用户名: 密码: 验证码:
细颗粒泥沙近底边界层观测和模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计和实现了长江口滩和槽的近底水沙现场观测系统,利用该系统在河口滩、槽典型区域获取了包括流、浪和泥沙变化过程的系列宝贵数据;以观测数据为主开展分析研究;结合边界层和一维数学模型探讨了近底泥沙运动的计算方法和变化机制。获得的主要认识包括:
     长江口南槽近底悬浮泥沙浓度随动力的响应
     近底悬浮泥沙浓度随动力的响应过程受到多方面因素的影响,主要有水流的动力、床面泥沙的供应量(涉及到床面泥沙的沉积和固结过程)、泥沙的沉降以及由此涉及到的粘性细颗粒泥沙的絮凝现象等。近底悬浮泥沙浓度的变化和动力的响应关系总体可以归为四类过程:第一类过程——悬浮泥沙浓度随流速的增大而增大,原因是:该阶段床面泥沙的侵蚀量占据该过程的主导地位,它远远要大于向上的紊动扩散及泥沙的沉降的综合作用;第二类过程——悬浮泥沙浓度随流速的增大而减小,原因是:该阶段水体紊动作用增强,向上的紊动扩散作用加大,然而床面可供侵蚀的沉积物不多,使得该阶段的侵蚀量减小了,向上的紊动扩散作用成为该阶段的主导因素;第三类过程——悬浮泥沙浓度随流速的减小而增大,原因是:由于该阶段流速减小,水体的紊动扩散作用减小,中上层水体向近底层水体沉降的泥沙量增大,使得其成为该阶段的主导因素;和第四类过程——悬浮泥沙浓度随流速的减小而减小,原因是:中上层水体的悬浮泥沙大部分已经在上一过程中沉降到近底层,近底层悬浮泥沙的沉降量成为该阶段的主导因素造成的。其中第二类过程,即悬浮泥沙浓度随流速的增大而减小,是垂线六点法和垂线平均水沙观测所难以发现的。
     根据1DV点模型计算得到的泥沙浓度过程和水流过程数据,对近底悬浮泥沙浓度随动力的响应过程进行了分析。分析结果同样得到了近底悬浮泥沙浓度随动力响应的四个过程。这说明近底悬浮泥沙浓度随动力的响应过程代表了一类较为典型的过程,正如概化模型所分析,它是水流动力、床面泥沙供应量、泥沙沉降等多因素的综合作用结果。
     滩地悬浮泥沙浓度动力响应过程
     滩地悬浮泥沙浓度的一个显著特征是泥沙浓度峰值出现在涨潮初期和落潮末期。滩地悬浮泥沙浓度随动力的响应分析表明:滩地悬浮泥沙浓度随流速的响应关系不明显。观测时段内,只有少数几个潮周期悬浮泥沙浓度和流速的关系呈现比较明显的正比关系。尽管当时当地的悬浮泥沙浓度和流速呈现很微弱的相关关系,但是潮周期平均悬浮泥沙浓度和潮周期平均流速却呈现出很好的正相关关系。在光滩上和盐沼中,它们的相关系数R~2分别为0.80和0.87。
     在每一个潮周期内,滩地悬浮泥沙浓度和均方根波浪轨迹流速呈反比关系。悬浮泥沙浓度和均方根波浪轨迹流速的这种反比关系并不是由它们之间的相互作用导致的,即不是一种悬浮泥沙随均方根波浪轨迹流速的响应关系。它们之间的这种关系的形成的一种解释是:他们的这种关系实际上完全是由均方根波浪轨迹流速自身随水深发生同步相应的变化而形成的。另一种可能的解释是:涨潮初期的高悬浮泥沙浓度峰值要大于此时的水流挟沙能力,即此时为过饱和输沙,所以在接下来均方根波浪轨迹流速逐渐增大过程,看到了悬浮泥沙浓度反而降低这种现象。
     和水流类似,潮周期平均悬浮泥沙浓度和潮周期平均均方根波浪轨迹流速呈现正比关系。在光滩上,它们之间的关系差一些。但是,在盐沼中,它们之间的相关性较好,相关系数为0.79。
     潮周期平均悬浮泥沙浓度随潮周期平均的潮流速和均方根波浪轨迹流速的正相关性,说明了滩地悬浮泥沙的一类周期为“潮周期”的动力响应关系。
     滩地水流能量来源和滩地冲淤模式
     不论何种潮型,在盐沼中的潮流速要远小于光滩上的潮流速,但是在盐沼中的均方根波浪轨迹流速仍然较大。说明在光滩上,水流的主要能量来源于潮流和波浪。然而,在有植被覆盖的盐沼中,水流的能量来源主要是波浪。崇明东滩东面是开阔的海域,一年四季都处于风浪的作用下,波浪成为水流能量的主要来源。
     光滩的冲淤变化受潮周期动力情况影响。潮周期动力增大,滩地发生冲刷;潮周期动力减小,滩地发生淤积。整个观测期间冲淤幅度最大达8.7cm。
     盐沼冲淤幅度要远小于光滩,其冲淤变化周期也要更长。站点C-1和站点C-2的冲淤幅度分别为0.2cm和0.3cm,而相应时段内光滩(站点A)的冲淤幅度变化为1.1cm和6.5cm。当站点C-1和站点C-2经过人为割草之后,站点C立即发生冲刷,冲刷幅度达到0.8cm。从这里可以看出,互花米草(Spartina)在护滩方面起到了相当重要的作用。
     基于观测资料的分析,提出了崇明东滩冲淤模式:1)有风浪作用。由于波浪的作用,光滩和盐沼中的水流能量都较高,高含沙浓度能够出现在盐沼带中。盐沼植被发挥对悬浮泥沙的捕集及其护滩作用,有利促使盐沼植被带滩地发生迅速淤涨;2)无风浪作用。悬浮泥沙随着上滩水流和水体能量的降低,发生沿程淤积,高含沙浓度到达盐沼带较困难,从而减缓了盐沼植被带滩地的快速淤涨。
     波流相互作用近底剪切应力估算
     LP方法计算得到的水流摩阻流速统计表明:u_(*c)变化范围为0.5-6.7cm/s,平均为2.8cm/s。WKE方法计算得到的波流相互作用的摩阻流速U_(*cw)变化范围为4.1-10.7cm/s,平均为6.5cm/s。波流相互作用的潮周期摩阻流速u_(*cw)要比潮周期水流摩阻流速u_(*c)的大1.15~5.22倍,平均为3.03倍。这说明由于波浪的作用,近底剪切应力大大增加,所以在对动力因素考虑的时候,波浪作用不能忽略。
     BBLM计算得到的糙率长度(z_(0a))同水流和波浪相对大小比例(C_(r0))呈乘幂的关系,并且为负相关关系。这表明随着波浪作用的增强,糙率长度(z_(0a))增大,也反映了由于波浪的作用,增大了床面对水流的阻力。
     类比水流作用下的紊动能量(TKE)法,作者提出了一种新的用于计算波流相互作用下的摩阻流速U_(*cw)方法,即波浪运动能量法(WKE)。底部边界层模型(BBLM)的计算结果表明WKE方法可以用于计算波流相互作用的摩阻流速。
     用于计算波流相互作用下的摩阻流速U_(*cw)的WKE方法和You方法计算结果有差异。认为在水流发生变化的情况下,You方法中“常系数”C,不能再取常数。通过引入一个和流速有关的函数来修正You方法中的常数C,进而对You方法进行了改进。结果表明,改进后的You方法计算得到波流相互作用摩阻流速和BBLM计算得到的摩阻流速比较吻合,可以用于波流相互作用下的剪切应力计算。
The observation systems for Bottom Boundary Layer(BBL)are designed and successful measurements for BBL are made in the South Passage and Chongming East Shoal of Changjing Estuary.Data of current,wave and sediment were obtained.With these observed data,the relevant analysis is carried out.Combing the Bottom Boundary Layer Model(BBLM)and one dimensional vertical(1DV)point model,the calculated method and mechanism about sediment transport are also discussed.The main contents could be reviewed as follows:
     Response of near-bed suspended sediment concentration(SSC)to dynamics in South Passage of Changjiang Estuary
     The analysis shows that the responses of near-bed SSC to the dynamics are complicated and affected by many factors,such as the hydrodynamics,the critical shear stress for erosion related with the sedimentation and consolidation of the bed sediment,the settling down of suspended sediment,as well as the flocculation of cohesive sediment,among others.The response of near-bed SSC to dynamics can be summarized as belonging to four types of response process,i.e., the first types of positive-response process in which the SSC increases with the increase in tidal current speed;the second types of negative-response process in which the SSC decreases with the increase in tidal current speed;the third types of negative-response process in which the SSC increases with the decrease in tidal current speed;and the fourth types of positive-response process in which the SSC decreases with the decrease in tidal current speed.
     In accordance with the velocity and SSC processes calculated by 1DV point model,those four response processes of near-bed SSC to dynamics are analyzed.The results also show the four stages of near-bed SSC to dynamics,which indicates that those four response processes of near-bed SSC to dynamics are typical sediment movement.As illustrated by the generalized model, the near-bed SSC are the synthesized operations of hydrodynamics,the available erosion flux and the settling flux of sediment et al.
     Response of SSC to dynamics in Chongming East Shoal
     One of the most significant characteristics of SSC in Chongming East Shoal is the appearance of maximum SSC that comes forth at the beginning of flood tide and ending of ebb tide.The analysis of response of SSC in Chongming East Shoal to dynamics indicates that the response of SSC to tidal speed is not so visible as we supposed.During the observation period,only in several tidal period,SSC and tidal speed demonstrates the obvious positive relation.Although the relationship between the SSC and the tidal speed is feeble in one tidal cycle,the relationship between the tidal averaged SSC and tidal averaged current speed is obvious.The relationship coefficient R~2 in the mud flat and saltamrsh are 0.8 and 0.87,respectively.
     The SSC varies inversely with root-mean-square wave orbital velocity in each tidal cycle.The relationship between the SSC and the root-mean-square wave orbital velocity is not caused by their reciprocity,i.e.it is not the response of SSC to root-mean-square wave orbital velocity.One supposed explanation is:the relationship is due to the fact that the root-mean-square wave orbital velocity changes with the water depth.The other possible explanation is:the maximum SSC occuring at the beginning of flood tide is higher than the sediment-laden capacity of flow,i.e.this phase is over-saturation sediment transport.Therefore,the SSC decreases gradually although the root-mean-square wave orbital velocity increases with the increase of tidal level.
     Similarly with tidal speed,the tidal averaged SSC and the tidal averaged root-mean-square wave orbital velocity represents the direct ratio relationship.In the mud flat,the relationship is not so tied up strongly than that in the saltmarh whose the relationship index is 0.79.
     The positive relationship between the tidal averaged SSC and tidal averaged current speed/root-mean-square wave orbital velocity shows that the response period of SSC to dynamics in Chongming East Shoal is tidal one.
     The source of flow energy and the erosion-deposition mode in Chongming East Shoal
     No matter what category of the tidal dynamics is,the tidal speed in the salt marh is much lower than that in the mud flat,whereas the root-mean-square wave orbital velocity in the salt marsh is still very high.The fact tells us that the main source of fluid energy comes from tidal movement and wave movement in the mud flat.However,wave is the main source of energy.
     The erosion or deposition in the mud flat is influenced by tidal averaged dynamics.With the increased tidal averaged dynamics,the mud flat is eroded more intensively,while the tidal averaged dynamics decreased,the mud flat is silted.During the observation period,the biggest erosion-deposition range reached 8.7cm.
     The erosion-deposition range in the saltmarh is far smaller than that in the mudflat. Erosion-deposition range in Site C-1 and Site C-2 is 0.2cm and 0.3cm,respectively,meanwhile the erosion-deposition range in the mud flat(Site A)ranged from 1.1cm to 6.5cm.Compared with Site C-1 and Site C-2,after the human weeding,the Site C-2 is eroded immediately with the erosion-deposition range of 0.8 cm.Upon the above analysis,we may conclude that the Spartina plays the important role to avoid erosion.
     Based on the analysis of observed data,the erosion-deposition mode in Chongming East Shoal is proposed:1)Combined wave and current.Due to the wave movement,the flow energy is higher both in the mud flat and the saltmarh,so the high SSC can reach to the saltmarh.It is the shoal protection and sediment trap of the vegetation in the saltmarh that make the shoal with vegetation occurs high siltation and extends offshore fast;2)No wave movement.The suspended sediment will deposit onto the ground on the flow way with the decrease of flow energy,and the high SSC might not appear in the saltmarsh deterring the fast extension of the saltmarh.
     The estimation of combined wave and current shear velocity
     The shear velocity calculated by LP method shows that the variety range of u*_c is 0.5~6.7cm/s with an average value of 2.8cm/s.The combined wave and current shear velocity u*_(cw)calculated by WKE method ranges from 4.1~10.7cm/s,with an average value of 6.5cm/s.The combined wave and current shear velocity is 1.15~5.22 times higher than the current only shear velocity,with an average of 3.03.It illustrates that due to the action of the wave,the shear stress increases a lot. Therefore,the action of waves cannot be ignored when taking the dynamics into account.
     The roughness length(z_(0a))calculated by BBLM presents the negative power relationship with the relative quality of current and wave(C_(r0)),which illustrates that along with the current increasing, the bottom roughness(z_(0a))is enforced and the bed friction force on the flow is strength accordingly..
     Making the analogy of the turbulent kinetics energy(TKE)method,a new method to calculate the combined wave and current shear velocity u*_(cw)i.e.(wave kinetic energy)WKE method is put forward.The result of Bottom Boundary Layer Model(BBLM)indicates that WKE method is applicable for the calculation of combined wave and current shear velocity.
     There is difference between the WKE method and You method to calculate the combined wave and current shear velocity u*_(cw).The result indicates that with the change of the tidal speed,the "constant coefficient C" in the You methods could not be constant anymore.Therefore,we may improve the YOU method by amendment of the "constant coefficient C" with the introduction of a function related with the tidal speed.The results shows that the difference between the combined wave and current shear velocity calculated by the improved You method and the ones calculated by the BBLM is very small,which shows that the improved You method is applicable for the calculation of combined wave and current shear velocity.
引文
Airy, G. B., 1845. Tides and Waves[J]. Encyc. Metrop., Article 192, pp 241-396.
    
    Allen, J. S., Beardsley, R. C., Brown, W. S., Cacchione, D. A., Davis, R. E., Drake, D. E., Friehe, C., Grant, W. D., Huyer, A., Irish, J. D., Janopaul, M. M., Williams A. J., Winant, C. D., 1982. A preliminary description of the CODE-1 field program, CODE Tech [R]. Report No. 9, WHOI Tech. Rep. 47: 82-51.
    Allen, J. R.L., 1970. Physical Processes and Sedimentation [M]. Unwin University Books, London, 248.
    Amani S. N. 2000. Cross-shore migration of lunate megaripples and bedload sediment transport models [D]. PhD thesis, Memorial University of Newfoundland, ST. John's. Newfoundland.
    Amos, C.L., Bowen, A.J., Huntley, D.A., et al, 1988. Ripple generation under the combined influences of waves and currents on the Canadian continental shelf [J]. Continental Shelf Research, 8(10): 1129-1153.
    Baldock, T.E., Tomkins, M.R., Nielsen, P., Hughes, M.G., 2004. Settling velocity of sediments at high concentrations [J]. Coastal Engineering, 51: 91-100.
    Boyd, R., Forbes, D.L., Heffler, D.E., 1988. Time-sequence observations of wave-formed sand ripples on an ocean shoreface [J]. Sedimentology, 35: 449-464.
    Businger, J. A., Wyngaard, J. C., Elzumi, Y., Bradley, E. F., 1971. Flux-profile relationships in the atmospheric surface layer [J]. J. Atmos. Sci., 28: 181-189.
    Cacchione, D. A., Grant, W. D., Drake, D. E., Glenn, S. M., 1987. Storm-dominated bottom boundary layer dynamics on the northern California continental shelf: measurements and predictions [J]. J. Geophys. Res., 92: 1817-1827.
    
    D&A, 2001. OBS3A instruction manual D&A Instrument Company [M]. Rev 10.
    Delft Hydraulics, 2006. Delft3D-Flow user Manual [M]: Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. WL Hydraulics Pub., Version 3.13.
    Dick, J.E., Erdman, M.R., Hanes, D.M., 1994. Suspended sand concentration events due to shoaled waves over a flat bed [J]. Marine Geology, 119: 67-73.
    Dingier, J.R., Inman, D.L., 1976. Wave-formed ripples in nearshore sands [A]. Proceedings of the 15th Coastal Engineering Conference [C], ASCE, New York, 2109-2126.
    Drake, D. E., Cacchione, D. A., 1989. Estimates of the suspended sediment reference concentrations (C_a ) and resuspension coefficient (γ0) from near-bottom observations on the California shelf [J]. Cont. Shelf Res., 9: 51-64.
    Drake, D. E., Cacchione, D. A., Grant, W. D., 1992. Shear stress and bed roughness estimates for combined wave and current flows over a rippled bed [J]. J. Geophys. Res., 97: 319-326.
    Dyer, K.R., 1986. Coastal and estuarine sediment dynamics [M]. John Wiley and Sons, Chichester, 342.
    Fredsoe, J., Deigaard, R., 1991. Mechanics of Coastal Sediment Transport [M], World Scientific, River Edge, N.J., U.S.A.
    Fugate, D.C., Friedrichs, C.T., 2002. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST [J]. Continental Shelf Research, 22: 1867-1886.
    Galperin, B., Kantha, L.H., et al., 1988. A quasi-equilibrium turbulent energy—model for geophysical flows [J]. Journal of the Atmospheric Sciences, 45 (1): 55-62.
    Glenn, S. M., Grant, W. D., 1987. A suspended sediment correction for combined wave and current flows [J]. J. Geophys. Res., 92: 8244-8246.
    Glenn, S. M., 1983. A continental shelf bottom boundary layer model: The effects of waves, currents, and a movable bed [D]. Sc.D. thesis, Mass. Inst. of Technol., Cambridge, 237.
    Grant, W. D., 1977. Bottom friction under waves in the presence of a weak current: Its relationship to coastal sediment transport [D]. ScD thesis., Mass. Inst. of Technol.,Cambridge, 275.
    Grant, W. D., Williams, A. J., Glenn, S. M., 1984. Bottom stress estimates and their prediction on the Northern California continental shelf during CODE-1: The importance of wave-current interaction [J]. J. Phys. Oceanogr., 14: 506-527.
    Grant, W. D., Madsen, O. S., 1979. Combined Wave and Current Interaction with a Rough Bottom [J]. Journal of Geophysical Research, 85(C4): 1797-1808.
    Grant, W. D., Madsen, O. S., 1986. The Continental Shelf Bottom Boundary Layer [J]. M. Van Dyke, ed., Annual Review of Fluid Mechanics, 18: 265-305.
    Grant, W. D., Madsen, O. S., 1982. Movable bed roughness in unsteady oscillatory flow [J], J. Geophys. Res., 87: 469-481.
    Green, M.O., Vincent, C.E., McCave, I.N., Dickson, R.R., Rees, J.M., Pearson, N.D., 1995. Storm sediment transport: observations from the British North Sea shelf [J]. Cont. Shelf Res. 15: 889-912.
    Hay, A.E., Bowen, A.J., 1993. Spatially correlated depth changes in the nearshore zone during autumn storms [J]. Journal of Geophysical Research, 98: 12387-12404.
    He Q., Li J., et al., 2001. Field measurements of bottom boundary layer processes and sediment resuspension in the Changjiang Estuary [J]. Science in China(Series B), 44 (Supp.): 80-86.
    Hill, P. S., Nowell, A. R. M., Jumars, P. A., 1988. Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress [J]. J. Geophys. Res., 93(12): 499-12,509.
    Huntley, D.A., 1988. A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurement [J]. Journal of Physical Oceanography, 18: 339-346.
    Jonsson, I.G., 1966. Wave Boundary Layers and Friction Factors [A], Proceedings of the Tenth International Coastal Engineering Conferenc [C]e, American Society of Civil Engineers, 1: 127-148.
    Kim, S.C., Friedrichs, CT, et al., 2000. Estimating bottom stress in tidal boundary layer from Acoustic Doppler Velocimeter data [J]. Journal of Hydraulic Engineering, 126(6): 399-406.
    Kiyosi K., Shoitiro Y., 1997. Characteristics of suspended sediment and turbulence in a tidal boundary layer [J]. Continental Shelf Research, 17(8): 859-875.
    Komar, P.D., Miller, M.C., 1975. The initiation of oscillatory ripple marks and the development of plane-bed at high shear stresses under waves [J]. Journal of Sedimentary Petrology, 45: 697-703.
    Kontar E.A., Sokov A.V., 1997. On the benthic boundary layer's dynamics [J]. Journal of Marine Systems, 11 (3-4),: 369-385.
    
    Kreeke, J. Van de., Day, C.M., Mulder, H.P.J., 1997. Tidal variations in suspended sediment concentration in the Ems estuary: origin and resulting sediment flux [J]. Journal of Sea Research, 38, 1-16.
    Krone, B.R., 1962. Flume studies of the transport of sediment in estuarial shoaling processes [M]. Hydraulic Engineering Laboratory. University of California, Berkeley, 118.
    Lee, T. H., Hanes, D. M., 1996. Comparison of field observations of the vertical distribution of suspended sand and its prediction by models [J]. J. Geophys. Res., 101: 3561-3572.
    Li, M.Z., 1994. Direct skin friction measurements and stress partitioning over movable sand ripples [J]. Journal of Geophysical Research, 99: 791-799.
    Li, M.Z., Amos, C.L., 1998. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environmen [J]t. Continental Shelf Research, 18 (9): 941-970.
    Li, M.Z., Amos, C.L., 1999. Sheet flow and large wave ripples under combined waves and currents: their field observation, model prediction and effects on boundary layer dynamics [J]. Continental Shelf Research, 19: 637-663.
    Li, M.Z., Amos, C.L., Helffler, D.E., 1997. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian shelf [J]. Marine Geology, 141: 157-181.
    Li, M.Z., Wright, L.D., Amos, C.L., 1996. Predicting ripple roughness and sand resuspension under combined flows in a shoreface environment [J]. Marine Geology, 130: 139-161.
    Lumley, J. L., 1976. Two-phase and non-Newtonian flows [M]. Topics in Applied Physics, P. Bradshaw, Ed., Springer, 12: 289-324.
    Lundgren, H., 1972. Turbulent currents in the presence of waves [A]. Proc. Coastal Eng.Conf., 13th [C], 623-634.
    Lynch, J. F., Irish, J. D., Sherwood, C. R., Agrawal, Y. C., 1994. Determining suspended sediment particle size information from acoustical and optional backscatter measurements [J]. Cont. Shelf Res., 14: 1139-1165.
    Lynch, J. F., Irish, J. D., Gross, T. F., Wiberg, P. L., Newhall, A. E., Traykovski, P. A., Warren, J. D., 1997. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment [J]. Cont. Shelf Res., 17: 1271-1295.
    Maa, J.P.-Y., 1993. VIMS Sea Carousel: its hydrodynamic characteristics [A]. In: Mehta, A.J. (Ed.), Nearshore and Estuarine Cohesive Sediment Transport [C]. Coastal and Estuarine Studies 42, American Geophysical Union, Washington, DC, 265-280.
    Maa, J.P.-Y., Lee, C.-H., Chen, F.J., 1995. VIMS Sea Carousel: bed shear stress measurements [J]. Marine Geology, 129: 129-136.
    
    Maa, J.P.-Y, Sanford, L., Halka, J.P., 1998. Sediment resuspension characteristics in Baltimour Harbor, Maryland [J]. Marine Geology, 146: 137-145.
    Maa, J.P.-Y., Sun, K.-J., He, Q., 1997. Ultrasonic characterization of marine sediments: a preliminary study [J]. Marine Geology, 141: 183-192.
    Madsen, O. S. Wikramanayake, P. N., 1991. Simple models for turbulent wave-current bottom boundary layer flow. Contract report DRP-91-1 [R]. Final Report for the Dredging Research Program. U.S. Army Corps of Engineers, Coastal Engineering Research Center.
    Madsen, O. S., Wright, L. D., Boon, J. D., Chisholm, T. A., 1993. Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event [J]. Cont. Shelf Res., 13: 1303-1324.
    Madsen, O.S., 1993. Sediment Transport Outside the Surf Zone, unpublished Technical Report [M], U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
    Manohar, M., 1955. Mechanics of bottom sediment movement due to wave action [M]. U.S. Army Corps Engineers, Beach Erosion Board, Technical Memorandum No. 75, Washington, DC, 121. Martec Ltd., 1987. Upgrading of AGC sediment transport model [R]. Geological Survey of Canada Open File Report 1705, Section 10, 14.
    Mathisen, P. P., Madsen, O. S., 1996a. Waves and currents over a fixed rippled bed, 1, Bottom roughness experienced by waves in the presence and absence of currents [J]. J. Geophys. Res., 101, 16,533-16,542.
    Mathisen, P. P., Madsen, O. S., 1996b. Waves and currents over a fixed rippled bed, -Bottom and apparent roughness experienced by currents in the presence of waves [J]. J. Geophys. Res., 101(16): 543-550.
    Mcanally, W.H., 1999. Aggregation and deposition of estuarial fine sediment [D]. Ph.D Dissertation. University of Florida, U.S.A.
    McClennen, C. E., 1973. Sands on continental shelf off New Jersey move in response to waves and currents [J]. Maritimes, 14-16.
    McLean, S. R., 1992. On the calculation of suspended load for noncohesive sediments [J]. J. Geophys. Res., 97: 5759-5770.
    Mehta, A.J., 1988. Laboratory studies of cohesive sediment deposition and erosion [M]. Physical Processes in Estuaries. Springer, Berlin, 427-225.
    Mellor, G.L., Blumberg, A.F., 1985. Modelling vertical and horizontal diffusivities with the sigma coordinate system [J]. Monthly Weather Review, 113: 1379-1383.
    Miche, R., 1944. Mouvements on dulatoires desmersen profendeur constanteou decroissante [M]. Annales des Ponts et Chausees 25-78.
    Miller M.C., Komar, P.D., 1980a. Oscillation sand ripples generated by laboratory apparatus [J]. Journal of Sedimentary Petrology, 50: 173-182.
    Miller M.C., Komar, P.D., 1980b. A field investigation of the relationship between oscillation ripple spacing ad near-bottom water orbital motion [J]. Journal of Sedimentary Petrology, 50: 183-191.
    Myrhaug, D., Slaattelid, O.H., 1989. Combined wave and current boundary layer model for fixed rough seabeds [J]. Ocean Engineering, 6(2): 119-142.
    Myrhaug, D., 1984. A theoretical model of combined wave current boundary layers near a rough sea bottom [M]. Pro. Of the 3~(rd) OMAE. Sym, 559-568.
    Myrhaug, D., Slaattelid, O.H., Soulsby, R.L., Lambrakos, K.F., 1995. Measurements and analysis of flow velocity and sediment concentration at the seabed [J]. Applied Mechanics Reviews, 48: 570-587.
    Nielsen, P., 1981. Dynamics and Geometry of wave generated ripples [J]. Journal of Geophysical Research, 86: 6467-6472.
    Nielsen P., 1983. Analytical determination of nearshore wave height variation due to refraction shoaling and friction [J]. Coastal Engineering, 7: 333-351.
    Nielsen, P., 1979. Some basic concepts of wave sediment transport. Institute for Hydrodynamics and Hydraulic Engineering [J], Technical University of Denmark, Serie 20, 160.
    Nielsen, P., 1986. Suspended sediment concentrations under waves [J]. Coastal Engineering, 10: 23-31.
    Nowell, A.R.M., 1983. The benthic boundary and sediment transport [J]. Rev. Geophys. Space Phys, 21: 1181.
    Open-University, 1999. Waves, Tides and Shallow-Water Processes [M]. Butterworth Heinemann, Milton Keynes.
    Osborne, P.D., Vincent, C.E., 1993. Dynamics of large and small scale bedforms on amacrotidal shoreface under shoaling and breaking waves [J]. Marine Geology, 115: 207-226.
    Ou, S.H., Hsu, T.W., Wu, J.W., 1992. Characteristics of flow field near sea bottom in a combined wave and current motion [J]. Journal of the Chinese Insitute of Engineers, 15(6): 703-712.
    Partheniades, E, 1965. Erosion and deposition of cohesive soils [J]. Journal of Hydraulics Division (ASCE), 91: 105-139.
    Phillips, N.A, 1957. A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 14: 184-185.
    Rouse H, 1937. Modern conceptions of the mechanics of turbulence [J], Trans. ASCE, 102: 436-507.
    
    Schubel, J.R., 1971. Tidal variations of the size distribution of suspended sediment at a station in the Chesapeake Bay turbidity maximum [J]. Netherlands Journal of Sea Research, 5: 252-266.
    
    Sherwood, C. R., Butman, B, Cacchione, D. A, Drake, D. E., Gross, T. F, Sternberg, R. W., Wiberg, P. L., Williams, A. J., 1994. Sediment-transport events on the northern Californiacontinental shelf during the 1990-1991 STRESS experiment [J]. Cont. Shelf Res., 14: 1063-1099.
    Shi, Z., Ren, L.F., Lin, H.L., 1996. Vertical suspension profile in the Changjiang Estuary [J]. Marine Geology, 130(1-2): 29-37.
    Smith J.D. and S.R. McLean, 1977. Spatially averaged flow over a wavy surface [J]. Journal of Geophysical Research, 82: 1735-1746.
    Smith, J.D., 1977. Modelling of sediment transport on continental shelves [A]. In: Goldberg, E.D, McCave, LN., O'Brien, J.J., Steele, J.H. (Eds.), The Sea, V 6. Wiley-Interscience, New York, 539-576.
    SONTEK, 1996a. Acoustic Doppler Profiler (ADP) Principles of Operation. SONTEK technical notes [M]. San Diego, CA.
    SONTEK, 1996b. Acoustic Doppler Velocimeter (ADV) Principles of Operation [M]. SONTEK technical notes. San Diego, CA.
    Sorenson, K. S., Madsen, O. S., Wright, L. D., 1995. Evidence of directional dependence of moveable bottom roughness in inner shelf waters [M]. EOS Supplement, 281.
    Soulsby, R.L., 1983. The bottom boundary layer of shelf seas [A]. In: Johns, B. (Ed.), Physical Oceanography of Coastal and Shelf Seas [C]. Elsevier Science Publishers, Amsterdam, 189-266.
    Soulsby, R.L., Dyer, K.R., 1981. The form of the near-bed velocity profile in a tidally accelerating flow [J]. Journal of Geophysical Research-Oceans and Atmospheres 86 (NC9), 8067-8074.
    Stapleton, K.R., Huntley, D.A., 1995. Seabed stress determinations using the inertial dissipation method and the turbulent kinetic energy method [J]. Earth Surface Processes and Landforms, 20 (9): 807-815.
    Sternberg, R.W., 1972. Predicting initial motion and bedload transport of sediment particles in the shallow marine environment [A]. In: Swift, D.J.P., Duane, D.B., Pilkey, O.H. (Eds.), Shelf Sediment Transport, Process and Pattern [C], Dowden, Hutchinson & Ross, Inc., 61-83.
    Styles, R., Glenn, S. M., 2000. Modeling stratified wave and current bottom boundary layers on the continental shelf [J]. Journal of Geophysical Research, 105(C10): 24,119-24,139.
    Styles, R., 1998. A continental shelf bottom boundary layer model: Development, calibration and applications to sediment transport in the Middle Atlantic Bight [D], Ph.D. thesis, Rutgers, The State Univ. of N. J., New Brunswick.
    Tanaka, H., Shuto, N., 1981. Friction coefficient for a wave-current coexistent system. Coastal Engineering in Japan, 24: 105-128.
    
    Tennekes H., Lumley J.L., 1972. A first course in turbulence [M]. The MIT Press.
    Thompson, C.E.L., Amos, C.L., et al., 2003. The manifestation of fluid-transmitted bed shear stress in a smooth annular flume-a comparison of methods [J]. Journal of Coastal Research, 19 (4): 1094-1103.
    Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution [J]. Journal of Geophysical Research, 88(C1O): 5925-5938.
    Tolman, H.L., 1994. Wind waves and moveable-bed bottom friction. J. Phys. Oceanogr., 24: 994-1009.
    Traykovski, P., Irish, J. D., Hay, A., Lynch, J. F., 1999. Geometry, migration, and evolution of wave orbital ripples at LEO-15 [J], J. Geophys. Res., 104: 1505-1524.
    Trowbridge, J., Madsen, O. S., 1984a. Turbulent wave boundary layers 1. Model formulation and first-order solution [J]. J. Geophys. Res. 89: 7989-7997.
    Trowbridge, J., Madsen, O. S., 1984b. Turbulent wave boundary layers 2. Second order theory and mass transport [J]. J. Geophys. Res. 89: 7999-8007.
    Trowbridge, J., Agrawal, Y. C., 1995. Glimpses of a wave boundary layer [J]. J. Geophys. Res., 100(20): 729-743.
    Uittenbogaard, R. E., 1995. The importance of internal waves for mixing in a stratified estuarine tidal flow [D], Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands, September.
    Van Rijn, L.C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas [M]. Aqua Publications, Amsterdam, the Netherlands.
    Van Rijn, L.C., Nieuwjaar, M.W.C., Van der Kaay, T., Nap, E., van Kampen, A., 1993. Transport of fine sands by currents and waves I [J]. Journal of Waterway Port, Coastal and Ocean Engineering, American Society of Civil Engineers, 119(2): 123-143.
    Van Rijn, L.C., Havinga, F.J., 1995. Transport of fine sands by currents and waves II [J]. Journal of Waterway Port, Coastal and Ocean Engineering, American Society of Civil Engineers, 121(2): 123-133.
    Villaret, C., Trowbridge, J.H., 1991. Effects of stratification by suspended sediments on turbulent shear flows [J]. J. Geophys. Res., 96(10): 659-680.
    Vincent, C.E., Green, M. O., 1990. Field measurements of the suspended sand concentration profiles and fluxes and of the resuspension coefficient γ_0 over a rippled bed [J]. J. Geophys. Res., 95(11): 590-601.
    Vincent, C.E., Hanes, D.M., Bowen, A.J., 1991. Acoustic measurements of suspended sand on the shoreface and the control of concentration by bed roughness [J]. Marine Geology 96, 1-18.
    Wiberg, P. and J. D. Smith, 1983. A comparison of fie data and theoretical models for wave-current interactions at the bed on the continental shelf [J], Cont. Shelf Res., 2, 126-136.
    
    Wiberg, P., 1995. A theoretical investigation of boundary layer flow and bottom shear stress for smooth, transitional, and rough flow under waves [J]. J. Geophys. Res., 100, 22,667-22,679.
    Wiberg, P., and C. K. Harris, 1994. Ripple geometry in wave-dominated environments [J]. J. Geophys. Res., 99, 775-789.
    Wiberg, P., Drake D.E., Cacchione, D.A., 1994. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions [J]. Cont. Shelf Res., 14: 1191-1219.
    Wiberg, P.L., Harris, C.K., 1994. Ripple geometry in wavedominated environments [J]. Journal of Geophysical Research, 99: 775-789.
    
    Wiberg, P.L., Nelson, J.M., 1992. Unidirectional flow over asymmetric and symmetric ripples [J]. Journal of Geophysical Research, 97(12):745-761.
    
    
    Wikramanayake, P. N., 1993. Velocity profiles and suspended sediment transport [D], Ph.D. thesis, Mass. Inst. of Technol., Cambridge.
    Wikramanayake, P. N., and O. S. Madsen, 1991. Calculation of movable bed friction factors. Technical report DACW-39-88-K-0047 [R]. Technical progress report for the Dredging Research Program. U.S. Army Corps of Engineers, Coastal Engineering Research Center, Vicksburg, MS, 105.
    
    Wikramanayake, P. N., Madsen, O. S., 1992. Calculation of suspended sediment transport by combined wave-current flows. Contract report DRP-92 [R]. Final report for the Dredging Research Program. U.S. Army Corps of Engineers, Coastal Waterways Research Center, Vicksburg, MS, 148.
    Snyder W. H., and Castro, I. P., 1999. Acoustic Doppler Velocimeter Evaluation in Stratified Towing Tank [J]. Journal of Hydraulic Engineering, 125(6): 595-603.
    
    Wilson K.C., 1989. Friction of wave-induced sheet flow [J]. Coastal Engineering, 12: 371-379.
    Wilson, K.C, 1988. Mobile-bed friction at high shear stress [J]. Journal of Hydraulic Engineering American Society of Civil Engineers, 115(6): 825-830.
    Winterwerp,J.C.,1999.On the dynamics of high-concentrated mud suspensions[D].PhD.Thesis,Delft University of Technology.
    Winterwerp,J.C.,2001.Stratification effects by cohesive and noncohesive sediment[J].Journal of Geophysical Research,106(22),,559-574.
    Winterwerp,J.C.,2006.Stratification effects by fine suspended sediment at low,medium,and very high concentrations[J].Journal of Geophysical Research,111(C05012),doi:10.1029.
    Wolf,J.,1999.The estimation of shear stresses from near-bed turbulent velocities for combined wave-curren flows[J].Coastal Engineering,37,529-543.
    Wright,L.D.,1989.Benthic Boundary Layers of Estuarine and Coastal Environments[J].Aquatic Sciences,1(1):75-94.
    Wright,L.D.,Boon,J.D.,Kim,S.C.,List,J.H.,1991.Modes of Cross-shore sediment transport on the shoreface of the Middle Atlantic Bight[J].Mar.Geolog.,96,19-51.
    Wright,L.D.,Nielsen,P.,Short,A.D.,Coffey,F.C.,Green,M.O.,1982.Nearshore and surfzone morphodynamics of a storm wave environment:eastern Bass Strait,Australia[R].Coastal Studies Unit Technical Report No.82/3,University of Sydney,Australia.
    Xu,J.P.,Wright,L.D.,1995.Tests of bed roughness models using field data from the Middle Atlantic Bight[J].Cont.ShelfRes.,15:1409-1434.
    Xu,J.P.,Wright,L.D.,Boon,J.D.,1994.Estimation of bottom stress and roughness in Lower Chesapeake Bay by the inertial dissipation method[J].Journal of Coastal Research,10:329-338.
    Yalin,M.S.,1964.Geometrical properties of sand waves[J].Journal of Hydraulics Division,Proceedings ASCE,90(HY5):105-119.
    You Z.J.,1995.Increase of current bottom shear stress due to waves[J].Coastal Engineering,26:291-295.
    You Z.J.,2005.Fine sediment resuspension dynamics in a large semi-enclosed bay[J].Ocean Engineering,32:1982-1993.
    You,Z.J.,Wilkinson,D.L.,1992.Velocity distribution in turbulent oscillatory boundary layer[J].Coastal Engineering,18:21-38.
    You,Z.J.,1991.Velocity distribution of waves and current in the combined flow[J].Coastal Engineering,13:325-340.
    You,Z.J.,1994.A simple model for current velocity profiles in combined wave-current flows[J].Coastal Engineering,23:289-304.
    You,Z.J.,2004.The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water[J].Ocean Engineering,31:955-1965.
    曹文洪,刘青泉.2000.波流掀沙的动力学机理分析[J].水利学报,1:49-53.
    曹祖德,唐士芳,李蓓.2001.波、流共存时床面剪切力[J].水道港口,22(2):56-60.
    董礼先.1998.椒江河口高浑浊水混合过程分析[J].海洋与湖沼,29(5):535-541.
    窦国仁.1999.再论泥沙起动流速[J].泥沙研究,6,1-9.
    樊社军,Chiang C.Mei,虞志英.1999.波流边界层中细颗粒粘性泥沙的再悬浮和扩散输移[J].泥沙研究,2:20-27.
    贺松林,孙介民.1996.长江河口最大浑浊带的悬沙输移特征[J].海洋与湖沼,27(1):60-66.
    李九发,何青,徐海根.2001.长江口浮泥形成机理及变化过程[J].海洋与湖沼,32(3):302-310.
    李玉成.1997.波浪在浅水区的变形及破碎[J].海洋学报,19(3):111-118.
    练继建,赵子丹.1994.波流共存场中全水深水流流速分布[J].海洋通报,1994,13(3),1-9.
    刘红,何青,孟翊,王元叶,唐建华.2007.长江口表层沉积物分布特征及动力响应[J].地理学报,62(1):81-92.
    刘红,何青,王元叶,翟晓鸣.2006.长江口浑浊带海域OBS标定的实验研究[J].泥沙研究,(5):52-58.
    沈焕庭,贺松林.1992.长江河口最大浑浊带研究[J].地理学报,47(5):472-479.
    沈焕庭,朱慧芳等.1986.长江河口环流及其对悬沙输移的影响[J].海洋与湖沼,17(1):26-35.
    时伟荣.1993.长江口浑浊带含沙量的潮流变化及其成因分析fJ].地理学报,48(5):412-420.
    时钟.2000a.长江口底部边界层细颗粒泥沙过程[J].海洋科学,24(4):56.
    时钟.2000b.河口海岸底部边界层和细颗粒泥沙过程[J].海洋科学,24(11),27-34
    时钟,朱文蔚,周洪强.2000.长江口北槽口外细颗粒悬沙沉降速度[J].上海交通大学学报,34(1):18-23.
    时钟、凌鸿烈.1999.长江口细颗粒悬沙浓度垂向分布.泥沙研究,1999(2),p59-64
    孙红、韩光、陶建华.2001.波流相互作用下沿垂向的水流结构及其试验验证[J].水利学报,7:63-68.
    汪亚平,高抒,贾建军.2000.海底边界层水流结构及底移质搬运研究进展[J].海洋地质与第四纪地质,20(3):101-106.
    汪亚平,高抒,李坤业.1999.ADCP进行走航式悬沙浓度测量的初步研究[J].海洋与湖沼,30(6):758-763.
    王淘,李家春.1999.波流相互作用研究进展[J].力学进展,29(3):331-343.
    王元叶.2004.长江口近底边界层观测研究[D].华东师范大学硕士学位论文.
    王元叶,何青,等.2004.长江口床沙质和冲泻质划分的初步研究[J].泥沙研究,(1),43-49.
    文圣常,余宙文.1984.海浪理论与计算原理[M].北京:科学出版社,228-249.
    谢钦春、李伯根、夏小明、李炎.1998.椒江河口悬沙浓度垂向分布和泥跃层发育[J].海洋学报,20(6):58-69.
    薛元忠,何青,王元叶,2004.OBS浊度计测量泥沙浓度的方法与实践研究[J].泥沙研究,(4):56-60.
    叶安乐,李凤歧.1992.物理海洋学[M].青岛:青岛海洋大学出版社,39-48.
    余常昭,1997.环境流体力学[M].北京:清华大学出版社.
    虞志英,张国安,金镠,包四林,樊社军.2002.波流共同作用下废黄河河口水下三角洲地形演变预测模式[J].海洋与湖沼,33(6):583-890.
    张庆河,赵子丹.1997.波流作用下的底泥输移[J].天津大学学报,30(3):274-280.
    张瑞瑾.1998.河流泥沙动力学(第二版)[M].北京:中国水利水电出版社,46-62.
    赵新品.1999.波浪掀沙临界深度初探[J].海岸工程,18(4):46-49.
    朱建荣.2003.海洋数值计算方法和数值模式[M].北京:海洋出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700