult to solve the linear equation than ever. Therefore the problem was settled by normalizing the weighted matrix and solving the linear inversion equation of mixed norm using the iteratively reweighted damping conjugate gradient algorithm. At last, we verified that the optimized inversion method based on mixed norm is workable and effective through inverting the simulated resistivity data containing and not containing abrupt noise.
     In the chapter 4, we discussed the generalized linear inversion method of direct current IP data from the angle of the least squares method. The computed speed of inversion can be greatly raised by calculating the partial derivatives matrix combining the reciprocity principle with Broyden's quasi-Newton method. Then we solved and improved some technique problems concerning dicrect current IP data inversion for three observed methods. For the 2D inversion of vertical IP sounding data, we studied how to raise the precision of forward and resolution of inversion from three aspects of using dual-grid system, modifing the forward error and giving the initial inversion model. For the least squares time-lapse inversion of resistivity data, we put forward a new method to invert all data sets collected at different time simultaneously, namely get all earth models of different time through only one inversion process. In the inversion, we combined all data sets acquired at different time by introducing the stability functional in time and space to objective function, which could greatly improve the stability and reduced the multi-solution. For the 3D inversion of direct current IP data in complex earth condition, we can say that it is a complex systemic engeering being involved to many important taches, for example, the elevation interpolation of large numbers of gridding nodes on the rolling ground, gridding divition of underground, the storage of rigid matrix elements and the solution of its equation in the forward and the precision and efficiency of forward simulation etc.We studied these problems one by one, which made some problems concerning 3D inversion of direct current IP data be improved further. At last, we verified the effectiveness of method by means of inverting the dicrect current IP data of 3D rolling terrain.
     In the chapter 5, linear and quasi-linear inversion method can only get the local optimum solution because the geophysical inverse problems are of the characters of multi-parameters, multi-extrema and non-linearity, and the inversion result is related to the initial modeling, we can get good solution if the initial model choose is suitable, otherwise can lead to the artifact of inversion. Whereas the global optimum inversion method based on random process is not limited by the fixed rule, it can freely search the optimized solution in the model space, this powerfully searching ability ensures that the inversion solution basically is the global optimum or hypo-optimum solution. This chapter mainly studied the simulated annealing algorithm and genetic algorithm belonging to non-linear global optimum method. We deeply studied the mixed methods of combining the global with the global and the global with the global optimum method on the foundation of simply introducing the methods amd principles, the mixed method can raise the global searching ability of algorithm. At last, we verified the effectiveness of mixed inversion method by inverting the dicrect current IP sounding data.
引文
[1]杨文采.地球物理反演的理论与方法[M].地质出版社,1996.
    [2]Backus,G.E.,and Gilbert,J.F.,1967,Numerical application of a formulism for geophysical problem[J],Geophys.J.R.astr.Soc.,13,247-276.
    [3]Backus,G.E.,and Gilbert,J.F.,1968,T he resolving power of gross earth data[J].Geophys.J.R.astr.Soc.,16,169-205.
    [4]Backus,G.E.,and Gilbert,J.F.,1968,T he resolving power of gross earth data[J].Geophys.J.R.astr.Soc.,16,169-205.
    [5]Wiggins,R.A.,1972,The generalized linear inverse problem:Implication of surfacewaves and free oscillations for earth structure[J].Rev.Geophys.Space Phys.,10,251-285.
    [6]Jackson,D.D.,1972,Interpretation of inaccurate,insufficient,and inconsistent data[J].Geophys.J.R.astr.Soc.,28,97-109.
    [7]Parkcr,R.L.,1976,understanding inverse theory[J].Ann,Rev.Earth Planet,Sci.,5,35-64.
    [8]艾伯特.塔兰托拉.反演理论—数据拟合和模型参数估计.刘福田译.学术出版社,1989.
    [9]王家映.地球物理反演理论[M].中国地质大学出版社,1998.
    [10]付良魁等.应用地球物理教程—电法 放射性 地热.地质出版社,1991.4.
    [11]Coggon,J.H.,Electromagnetic and electrical modeling by the finite element method.Geophysics,1971,36(2),132-151.
    [12]Rijo L.,Modeling of electric and electromagnetic data.Ph.D.dessertation,1977,Univ.of Utah.
    [13]Jeffey J,Daniels.Three-dimensional reesistivity and induced-polarization modeling using buried electrodes.Geophysics,1977,42(5),1006-1019.
    [14]Dey,A.,Morrison,H.F.,Resistivity modeling for arbitrarily shaped three-dimensional structures.Geophysics,1979,44,p753.
    [15]周熙襄,钟本善.有限单元法在直流电法勘探正问题中的应用.物化探电子计算技术,1980.2.
    [16]周熙襄,电法勘探正演数值模拟的若干结果.地球物理学报,VOL.26,NO.5,1983.9.
    [17]Pelton,W.H.,Rijo,L.,and Swift,Jr.,C.M.,Inversion of two-dimensional resistivity and induced-polarization data.Geophysics,1978,43,788-803;
    [18]Petrick,W.R.,Jr.,Sill,W.R.,and Ward,S.H.,Three dimensional resistivity inversion using alpha centers,Geophysics,1981,46,1148-1163.
    [19]Sasaki,Y..Automatic interpretation of induced polarization data over two-dimensional structures.Memoirs of the Faculty of Engineering,Kyushu University,1982,42:59-74.
    [20]Tripp A C,Hohmann G W,Swift C M Jr.Two dimensional resistivity inversion.Geophysics,1984,49:1708-1717.
    [21]Smith N.C.,Vozoff K..Two-dimensional DC resistivity inversion for dipole-dipole data.Trans Geosci Remote Sensing,1984,22:21-28.
    [22]Shima,H.and Sakayama.T..Resistivity tomography:An approach to 2-D resistivity inverse problems,57~(th)SEG,Expanded Abstracts,204-2D7.1987.
    [23]Shima,H.and Saito.H..Application of resistivity tomography for detection of faults and evaluation of their hydraulic continuity:some numerical experiments,58~(th).SEC,Anaheim,Expanded Abstracts,204-207,1988.
    [24]Shima,H..Effects on reconstructed images of surrounding resistivity structures in resistivity tomography.59~(th).SEG,Dallas,Expanded Abstracts,385-389,1989.
    [25]Shima,H..Two dimensional automatic resisitivity inversion technique using alpha centers,Geophysics,1990,55:682-694.
    [26]Shima,H.,2-D and 3-D resistivity image reconstruction using crosshole data.Geophysics,1992,57,1270-1281;
    [27]Park,S.K.,and Van,G.P.,Inversions of pole-pole data for 3-D resistivity structure beneath arrays of electrodes,Geophysics,1991,56,951-960.
    [28]Li,Y.,Oldenburger,D.W.,Approximate inverse mappings in DC resistivity problem.Geophysical Journal International,1992,109,343-362.
    [29]Li,Y.,Oldenburg,D.W.,Inversion of 3-D DC resistivity data using an approximate inverse mapping.Geophysical Journal International,1994,116,527-537.
    [30]庄浩,三维电阻军层析成像研究,博士学位论文,中南工业大学,1998.
    [31]Sasaki Y.3-D resistivity inversion using the finite-element method.Geophysics,1994,59:1839-1848.
    [32]Zhang,J.,Mackie,R.L.,Madden,T.R.,3-D resistivity forward modeling and inversion using conjugate gradients.Geophysics,1995,60,1313-1325.
    [33]吴小平,徐果明,李时灿.利用不完全Cholesky共扼梯度法求解点源三维地电场.地地球物理学报,1998,41(6):848-854.
    [34]吴小平,徐果明,李时灿.解大型稀疏方程组的ICCG方法及其计算机实现.煤田 地质与勘探,1999,27(6):54-56.
    [35]吴小平,徐果明.利用共扼梯度法的电阻率三维反演研究.地地球物理学报,2000,43(3):420-427.
    [36]吴小平,汪彤彤.利用共扼梯度方法的电阻率三维反演若干问题研究.地震地质,2001,23(2):321-327.
    [37]吴小平,汪彤彤.利用共扼梯度方法的电阻率三维有限元正演.地球物理学报,2003.46(3):428-432.
    [38]Oldenburg,D.W.,Li,Y.,Inversion of induced polarization data.Geophysics,1994,59:1327-1341.
    [39]Li,Y.,Oldenburg D.W..3-D inversion of induced polarization data.Geophysics,1999,65:1931-1945.
    [40]毛先进.边界积分方程和以其为基础的电阻率层析成像.博士学位论文,中南工业大学,1997.
    [41]毛先进,鲍光淑.一种适于电阻率成像的正演新方法.地球物理学报,1998,41:385-393,增刊.
    [42]毛先进,鲍光淑.2.5维电阻率成像的新方法.物探与化探,1999,23:150-152.
    [43]底青云,王妙月,电流线追踪电位电阻率层析成象方法初探,地球物理学进展,1997,12:27-35.
    [44]底青云,1998.电阻率层析成像方法研究.博士学位论文.中国科学院地球物理所。
    [45]底青云,上妙月.积分法三维电阻率成像.地球物理学报,2001,44:843-851.
    [46]阮百尧,徐世浙.电导率分块线性变化二维地电断面电阻率测深有限元数值模拟.地球科学,1998,23:303-307.
    [47]阮百尧,村上裕,徐世浙.激发极化数据的最小二乘二维反演方法,地球科学,1999,24:619-624.
    [48]阮百尧,村上裕,徐世浙.电阻率/激发极化法数据的二维反演程序.物探化探计算技术,1999,21:116-125.
    [49]阮百尧.三角单元剖分电导率分块连续变化点源二维电场有限元数值模拟.广西科学,2001,8:1-3.
    [50]熊彬,阮百尧.电位双二次变化二维地电断面电阻率测深有限元数值模拟.地球物理学报,2002,45:285-294.
    [51]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元模拟.地球物理学报,2002,45:131-137.
    [52]Rothman D.H..Automatic estimation of large residual static correction, Geophysics,1986,51:323-346.
    [53]Stoffa P.L.and Sen M.K..Nonlinear multi-parameter optimization using genetic:inversion of plane wave seismograms.Geophysics,1991,56:1794-1810.
    [54]侯安宁,何樵登.地震弹性波参数的非线性数值反演.石油地球物理勘探,1994,29:469-473。
    [55]陶春辉,何樵登,王晓春.用遗传算法反演层状弹性介质.石油地球物理勘探,1994,29:382-386。
    [56]王兴泰,李晓芹,孙仁国.电测深曲线的遗传算法反演.地球物理学报,1996,39:280-284.
    [57]Raghu K.Chunduru,Mrinal K.Sen,and Paul L.Stoffa.2D resistivity inversion using spline parameterization and simulated annealing.Geophysics,1996,61:151-161.
    [58]卢元林,王兴泰,王若等.电阻率成像反演中的模拟退火方法.地球物理学报,1999,42(增刊):225-233.
    [59]Carlos Calderron-macias,Mrinal K.Sen and Paul L.Stoffa.,Artificial neural networks for parameter estimation in Geophysics,Geophysical Prospecting;2000,48:21-47.
    [60]Gad EI-Qady and Keisuke Ushijima.Inversion of DC resistivity data using neural networks.Geophysical Prospecting,2001,49:417-430.
    [61]吉洪诺夫,阿尔先宁.不适定问题的解法.王秉枕译,北京:地质出版社,1979。
    [62]Hansen P.C.,"Regularization Tools:A Matlab Package for Analysis and solution of Discrete Ill-posed Problems",Numerical Algorithms,6(1994).pp.1-35.
    [63]陈小斌,赵国泽,汤吉等.大地电磁自适应正则化反演算法.地球物理学报,2005,48:937-946.
    [64]G.E.Forsythe,M.A.Malcolm,C.B.Moler著.计九三译,计算机数值计算方法。清华大学出版社,1987。
    [65]杨文采.用于位场数据处理的广义反演技术,地球物理学报,1988(29):283-291。
    [66]夏江海.奇异值分解在位场资料处理中的应用,物探化探计算技术,1989(11):93-98。
    [67]何昌礼.解病态线性方程组的奇异值分解法及其应用。中国地质大学出版社,1990。
    [68]Golub,G.H.and van Loan,C.F..Matrix Computations.The Johns Hopkins University Press,1996.
    [69]Golub Gene H.,Michael Heath and Grace Wahba.Generalized cross-validation as a method for choosing a good ridge parameter,Technometrocs,Vol.21,No.2,May 1979,pp215-222.
    [70]Golub Gend H.and Urs Von Matt.Generalized cross-validation for large scale problems,Technical report,TR-96-28,Swiss Center for Scientific Computing,sep.1996.
    [71]Hansen P.C.,The use of the L-curve in the regularization of discrete ill-posed problems,SIAM J.Sci.Comput.Vol.14,1993,pp.1487-1503.
    [72]袁亚湘等,最优化理论与方法,科学出版社,1997.1。
    [73]周竹生,赵荷晴。广义共轭梯度算法.物探与化探,1996,20(5):351-357。
    [74]李祺。物探数值方法导论.地质出版社,1991。
    [75]Constable,S.C.,Parker,R.L.,and Constable,C.G.,Occam's inversion:A practical algorithm foe generating smooth models from electromagnetic sounding data.Geophysics,1987,52,289-300.
    [76]Li,Y.,Oldenburg D.W..Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method.Geophys.J.Int.,2003,152:251-265.
    [77]Oldenburg,O.W..The inversion and interpretation of gravity anomalies.Geophysics,1974,39:526-536.
    [78]Inman,J.R..Resistivity inversion with ridge regression.Geophysics,1975,40:798-817.
    [79]Oristaglio,M.L.,Worthington M H.Inversion of surface and borehole electromagnetic data for two dimensional electrical conductivity models.Geophysical prospecting.1980,26:633-657.
    [80]Gjoystdal,H.,Ursin,B.Inversion of reflection times in three dimensions.Geophysics,1981,46:972-983.
    [81]Sharma,S.P,and Kaikonen,P.,Two-dimensional non-linear inversion of VLF-R data using simulated annealing.Geophysical Journal International,1998,133:649-668.
    [82]王兴泰,李晓芹,孙仁国.电测深曲线的遗传算法反演.地球物理学报,1996,39(2):280-284.
    [83]Zhang,Z.,and Zhou,Z..Real-time quasi 2-D inversion of array resistivity logging data using neural networks.Geophysics,2002,67:517-524.
    [84]De Groot-Hedin C,Constable S.C..Occam's inversion to generate smooth,two- dimensional models from magnetotelluric data.Geophysics,1990,55(12):1613-1624.
    [85]Ellis R G,Oldenburg D W.Applied geophysical inversion.Geophysical Journal International,1994,116:5-11.
    [86]Scales,J.A.,Gersztenkorn,A.,Treitel,S.,and Lines,L.R.,1988,Robust optimization methods in geophysical inverse theory:58th Ann.Internat.Mtg,Session:S7.1.
    [87]Darche,G.,1989,Iterative L1 deconvolution:Stanford Exploration Project Report,61:281-302.
    [88]Nichols,D.,1994,Velocity-stack inversion using Lp norms:Stanford Exploration Project Report,82:1-16.
    [89]王兴泰等,电阻率图象重建的佐迪(zohdy)反演及应用效果,物探与化探,VOL.20,NO.3,1996.6。
    [90]王若等,改进的佐迪反演方法及在考古中的应用研究,工程地质学报,VOL.7,NO.3,1999.9。
    [91]阮百尧等,电阻率影像法及在水文和工程地质中的应用,工程勘察,2000年第1期。
    [92]何玉贵等,高密度电阻率法二维反演在工程勘探中的应用,物探与化探,VOL.26,NO.2,2002.4。
    [93]邓居智等,高密度电阻率法在探测水坝隐患中的应用,华东地质学院学报,VOL.24,NO.4,2001.12。
    [94]单娜琳,阮百尧,程志平.二维有限元反演法在金属矿电法勘探中的应用.桂林工学院学报,Vol.20 Sup.2000.5,P.14-21.
    [95]Seigel,H.O.,Mathematical formulation and type curves for induced polarization.Geophysics,1959,24,547-565.
    [96]Oldenburg,D.W.,Li,Y.,Inversion of induced polarization data.Geophysics,1994,59,1327-1341.
    [97]姚文斌.电测深数值计算和解释入门.北京:地质出版社,1989,P.129-141.
    [98]阮百尧.视电阻率对模型电阻率的雅克比矩阵计算方法,地质与勘探,VOL.37,NO.6,2001.11。
    [99]罗延钟等.电子计算机在电法勘探中的应用.武汉地质学院出版社,1987.8.
    [100]阮百尧,徐世浙.二维直流电阻率测深曲线的快速反演。物探与化探,VOL.20,NO 6,1996.10。
    [101]Torres-Verdin,C.Druskin,V.Fang.A dual-grid nonlear inversion technique with applications to the interpretation of dc resistivity data.Geophysics 65,2000,1733-1745.
    [102]阮百尧。直流电阻率测深曲线解释中的直接反演法.物探化探计算技术,1999,21:118-123.
    [103]李庆扬,王能超,易大义。数值分析。武汉:华中理工大学出版社,1999年。
    [104]张宏。K剖面法应用初探。长沙交通学院学报,1996年6月,第12卷,第2期:33-37。
    [105]敬容中,林剑,肖志强。K剖面法在岩溶勘查中的应用,地质与勘探,2002年3月,第38卷,第2期:78-81。
    [106]Loke,M.H.,1999,Time-Lapse resistivity imaging inversion,Proceeding of the 5~(th)meeting of environmental and engineering European,Em1,Budapest,Hungary.
    [107]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像(D).博士学位论文,中南大学,2003.
    [108]吴小平.非平坦地形条件下电阻率三维反演.地球物理学报,2005,48:932-936.
    [109]芮小平,余志伟,许友志等.多重二次曲面插值法在地质曲面拟合中的应用,中国矿业大学学报,2000,29(6):377-380.
    [110]熊彬,阮百尧,罗延钟.复杂地形条件下直流电阻率异常三维数值模拟研究,地质与勘探,2003,30(4):60-64.
    [111]徐世浙.地球物理中的有限单元发.北京:科学出版社,1994,178-182.
    [112]胡家赣.线性代数方程组的迭代解法.北京:科学出版社,1999,173-201.
    [113]William H.Press,Saul A.Teukolsky,William T.Vetterling.Numerical Recipes in C:The Art of Scientific Computing,2nd Edition.CAMBRIDGE UNIVERSITY PRESS,1992,78-83.
    [114]寇绳武,李克祥,郭舜等.高密度电阻率法探测洞穴、采空区的效果分析.工程勘察,1994,6:61-65.
    [115]孟琪,丑景俊.高密度电阻率法探测岩溶的应用研究.东北地震研究,1996,12(3):58-63.
    [116]王士鹏.高密度电法在水文地质和工程地质中的应用.水文地质工程地质,2000,1:52-56.
    [117]汤洪志,宫云鹏.高密度电阻率法在地下涵洞勘测中的应用.华东地质学院学报,1997,20(4):343-348.
    [118]重庆奔腾技术研究所.WGMD—6分布式三维高密度电阻率成像系统仪器说明书。Http://www.cqbtsk.com.cn.
    [119]W.Daily,E.Owen.Cros-borehole resistivity tomography.Geophysics.1991.56:1228-1235.
    [120]Zhou Bing,S.A.Greenhalgh.Cross-hole resistivity tomography using different electrode configurations.Geophysical prospecting.2000,48:887-912.
    [121]Aria Abubakar,Peter M.van den Berg.Non-linear three-dimensional inversion of cross-well electrical measurements.Geophysical Prospecting.2000,48:109-134.
    [122]何裕盛,夏万芳。充电法,北京:地质出版社,1978。
    [123]H.H.Szu,R.L.Hartley,Fast simulated annealing,Physics Letters.1987,122:157-162.
    [124]J.W.Green,K.J.Supowit,Simulated annealing without rejected moves,IEEE Trans.On Computer-Aided Design,1986,5:221-228.
    [125]D.S.Johnson,C.R.Aragon,L.A.Mcgeoch etc.Optimizaton by simulated annealing:An experimental evaluaton,Part Ⅰ,AT&T Bell Laboratories,Murray Hill(NJ),1987.
    [125]C.Sechen,VLSI placement and global routing using simulated annealing,Kluwer Academic,1988.
    [127]P.J.M.Van Laarhoven,E.H.L.Aarts,Simulated annealing:Theory and applications,1987.
    [128]姚姚.地球物理非线性反演模拟退火法的改进,地球物理学报,1995,38:643-650.
    [129]刘鹏程,纪晨,Stephen H.Hartzell.改进的模拟退火——单纯形综合反演方法,地球物理学报,1995,38:199-346.
    [130]康立山,谢云,尤矢勇等.非数值并行算法——模拟退火算法,科学出版社,1994.
    [131]何军.解优化问题的退火回火算法,武汉大学学报,并行计算专刊,1991,71-83.
    [132]Kirkpatrick S,Gelatt C P and Vecchi M P.Optimization by simulated annealing,Science,1983,220:671-68.
    [133]Brian T.Luke.Simulated Annealing Cooling Schedules,http://members.aol.com/btluke/simanf1.htm.
    [134]张霖斌,姚振兴,纪晨等.快速模拟退火算法及应用,石油地球物理勘 探,1997,22:654-660.
    [135]Ingber L.Very fast simulated rcannealing.Math Conput Modeling,1989,12:967-973.
    [136]王元,方开泰.关于均匀分布与试验设计(数论方法),科学通报,26(2):65-70,1981.
    [137]Powell,M.J.D.An Efficient Method for Finding Minimum of Function of Several Variables Without Calculating Derivatives,Comput.1964,7:155-162.
    [138]R.W.H.Sargent.Minimization without constraints.In M.Avriel,M.J.Rijckaert,and D.J.Wilde,editors,Optimization and Design,pages 37-75.Prentice-Hall,Inc.,Englewood Cliffs,New Jersey,1973.
    [139]吴方.关于Powell方法的一个注.数学学报,1977,20:14-15.
    [140]邓乃扬,诸梅芳.关于Powell方法理论基础的探讨.科学通报.1979:24:433-437.
    [141]席少霖,赵凤治.最优化计算方法,上海科学技术出版社,1983,183-189。
    [142]Holland J.H,Adaptation in nature and artificial systems.The University of Michigan Press,1975.
    [143]De Jong K.A.An analysis of the behavior of a class of genetic adaptive system.Ph.D Dissertation,University of Michigan,1975.
    [144]Goldberg D.E.Genetic algorithms in search,optimization and machine learning.Reading,MA:Addison-Wesley Publishing Company,1989.
    [145]Vose M.D.Generalizing the notion of schema in gentle algorithms.Artificial intelligence,1991,50:385-396.
    [146]张晓姬,方浩,戴冠中.遗传算法的编码机制研究,信息与控制,1997,26(2):134-139.
    [147]孙建永,申建中,徐宗本.一类自适应遗传算法,西安交通大学学报,2000,34(10):84-88。
    [148]戴晓辉,李敏强,寇纪淞.遗传算法理论研究综述,控制与决策,2000,15(3):263-268.
    [149]Grefenstette J.J.Optimization of control parameters for genetic algorithms[J].IEEE Transaction on Systems,Man,and Cybernetics,1986,16(1):122-128.
    [150]Davis L.Handbook of genetic algorithms.New York:Van Nostrand Reinhold,1991.
    [151]Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms.IEEE Transaction on Systems,Man,and Cybernetics,1994,24(4):656-667.
    [152]宋爱国,陆佶人.一种基于排序操作的进化算子自适应遗传算法,电子学报,1999,27(1):85-88.
    [153]袁慧梅.具有自适应交换率和变异率的遗传算法,首都师范大学学报,2000,21(3):14-20.
    [154]Muhlenbein H.Evolution in time and space-The parallel genetic algorithm.In:Rawlins G.Foundations of gentic algorithms.CA:Morgan Kaufmann,1991.316-337.
    [155]张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件,中国科学(E 辑),1997,27(2):154-164.
    [156]王凌,郑大钟.一类GASA混合策略及收敛性研究,控制与决策,1998,13(6):669-672.
    [157]陈国良,王煦法,庄镇泉等.遗传算法及其应用,人民邮电出版社,1996.
    [158]徐果明.反演理论及其应用,地震出版社,2003.
    [159]Bagley J D.The Behavior of Adaptive Systems Which Empoly Genetic and Correlation Algorithms.Dissertation Abstracts International,1967,28(12).
    [160]Rosenberg R S.Simulation of Genetic Populations with Biochemical Properties.Dissertation Abstracts International,1967,28(7).
    [161]姚姚.蒙特卡洛非线性反演方法及应用,冶金工业出版社,1997.
    [162]王小平,曹立明.遗传算法——理论、应用与软件实现,西安交通大学出版社,2002.
    [163]Kreinovich V,Quintana C,Fuentes O.Genetic algorithms-what fitness scaling is optimal.Cybern.and Systems,1993,24(1):9-26.
    [164]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [165]Srinivas M.,Patnaik L.M..Adaptive probabilities of crossover and mutation in genetic algorithms.IEEE Trans Syst Man and Cyber,1994,24(4):656-667.
    [166]雷德明.自调整遗传算法.系统工程与电子技术,1999,21(11):70-71.
    [167]张雪江,朱向阳,钟秉林.自适应基于遗传算法及其在知识获取中的应用.系统工程与电子技术,1997,19(7):67-72.
    [168]刘勇,康立山,陈毓屏.非数值并行算法——遗传算法,科学出版社,1995.
    [169]Sirag,D J.,Weisser D J..Toward unified thermodynamic genetic operator,In:Proc int Confon Genetic Algorithm and their Applications,Erbum Association,Hillsdale,Nj.1987.
    [170]Boseniuk T,Ebeling W.Boltzmann-Darwin-and Heackel-strategies in optimization problems,Parallel Problem Solving from Nature,New York,1990.
    [171]王雪梅,王义和.模拟退火算法与遗传算法的结合,计算机学报,1997,20(4):381-384.
    [172]蓝海,王雄,王凌.一类遗传退火算法的函数优化性能分析,2001,系统仿真学报,2001,13(S):111-113.
    [173]谢巍,方康铃.一种求解不可微非线性函数的全局解的混合遗传算法,控制理论与应用,2000,17(2):44-48.
    [174]阮百尧.激发极化法测深曲线解释中的快速反演法,高校地质学报,1997,3(3):301-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700