用户名: 密码: 验证码:
水—岩相互作用及其与铀成矿关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铀是影响当今世界和平与发展的重要战略、能源资源。本世纪前二十年是我国核电高速发展时期,为了确保国家能源安全保障的天然铀充足供应和储备,加强铀成矿作用研究,提升研究水平,建立成矿模式,不仅是当前核地质工作者面临的重大科学问题,而且对指导我国新一轮铀资源勘查的战略部署具重要的现实意义和实用价值。
     我国铀矿分类习惯于按赋矿围岩而划分,火山岩型铀矿是我国目前已探明的主要铀矿床工业类型之一。尽管赋矿围岩不同,但铀的地球化学性质决定了铀成矿作用在本质上具有共性。铀成矿作用是源—运—聚的动力学过程,流体是贯穿于矿床形成过程中的主要控制因素,水(流体)—岩石相互作用造就了成矿过程。铀成矿作用的研究,以往多是对所观察到的基本地质现象进行归纳和演绎,或是过于偏重分析测试数据的推断,在源—运—聚成矿过程的有机整体中常以“聚”为主要研究对象,缺乏系统性演化和动力学过程研究,在许多问题上得出了众说纷纭的、唯分析测试数据及唯空间定位等的唯象学层次的认识。
     本文选择中国目前最大、最富的火山岩型铀矿田—相山矿田开展立典性研究。论文以系统科学思想为指导,着重于成矿系统中相互作用和相互依赖的重要要素—源、运、聚的演化和动力学过程分析,提出了火山岩浆期后成矿热液系统概念,认为相山矿田铀成矿作用是火山岩浆期后成矿热液系统演化的产物,铀成矿作用过程与火山岩浆期后热液系统活动相伴随。文章论述了区域地质背景及矿田地质特征;探讨了成矿物质及成矿溶液来源;讨论了成矿期相山火山盆地地下水流动系统及流动形式;在对火山岩浆期后热液系统成矿物质富集、成矿流体运移、成矿物质聚集系统研究的基础上,就成矿流体系统形成和演化的动力学过程进行了分析;最后,建立了相山矿田铀成矿模式,并对矿田深入找矿方向进行了评述。
     1.相山矿田铀成矿是受制于区域构造环境演化的火山岩浆期后的产物
     相山矿田铀成矿是在区域地质背景与相山火山盆地特定地质构造环境条件下、火山岩浆期后热液系统中热液(流体)—岩石相互作用动力学过程中一个阶段(时期)的产物,受制于伸展或向伸展过渡的地球动力学背景之下的火山岩浆作用为成矿提供了物质—能量场。研究表明,大规模火山作用之后铀成矿开始发生,其时间跨度延续了50Ma,成矿作用在时间上是一个相对连续的过程。但矿田主成矿期可分为早、晚两期,早期形成碱性钠交代型铀矿化,矿岩时差小;晚期形成酸性萤石—水云母型铀矿化,矿岩时差较大。在空间上,早期铀矿化主要赋存于矿田北部花岗斑岩及其内、外接触带,晚期铀矿化主要赋存于矿田西部火山岩中各级构造及其复合部位。由此可见,相山矿田不同期的高强度成矿作用相应发生于某一时空域内,是与区域构造环境密切相关的、火山岩浆期后热液系统演化的客观产物。
     2.相山矿田成矿物质来源探讨
     相山矿田成矿物质来源始终是个有争论的问题。长期以来,在铀源分析的过程中人们往往把目光盯在“汇”区,缺少区域成矿物质迁移过程和历史演化的分析,并以“汇”区各种测试数据推断成矿物质来源。本文基于区域成矿物质时空分布特征,分析了其对铀源的指示意义,同时利用了同位素及微量元素地球化学研究成果探讨矿田成矿物质来源,得出如下结论:
     (1)区域地层铀含量分布特征及其在地球化学作用过程中的物质迁移变化特征表明,早寒武世地层构成区域铀源层。
     (2)岩浆岩含铀性具如下特征:相同构造运动期内华南地区重熔型花岗岩铀含量高于同熔型花岗岩铀含量;加里东期及以后的花岗岩体铀含量较高;中生代中酸性火山岩铀含量高于中基性火山岩铀含量。可见,岩浆岩铀含量与成岩物质来源密切相关,区域铀源层的熔融是导致岩浆岩含铀性差异的根本原因。
     (3)相山中酸性火山岩由深部陆壳物质深熔作用所形成,其铀含量高于区域陆壳平均铀丰度,也高于相山地区震旦纪及中寒武世以后沉积地层的铀含量,结合区域岩浆岩铀含量分布特征,认为区域富铀层位(∈_1)的混染导致了相山火山岩的高铀含量。据此,相山火山盆地是成矿物质的“汇”区,区域富铀层是最根本的成矿物质来源,火山岩浆活动过程是成矿物质的聚集过程,火山岩浆及期后热液是成矿物质迁移的载体。
     (4)岩、矿石微量元素地球化学特征表明,在铀成矿作用过程中,基底片岩及流纹英安岩提供了部分成矿物质来源。
     3.相山矿田成矿溶液来源判断
     成矿溶液的氢、氧同位素组成是判断成矿溶液来源的重要依据。本文认识到流体包裹体是成矿溶液的“化石”,成矿溶液的同位素组成会受到其在演化过程中的水—岩交换、交换时的温度和压力状态、岩石的同位素组成等因素的影响。为此,在了解流体包裹体基本特点的基础上,结合成矿的地质和地球化学特征,对成矿溶液来源进行判断,而不是简单的采用数据对比。
     (1)相山矿田不同时空阶段成矿流体的化学组分及其盐度、温度及压力值也不相同,早期成矿流体是相对高温、高压、高盐度的流体,而晚期成矿流体的温度、压力和盐度值都相对较低。
     (2)相山矿田矿前期到矿后期溶液的δ~(18)O _(H_2O)呈现降低的趋势,这一现象可以解释为大气降水组分越来越多。成矿期溶液的氢、氧同位素组成可分为两组,一组δD约为-60‰,另一组δD约为-80‰,前者对应于萤石—水云母型矿化,后者与钠交代型矿化对应。
     (3)在雨水、海水和岩浆水三角图中,成矿溶液的氢、氧同位素组成位于岩浆水区域与雨水线之间,而且位于代表赋矿火成岩的岩浆水与雨水组分的连线上。早期成矿溶液的雨水端员的同位素组成是雨水的平均氢、氧同位素组成,而晚期成矿溶液的雨水端员为中生代雨水的氢、氧同位素组成。显然,早、晚期成矿溶液均是岩浆水和雨水的混合,但这并不意味着雨水成因的外生水循环直接进入成矿溶液,只是证明成矿溶液中存在雨水成分。
     (4)成矿流体的基本特点及成矿溶液的氢、氧同位素组成,表明矿田内不同阶段矿化类型的成矿流体来源不同,结合矿田成矿地质特征认为:早期成矿溶液来源主要是火山岩浆期后热液,其雨水组分源自火山岩浆作用过程中含有元古代、古生代和中生代降水的岩石熔融而进入岩浆,因而其雨水端员表现为雨水的平均同位素组成;晚期成矿溶液来源为原始岩浆发生带—高位岩浆房—火山成因建造结构系统的岩浆期后热液及由于温压降低、冷凝析出的水汽溶液和降水的混合,降水份额比例可能明显大于早期成矿溶液,为此其雨水端员为中生代雨水的同位素组成。
     4.成矿物质迁移过程分析
     通过稀土元素地球化学特征研究、蚀变岩中物质迁移的定量计算及水—岩作用地球化学模拟计算,结合成矿物质及成矿溶液来源,分析了前人研究相对薄弱的成矿物质迁移过程。
     (1)稀土元素地球化学特征表明,由深部古老陆壳物质深熔作用形成的岩浆,在上升途中不仅混染了富铀地层,而且受到高度分馏的结晶作用,由此导致经熔融作用汇集于岩浆中的铀向岩浆演化最晚期热液中迁移,岩浆及期后热液是铀的载体。相山火山岩原始岩浆的铀含量明显高于岩浆库晚期粒间熔浆铀含量,也说明在岩浆演化过程中铀从岩浆向气液转移。
     (2)蚀变岩中物质迁移的定量计算结果显示,其成矿元素带入及带出的质量变化均不大,这不仅支持了成矿物质来源的分析结论,同时也预示了火山岩浆及期后演化的热液是成矿物质的载体,即成矿物质是经岩浆熔融作用而迁移。
     (3)将相山火山盆地岩、矿石微量元素组合特征对比,认识到基底片岩及流纹英安岩与岩浆期后热液的相互作用,可能促使其为火山岩浆期后、富含CO_2气体的成矿热液提供了部分铀。成矿温度条件下的水—岩作用地球化学模拟计算结果也表明,富含CO_2气体的流体有利于火山岩及变质岩中铀的迁出。
     5.成矿期外生地下水以“湍流”运动形式进入成矿溶液
     自成矿期以来,相山地区构造—水文地质格局未发生根本性的变化。应用重力穿层地下水流动基本理论,刻画了相山地区成矿期古地形控制下的大气降水成因的地下水流场,并勾划了典型剖面成矿期地下水流网。
     重力势驱动的外生地下水以什么运动形式进入相对高温高压的成矿流体,前人并没有给予解释。本文据成矿流体压力值及汽液包裹体压力值对古地形势驱动的大气降水在对流运动形式下能否进入成矿期流体的古地形分异进行了估算,结果与成矿期古地形势相悖。因而推论成矿期外生地下水进入成矿热液的运动形式是在地形势驱动及岩浆余热及高温高压流体温度、压力梯度驱动下的“湍流”运动。事实上,相山矿田居隆庵矿床深部狭窄空间内不同温、压值包裹体共存,也为外生地下水以“湍流”运动形式进入成矿溶液提供了证据。
     6.火山岩浆期后成矿热液系统演化促成了相山矿田铀成矿作用
     基于上述研究,本文提出了火山岩浆期后成矿热液系统概念,认为与区域构造环境演化密切相关的、火山岩浆期后热液系统活动及演化促成了相山矿田长达50Ma的铀成矿作用。
     (1)成矿物质的富集过程
     相山火山盆地成矿物质的富集过程包括三个阶段:第一阶段发生于深部陆壳物质形成原始岩浆之时;第二阶段主要发生于高位岩浆房及岩浆的充分演化释放;第三阶段主要是火山岩浆期后几—几十百万年时间内流体(水)—岩石相互作用所导致。第一阶段为相山铀矿田的形成奠定了成矿物质基础,第二阶段是成矿的前奏,岩浆充分演化释放的铀可以为相山早期铀成矿直接提供成矿物质;第三阶段岩浆期后热液系统演化过程中的水—岩作用,促使相山火盆基底地层及流纹英安岩中的铀也向成矿流体进一步富集。
     (2)成矿流体运移
     相山火山盆地火山岩浆期后热液活动的主要作用力是热驱动,它来自获得原始岩浆发生带能量补充的高位岩浆房。据相山矿田蚀变带及矿体的空间产出特征、矿体形态特征等综合分析,认为热驱动使得流体的流动为上升流,即成矿流体的运移方向是自下而上的,与火山基底构造相互贯通的火山塌陷构造、断裂构造是成矿流体运移的主要通道,温度梯度是成矿流体运移的主要驱动力,在流体活动中心(流体活动强烈地带)流体压力产生的水压破裂在构造旁侧形成裂隙密集带,为相山矿田矿质沉淀提供了空间。
     (3)成矿流体系统演化
     相山火山盆地大规律火山作用后,岩浆演化最晚期热液与岩石相互作用,形成矿前期的水云母化和钠长石化,岩石在发生化学变化的同时,溶液成分也发生了变化,溶液的碱性不断增强,促使Fe~(3+)和OH~(-)化合并导致岩石变红,即发生红化,形成矿岩时差小的铀—赤铁矿型矿石。此后,受原始岩浆发生带—高位岩浆房—火山成因建造系统控制的、含幔源气体成分的火山岩浆期后热液活动性增强,其沿构造通道朝减压(向上)方向运移并发生水压破裂。火山岩浆期后热液与岩石相互作用过程中,由于酸—碱分离形成了上酸下碱蚀变分带,因而在矿田西部目前勘探深度内揭见了成矿时间相对较晚、成矿温度相对较低的富氟酸性成矿流体形成的矿石,即:铀—萤石型及铀—硫化物型矿石。
     可见,与相山火山岩浆活动有关的流体(水)—岩石相互作用促进了火山岩浆期后成矿流体演化,造就了铀成矿作用过程。
     7.相山矿田铀成矿模式的建立及深入找矿方向评述
     据矿田成矿地质特征,考虑成矿作用过程中成矿物质的来源及富集过程、成矿流体系统演化以及成矿流体运移、成矿物质迁移形式和沉淀机理等因素,建立了相山矿田成矿模式并对深入找矿方向进行了评述。
     成矿模式着重强调了:①相山火山岩成岩过程伴随着成矿物质的富集过程;②早期铀成矿流体由岩浆期后热液与岩石相互作用演化而成,成矿物质主要由岩浆期后热液提供:③晚期铀成矿流体含中生代大气降水成分,流体(水)—岩石作用促使了成矿流体演化,基底变质岩及流纹英安岩也为成矿提供了部分铀源;④陡倾断裂及其两侧裂隙密集带,既是成矿流体运移的通道,也是矿质淀积的场所:⑤相山矿田铀的沉淀主要是流体降温作用、浓缩作用及混合作用等成矿机理耦合的结果。
     通过对矿田铀成矿作用过程的深入剖析,认为北部和西部仍是今后勘查的重要靶区。北部以寻找花岗斑岩及其内、外接触带控制的早期矿化为主攻方向,加大勘查深度。西部以寻找赋存于火山岩中各级构造及其复合部位的晚期铀矿化为主攻方向,以蚀变场、构造、“湍流”空间域三位一体地段为重要勘查地段;此外,本文依据成矿流体渗透效应引起的酸碱分离,提出在矿田西部要加强探索赋存于花岗斑岩内、外接触带,类似于矿田北部的早期铀矿化,可以对已查明的赋存于火山岩中的酸性铀矿化部位开展攻深勘查。
Uranium is an important resource of strategy and energy which influences the peace and development in present world. Nuclear power in our country is rapidly developing during the first 20 years of this century. In order to ensure adequate supply and reserve of natural uranium, enhancing study of uranium metallogenesis, increasing research level and establishing metallogenic modle are not only great scientific problem that nuclear geologists encounter now, but also have important realistic significance and practical value to guide strategical planning of a new round uranium source exploration in China.
     Uranium deposits in China are used to classified according to host rocks. Volcanic type uranium deposit is one of main industrial types of uranium deposits which are discovered in China. Although host rocks are different, it is basically common that property of uranium geochemistry determines uranium metallogenesis which is a dynamics process of source-migration—accumulation. Fluid is the chief control factor through the whole process of deposit formation. Metallogenic process results from water (fluid) -rock interaction. The previous study on uranium metallogenesis was mainly induction and deduction of basic geological phenomena observed, or excessively emphasis on extrapolation of test and measure data, accumulation was often study object in organic integrity of "source-migration-accumulation" metallogenic process, systematic evolution and dynamics process are merely studied. Conclusions on many problems are obtained on phenomenology which are controversy, based on test data and space position.
     This paper chooses Xiangshan orefield, the largest and richest volcanic type uranium orefield in China to classical research. The paper is guided under systematic scientific thought, emphasizes evolution and dynamics process analysis of source, migration and accumulation which are key factors in metallogenic system, and puts forward concept of metallogenic hydrothermal solution in post volcanic magma. Metallogenesis in Xiangshan orefield is the product of metallogenic hydrothermal solution system evolution in post volcanic magma, uranium metallogenic process acompanies with activity of hydrothermal solution system in post volcanic magma period. The paper discusses regional geological background and geological characteristics of the orefield, confers sources of metallogenic substances and fluids, discusses flow system and way of underground water in Xiangshan volcanic basin at metallogenic stage. Dynamics process of metallogenic fluid system formation and evolution is analysed on the basis of systematic study on metallogenic substance enrichment, metallogenic fluid movement and metallogenic substance accumulation. Uranium metallogenic model is finally established for Xiangshan orefield, direction for further exploration is reviewed for the orefield.
     1. Uranium metallogengsis in Xiangshan orefield is product of post volcanic magma constrainted by regional tectonic environment evolution
     Uranium metallogenesis in Xiangshan orefield is a stage product of hydrothermal solution (fluid)-rock interaction dynamics process in hydrothermal solution system of post volcanic magma at regional geological background and specific geological tectonic environment of Xiangshan volcanic basin. Metallogenic substance-energy field is supplied by volcanic magmatism at earth dynamic background controlled by extension. The research indicates that large volcanism is followed by uranium metallogenesis with time span of 50 Ma. Metallogenesis is a relatively continuous process, but main metallogenesis in the orefield can be divided into two stages. The early stage formed uranium mineralization of alkalic sodium metasomatic type with little time difference between rock and ore, the late stage formed acidic fluorite-hydromica type of mineralization with large time difference between rock and ore. In space, uranium mineralization in early stage is mainly located in granite-porphyry and its both inner and outer contact zones in north orefield, uranium mineralization in late stage is chiefly located into structures and their composites of volcanic rocks in west orefield. Therefore, high-intensity metallogenesis of different stages in Xiangshan orefield correspondingly occurred in same time-space domain, was the objective product of hydrothermal solution system evolution of post volcanic magma which has close relation with regional tectonic environment.
     2. Discussion of source of metallogenic substances in Xiangshan orefield
     Source of metallogenic substances in Xiangshan orefield is always a controversial problem. For long time, analysis of uranium source was focused on accumulation without analysis of migration process and historic evolution of regional metallogenic substance. Various test and measurement data from "accumulation" are induce source of metallogenic substances. On tha basis of temporal and spatial distribution characteristics of regional metallogenic substances, the paper analyzes indication significance of uranium source, discusses metallogenic substance source in the orefield with application of research results of isotope and trace element geochemistry. The conclusions are following:
     (1) Distribution characteyistics of uranium content in regional strata and variety characteristics of substance migration in geochemistry process show that regional uranium source beds consist of Lower Cambrian.
     (2) Magmatic rock bearing uranium has the following characteristics: uranium content in anatexis type granite than syntexis type granite in the same tectonic region; uranium content is higher in Caledonian and later granites; Mesozoic intermediate-acidic volcanic rock has higher uranium content than intermediate-basic volcanic rock. It is shown that uranium content in magmatic rock has close relation with source of petrogenic substance. Melting of regional uranium source beds is root reason resulting in uranium content difference of magmatic rocks.
     (3) Intermediate-acidic volcanic rock in Xiangshan is formed by anatexis of deep continental crust substances which has higher uranium content than average uranium abundance of regional continental crust, is also higher than uranium content of Sinian and Post middle-cambrian strata.Combining with distribution characteristics of uranium content of regional magmatic rock, it is considered that hybrid of regional uranium bearing strata (∈_1) result in high uranium content of Xiangshan volcanic rock. Therefore, Xiangshan volcanic basin is the accumulation area for metallogenic substances, regional uranium source beds are basical source of metallogenic substances, volcanic magmatism is the accumulation process of metallogenic substances, volcanic magma and later hydrothermal solution are migration media of metallogenic substances.
     (4) Geochemical characteristics of trace elements in both rock and ore show that schist of basement and rhyodacite provide some portions of metallogenic substance source during uranium metallogenesis.
     3. Determination of metallogenic solution source in Xiangshan orefield
     Compositions of H and O isotopes in metallogenic solution are important basis for determination of metallogenic solution source. The paper recognized that fluid inclusion is a "fossil" of metallogenic solution. Isotopic composition of metallogenic solution is influenced by water-rock exchange, temperature of exchange and isotopic composition of rocks, etc. Therefore, determination of metallogenic solution source is based on basic property of fluid inclusion, combined with metallogenic geology and geochemical characteristics, is not simply data correlation.
     (1) Chemical composition, salinite, temperature and pressure of metallogenic fluid varies at different temporal and spatial stage in Xiangshan orefield. Metallogenic fluid in early stage had relative high temperature, high pressure, high salinity, while temperature, pressure and salinity were relative low in metallogenic fluid in late stage.
     (2)δ~(18)O_(H_2O) in solution has tendence of decline from pre-mineralization stage to post-mineralization stage in Xiangshan orefield. This phenomenon is caused by portion increase of meteoric water. Solution isotopic composition of H and O in metallogenic stage can be divided into two groups: one group has about -60%δD, the other -80%δD. The former is corresponding to fluorite-hydromica type mineralization; the later corresponding to sodium metasomatic type mineralization.
     (3) In triangular diagram of rainwater,seawater and magmatic water, H and O istopic compositions of metallogenic solution are between magmatic water regian and rainwater line, are on alignment representing magmatic water of igneous rock and rainwater. Isotopic composition of rainwater end-member in early metallogenic solution is the average of H and O isotopic composition of rainwater, while rainwater end-member of late metallogenic solution is H and 0 isotopic composition of Mesozoic rainwater. This shows that metallogenic solution of both early and late stages are mix of magmatic water and rainwater, but it does not mean that circulation of epigenic water produced by rainwater did not directly enter into metallogenic solution, it improves that rainwater portion existed in metallogenic solution.
     (4) Basic property of metallogenic fluid and H、O isotopic compositions of metallogenic solution show that metallogenic fluid sources of mineralization types in different stages are different. Metallogenic solution source in early stage is hydrothermal solution of post volcanic magma, its rainwater portion source is rocks including Proterozoic, Palaeozoic and Mesozoic meteoric water, therefore its rainwater end-member is average isotopic composition of rainwater. Metallogenic solutionsource is mix of hydrothermal solution of primary magma generation Zone-high position magma chamber-volcanic construction system and meteoric water, water-gas solution condensed due to temperature and pressure decrease, portion ratio of meteoric water may be obviously larger than metallogenic solution of early stage because rainwater end-memberi is Mesozoic rainwater isotopic composition.
     4. Analysis of metallogenic substance migration process
     Metallogenic substance migration process is analyzed by study on REE geochemical characteristics, quantitative calculation of substance migration in altered rock and geochemical simulation calculation of water-rock interaction, combining with source of metallogenic substance and solution.
     (1) REE geochemical characteristics indicate that in the upward-risen way magma formed by anatexis of deep older continental materials did not only mix with uranium bearingstrata, but also had crystallization of high intensive differentiation which results in uranium migration from magma to latest hydrothermal solution. Magma and the later.hydrithermal solution are media of uranium. Uranium content in preliminary magma of Xiangshan volcanic rock is obviously higher than in magma of magmatic chamber. This shows that uranium transfers from magma to gas and liquid during magmatic evolution.
     (2) Quantitative calculation result of substance migration in altered rock demonstrates that quantity of inflow and outflow of metallogenic elements varies little. This supports the analyse conclusion of metallogenic substance source, also indicates that volcanic magma and later hydrothermal solution are media of metallogenic substance, which migrates in magmatic dissolution.
     (3) REE association characteristics correlation of rock and ore in Xiangshan volcanic basin shows that interaction of basement schist and rhyodacite with hydrothermal solution of post magma can provide some uranium for metallogenic hydrothermal solution with rich CO_2 gas in post volcanic magma. Geochemical simulation calculation result of water-rock interaction at temperature condition of metallogenesis also shows that fluid with rich CO_2 gas conduces to uranium migration from volcanic rock and metamorphic rock.
     5. Epigenic groundwater enters into metallogenic solution in "turbulence" movement way during metallogenic stage
     Tectohydrogeological frame has not basically changed in Xiangshan area since metallogenic stage. With application of basic theory of gravity penetrating groundwater flow, groundwater flow field originated from meteoric water and controlled by palaeotopography at metallogenic stage in Xiangshan area is specified, groundwater flow net at metallogenic stage in typical section is also described.
     What kind of movement way did epigenic groundwater driven by gravity potential enter into metallogenic fluid with relative high temperature and high presure? There was no explanation for it. Can meteoric water driven by palaeotopographic potential enter into metallogenic fluid in convectional movement way?
     The paper calculates differentiation of the palaeotopography according to pressure value of metallogenic fluid and pressure value of gas-liquid inclusion, the result is contradictory to the palaeotopography at metallogenic stage. So it is conferred that movement way in which epigenic groundwater enters into metallogenic solution at metallogenic stage is "turbulence" movement driven by topographic potential, magmatic residual heat and gradients of temperature and pressure of high temperature and high pressure fluid. In fact, inclusions with different temperature and pressure valves coexist together in a deep and very small room in Julongan deposit of Xiangshan orefield. This also provides evidence that epigenic groundwater enters into metallogenic solution in "turbulence" movement.
     6. Uranium metallogenesis in Xiangshan orefield results from systematic evolution of metallogenic hydrothermal solution in post volcanic magma stage
     In this paper, concept of metallogenic hydrothermal solution system in post volcanic magma is put forward on the basis of above researches. Uranium metallogenesis with a period of 50 Ma in Xiangshan orefield result from evolution and activity of hydrothermal solution system in post volcanic magma and in close relation with evolution of regional tectonic environment.
     (1) Enrichment process of metallogenic substance in Xiangshan volcanic basin consists of 3 stages: the first stage occurred when deep continental materials formed primary magma; the second stage occurred at full evolution and relief of magma and upper magmatic chamber; the third stage resulted from fluid (water) -rock interaction of several or dozens Ma in post volcanic magma. Metallogenic substance basis of Xiangshan orefield was established in the first stage. The second stage was the prelude to metallogenesis, uranium released by full evolution of magma can directly provide metallogenic substance for the early uranium metallogenesis in Xiangshan; in the third stage ,water-rock interaction in evolution process of post volcanic magma caused uranium from basement strata and rhyodacite in Xiangshan volcanic basin further enriching in metallogenic fluid.
     (2) Metallogenic fluid migration main force of hydrothermal solution activity in post volcanic magma in Xiangshan volcanic basin is driven by thermo which came from upper magma chamber where energy from primary magma generation was refilled. Based on comprehensive analysis of characteristics of alteration zone, orebody spatial distribution and forms, thermal drive is considered to force fluid into upwelling , motion direction of metallogenic fluid is from down to up, volcanic collapse structure and fault structure interconnecting with volcanic basement structure are main channel for metallogenic fluid migration, temperature gradient is chief driving force for metallogenic fluid migration. The space for mineralised material precipitation in Xiangshan orefield is provided by dense fractures in sides of a fault cracked by water pressure generated by fluid pressure.
     (3) Evolution of metallogenic fluid system after large volcaniosm in Xiangshan volcanic basin, the latest hydrothermal solution in magmatic evolution interacts with rocks to form hydromicazation and albitization. While rock chemically changes solution composition varies, alkali in solution increases to combine Fe~(3+) with OH~-, so rock becomes red to form U-hematite type ore with little time difference between ore and rock. Then activity of hydrothermal solution with mantle-derived gas composition in post volcanic magma enhances, the hydrothermal solution migrates upward along fault channel, water pressure cracks. Acid-alkali separation results in alteration zoning of upper acid and lower alkali. U-fluorite type and U-sulfide type ore formed by metallogenic fluid with rich fluor acid in relative low temperature and late time of metallogenesis in west orefield. So interaction of rock-fluid (water) which is close relation with volcanic magmatism facilitates evolution of metallogenic fluid in post volcanic magma, and produces process of uranium metallogenesis.
     7. Establishment of uranium metallogenic model and discussion of further exploration direction in Xiangshan orefield
     Metallogenic model is established and further exploration direction is discussed in Xiangshan orefield on basis of metallogenic geological characteristics of the orefield, source and enrichment of metallogenic substance in metallogenic process, systematic evolution and migration of metallogenic fluid, migration mode and precipitation mechanism of metallogenic substance, etc.
     The metallogenic model emphasizes:①Valcanic diagenetic process in Xiangshan accompanies enrichment process of metallogenic substances;②Early uranium metallogenic fluid is formed by interaction of rock with hydrothermal solution of post magmatism, metallogenic substances are provided by hydrothemal solution of post magmatism;③Late uranium metallogenic fluid contains composition of Mesozoic meteoric water, fluid (water) -rock interaction promotes evolution of metallogenic fluid, basement schist and rhyodacite also provide some uranium source for metallogenesis;④High-angle fault and its lateral zones of dense fractures are not only migration passage of metallogenic fluid, but also room for precipitation of metallogenic substances;⑤Uranium precipitation in Xiangshan orefield is coupling result of metallogenic mechanism of fluid cooling, concentrating and mixing, etc.
     Through deep analysis of metallogenic process, north and west of Xiangshsn orefield are considered as important targets for exploration in the futune. Main efforts and deep exploration are focused on early mineralization controlled by granite-porphyry and its both inner and outer contact zones in north of Xiangshan orefield. Main efforts are focused on late uranium mineralization locating within all kinds of structures and their conjuctions. The spatial trinity of alteration field, structure and "turbulence" is important area for exploration. Moreover, according to acid-alkali separation caused by permeation effect of metallogenic fluid, this paper puts forwart that exploration should be strengthened in inner and outer contact zones of granite-porphyry in west of xiangshan orefield to look for early uranium mineralization, similar to north of Xiangshan orefield. The exploration shall go further in depth for acidic uranium mineralization positions discovered in volcanic rock.
引文
Anderson G M and Macqueen R W.Ore-deposit models-6.Mississippi Valley-type lead-zine deposits,Geoscience Canada,1982,9:108-117
    Cederberg G A. A groundwatermass transport and equilibrium chemistry model for multicompont system,Water Resour. Res.,1985,21:1095-1104
    Deming D. Fluid flow and heat transport in the upper continental crost, form Parnell J(ed), Geofiuids: Origin, migration and evolution of fluid in sedimentary basins, Geol. Soci. Specical Publication, 1994,78:27-42
    Fyfe W S, Price N J, and Thompson A B. Fluids in the earth's crust, Elsvier Amsterdam, 1978,388
    GarVen G. Continental—scale groundwater flow and geologic processes, Annu Rev Earth Planet. Sci. 1995, 23:89-117
    
    Lasaga AC. Chemical kionetic of water—rock interactions, J.geophys.Reo., 1984, 89:4009-4025
    Musgrove M and Banner J L. Regional ground—water mixing and the origion of saline fluids: Midcontinent, United State, Science, 1993,259:1877-1882
    Nebitt B E.Fluid flow and chemical evolution in the genesis of hydrothermal ore deposit, In: Nesbitl B E, short course on fluids in tectonically active regimes of the continental crust, Vancourse,1990
    Norton D. Theory of hydrothermal system, Ann. Rev. of Earth Planet. Sci., 1984,12:155-177
    Raffensperger J P.Garven G, The formation of unconformity-type uranium ore deposit: 1. coupled groundwater flow and heat transport modeling, Am. J.Sci., 1995a, 295:581-636
    Raffensperger J P.Garven G, The formation of unconformity-type uranium ore deposif.2. coupled hydrochemical modeling, Am. J.Sci., 1995b, 295:639-696
    
    Roedder E and Bodnar R J. Geological pressure determination from fluid inclusion studies, Ann. Rev. Earth planet. Sci., 1980, 8:263-301
    Taylor S R. Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Acta, 1964,28:1273
    Taylor S R and McClenman S M. The continental crust: its composition and evolution, Blackwell Scientific Publication, 1985
    Veizer J and Hoefs J. The nature of ~(18)O/~(16)O and ~(13)C/~(12)C secular trend in sedimentary carbonate rocks,Geochim Cosmochim Acta, 1976,40:1387-1395
    Yeh G T and Tripathi U S. Acritical evalution of recent developments in hydrochemical transport models of reactive multichemical components, Water Resour.Res .,1989,25:93-108
    Wenrich K J. Geochemical characteristics of uranium-emriched volcanic rocks, In:IAEA(ed), Uranium Deposits in Volcanic Rocks,1985,29-51
    Taylor H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition, Economic. Geology, 1974, 69:843-883
    Boyle R W. Geochemical prospecting for thorium and uranium deposits, Geological Survey Canada, Ottawa Ontario, Canada, 1982
    Langmuer D. Uranium solution-mineral equilibria at low temperature with applications to sedimentary ore deposits, Geochemica et Cosmochimica Acta, 1978, 42:547-569
    Michard A. Rare earth element systematics in hydrothermal fluid , Geochim. et Cosmochim, Acta , 1989, 53: 745-750
    
    Wanner H and Forest I. Chemical thermodynamics of uranium, NEA, OECD,1992
    Hallam A. A review of Mesozoic climates, J.Geol. Soc. London, 1985,142
    
    Barnes H L. Geochemistry of hydrothermal ore deposits, second ed. Awiley Interscience Publication, 1979
    Plummer L N. Geochemical modeling of water-rock interaction:Past, Present and ftiture. Proceedings of the 7th International symposium on water-rock interaction, 1992
    Ferry J M and Dipple G M. Models for coupled fluid flow, mineral reaction and isotopic alteration during contact metamorphism: the Notch Peak Aureole, Utah, Am. Mine., 1992, 77:577-591
    Large R R. Australian volcanic hosted massive sulfide deposits: features, styles and gengtic models, Econ. Geol., 1992,87:471-510
    
    Starostin V L. Fluid dynamics of ore deposits, Frontier of Earth Science, 1996, 3:9-17
    Taylor H P. Water-rock interactions and the origins of H_2O in granitic batholiths, J. Gol. Soc, 1997, 133:505
    Dahlkamp F J. Uranium ore deposits, Springer-Verlag, 1991
    
    Shvartsev S L. Interaction of water with aluminosilicate rocks ,Review Soviet Geol and Geophys, 1991,32:13-37
    Helgeson H C. Kinetics of mass transfer among silicates and aqneouw solutions, Geochim and Cosmochis Acta,1971,35:421-469
    Haynes D W and Cross K C. Bills R T., et al., Olympic dam ore-genesis:A fluid-mixing model, Econ. Geol., 1995,90:281-307
    Fehn U. Cathles L M. and Holland H D., Hydrothemal convection and uranium deposits in abnormally radioactive plutions Econ. Geol., 1978, 73 .1556-1566
    Keppler H and Wyllie P J. Partitioning of Cu, Sn, Mo, W, U and Th between melt and agueous fluid in the systems haplogranite-H_2O-HCl and haplogranite-H_2O-HF, Contrib.mineral., 1991,109:139-150
    Bottinga Y. Comments on Oxygen isotope geotherm ometry, Earth Planet Sci. Lett, 1975,20:250-265
    Spycher N F and Read M H. Evolution of a Broadlands-type epithermal ore fluid along alternative P-T Paths: implications for the transport and deposition of base, precious and volatile metals, Econ. Geol., 1989, 84:238-359
    Celik M. Karakaya N. and Temel A, Clay minerals in hydrothermally attered volcanic rocks, easter Pontieds, Turkey, Clays and clay minerals, 1999,47:615-628
    Richard P Jand Spooner E T. Evidence for Cu-(Ag) mineralization by magmatic-meteoric fluid mixing in keweenanwan fissure veins, Mamainse point, Econ. Geol., 1989, 84:360-385
    
    Ohmoto H. Systemations of sulfer and carbon isotopes in hydrothermal ore deposits, Econ .Geol., 1972, 67:551-579
    
    Tkacheva T V. Shmariovich Y M., Rekharskaya V M., et al., The radiogenic hypothesis of formation of periore zones of hematitization in hydrothermal uranium deposits, Intern Geol. Rev., 1984, 26:197-205
    
    Argne J J. and Rye D M. Simple models of CO_2 release from metacsrbonates with implications for interpretation of directions and magnitudes of fluid flow in the deep crust, Jonrnal of Petrology, 1999,40:1443-1462
    
    Burwham C W. Magma and hydrothermal fluids, Geocheistry of the hydrothermal ore deposit, New york: John wiley and Sons, 1979, 72-133
    John B M. Formation and tectonic evolution of southeast China and Twiwan of China: isotopic and geochemical constrains, Tectono Physics, 1990,183:145-160
    MeDonough W F. Constraints on the composition of the continental lithospheric mantle, Earth planet, Sci lett, 1990,101:1-18
    Nicholls J. A simple thermodynamic model for estimating the solubility of H_2O in magma, Contrib Mineral. Petrol 1980,74:211-220
    Spera F J. Dynamics of translithosphseric migration of metasomatic fluid and alkaline magma, Mantle Metasomatism, M A Menzies et al. eds, 1987,1-20
    Zhang Bangdong. Geological and geochemical characteristics and petrogenesis of Anqing-Luqiangquartze syenite rock belt, East China, Chinese Journal of Geochemistry, 1989, 8:45-54
    Zhou Taofa and Yue Shucang. Sulfur sources of the copper-gold deposits in the middle and lower reaches of the Yangtze River area:An investigation from the yueshaw orefield, Scientia Geologica Sinica, 1999, 8:31-40
    Zhou Taofa and Yue Shucang. Basemant Characteristics and crustal evolution of the copper-gold metallogenic belt in the middle and lower reaches of the Yangtze River.Some isotope constr--ains, Acta Geologica Sinica, 2000,74:207-312
    Menzies M A. Isotope geochemistry of Cenozoid volcanic rocks reveals mantle heterogeneity below western U. S. A., Nature, 1983, 303:205-209
    Yang K and Scott S D. Possible contribution of a motal-rich magmatic fluid to a sea-floor hydrothermal system, Nature, 1996, 383:420-423
    
    Lundstrom C C. Mantle melting and basalt extraction by equilibrium porous flow, Science, 1995,270:1958-1960
    Schneider M E and Eggler D H. Fluids in equilibrium with peridotite minerals: implication from mantle metasomatism,Geochimica et Cosmochimica Acta, 1986,50:711 -724
    Lowestern J B. Carbon dioxide in magmas and implications for hydrothermal systems, Mineralium Deposita, 2001,36:490-502
    Schmidt Mumm A, Oberthur T, Vetter U, et al. High CO_2 content of fluid inchusions in gold mineralisations in the Ashanti Belt, Ghana: a new category of ore forming fluids? Mineralium Deposita, 1997,32:107-118
    Holloway J R. Composition and volume of supercritical fluids in the earth' crust, In:Hollister L S and Crawford M L ed. Fluid Inclusion: Application to Petrology. Mineral Association of Canada, Calgary, 1981,13-38
    Fan W M and Menzies M A. Destruction of lower lithosphere mantle beneath eastern China, Geotectonica et Metallogenia, 1992,16:171-179
    
    Ishihara S. The Magnetite-series and ilmenite-series granite rocks, Mining Geology, 1977,27:293-305
    Bailey D K. Fluid transport and metasomatic storage in the mantle In: Chemical transport in metasomatic processes, NATOASI Series C: Mathematical and physical Sciences, 1987, 218:39-51
    Marty B, Jambon A, and Sano Y. Helium istope and CO_2 in volcanic gases of Japan, Chemical Geology, 1989, 76:25-40
    Rosenbaum J M, Zindler A, and Rubenstone J L. Mantle fluids: evidence from fluid inclusions,Geochimica et Cosmochimica Acta, 1996,60:3229-3252
    
    Ayers J. Trace element modeling of anqeous fluid-peridotite interaction in the mantle wedge of subduction zones, Contributions to Mineralogy and petrology, 1998,132:390-404
    Bell D R. Water in mantle minerals, Nature, 1992, 357:646-647
    Jiang Yaohui and Yang wanzhi. High contents of Th, U in late-orogenic granitoids to track lithospheric delamination: evidence from granitoids in the western kunlung orogenic belt, China, Chinese Journal of Geochemistry, 2000,19:267-272
    Zhou X M and Li W X. Origin of late Mesozoic igneous rocks in southeastern China:Implicati-ons for lithosphere subduction and underplating of mafic magmas,Tectonophysics,2000,326:269-287
    O'Neil J R, Clayton R N, and Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates, Journal of Chemical Physics, 1969,51:5547-5558
    Sheppard S M F. Characterization and isotopic variations in nature waters, Reviews in Mineralogy, 1986, 16:165-183
    Clayton R N, O'Neil J R, and Mayeda T K. Oxygen isotope exchange between quartz and water, Journal of Geophysics Research, 1972, 77:3057-3067
    Aagaard P, and Helgeson H C. Thermodynamic and Kinetic constraints on reaction rates among minerals and aqweous solutions, 1, Theoretical Considerations, Amer. J.Sci., 1982, 282:237-285
    Crerar D A, and Barnes H L. Ore solution Chemistry-V. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to350°C, Econ. Geol, 1976, 71.722-794
    Crerar D A, Wood S, and Bocarsly A. Chemical control on solubility of ore forming minerals in hydrothermal systems, Econ. Geol., 1985, 80:126-147
    
    Denbigh K G and Turner J C R. Chemical reactor theory. Published by Press Syndicate of Univ,Cambridge,1984
    Dove P. The dissolution kinetics of quartz in aqueous mixed cation solution. Geochim. et Cosmochim. Acta. 1999,63:3715-3727
    Eugster H P. Minerals in hot spring Amer., Min. 1986, 71:655-675
    Fournier R O. The behavior of silica in hydrothermal solutions, Series ed: Robertson J M. Rev. Econ. Geol., 1985,2:45-59
    Ganor J, Mogollon J L, and Lasaga A C. The effect of PH on kaolinite dissolution rates and on activation energy. Geochim. et Cosmochim. Acta, 1995, 59:1037-1057
    Frantz J D, Popp R K, and Boctor N Z. Mineral-solution equilibria, V solubilities of ore-forming minerals in supercritical fluids. Geochim. et Cosmochim. Acta. 1981,45:69-77
    Gautier J M, Oerlker E H, and Schott J. Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150℃ and PH 9, Geochim et Cosmochim. Acta. 1994, 58:4549-4560
    Hedenquist J W, and Lowenstern J B. The role of magmas in the formatiow of hydrothermal ore deposits , Nature. 1994,370:519-526
    
    Hemley R J, Badro J, and Jeter D M. Polymorphism in crystalline and amorphous silica at high pressure, In physics meets mineralogy condensed-matter physics in Geosciences, ed by Aoki, Syono and Hemley, Cambridge Univ. Press. 2000,173-204
    Henley R W, and McNabb A. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement,Econ.Geol. 1978,73:1 -20
    Hochella Jr M F, and White A F. ed: Mineral-water interface geochemistry, Min, Rev. 23, Mineral. Society Amer, 1990
    Kadko D, and Butterfield D A. The relationship of hydrothermal fluid composition and crustal residence time to maturity of vein field on the Juan de Fnca Ridge, Geochim.et cosmochim. Acta. 1998,62:1521-1533
    Andersen T. Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma:REE and isotopic evidence from the Fen complex, southenst Norway.Chem Geol, 1987, 65:147-166
    Deines P. Mantle carbonxoncentration, mode of occurrence, and isotopic composition. In:Schidl-owski M, et al. (eds). Early Organic Evolution:Implication for mineral and Energy Resources. Berlin:Spring-Verlag. 1992, 133-146
    
    Loper D E. Mantle plume, Tectonophysics, 1991,187:373-384
    Lottermoser B G. Rare earth elements and hydrothermal ore formation processes, Ore Geol Rev, 1992, 7:25-41
    Matveev S and Ballhaus C. Synthesis of C-H-0 fluids at high pressure. Russia 6th IKC Abstract, 1995,405-407
    Michard A. Rare earth elemert systematics in hydrothermal fluids. Geochim Cosmochim Acta, 1989,53:745-750
    Xia Q K, Chew D G, Deloule E, et al. Hydrogen isotope composition of mantle-derived megacrysts from eastern China. Chinese Science Bulletin, 1998,43:146
    Norman D I, Musgrave J A. N_2-H_e-A_r compositions in fluid inclusions:indicators of fluid source. Geochim Cosmochim Acta, 1994,58:1119-1132
    
    Peacook S M. Fluid processes in subduction zones. Science, 1990,248:329-337
    Chen zhaobo. "Double mixing" genetic model of uranium deposits in volcanic rocks and relationship betweew China's Mesozoic vein-type U deposits and Pacific plate tectonics, Metallog-ensis of U. Proceedings of the 26th IGC, Beogard, 1981,65-97
    
    Barbarin B. Genesis of the two main types of peraluminous granitoids. Geology, 1996,24:295-298
    Pearce J A. Sources and Setting of granitic rocks. Episodes, 1996,19:120-125
    Zhao Z F, Zheng Y F, Wei C S, et al. Carbon concentration and isotope composition of granites from Southeast China. Phys. Chem. Earth, 2001,26:821-833
    
    Zindler Aand Hart S R. Chemical geodynamics. Ann. Rev. Earth planet. Sci, 1986,14:493-571
    Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regine. Earth Sci Rev., 2003,62:105-161
    Seal R R and Rey R O. Stable isotope study of water-rock interaction and ore formations, Bayhorse base and precious metal district, Idaho. Econ. Geol, 1992, 87:271-287
    Taylor H P. Jr. Water/rock interactions and the origin of H_2O in granitic batholiths. J. Geol. Soc. London, 1977, 133:509-558
    Pincknev D M and Rey R O. Variation of ~(18)O/~(16)O, ~(13)C/~(12)C, texture, and mineralogy in altered limestone in the Hill mine Cave-Rock district, Illinois. Econ. Geol, 1972, 67:1-18
    
    Minster J B and Jordan T H. Present-day plate motions. J. Geophys. Res, 1978, 83:5331-5354
    Morgan W J. Plate motions and deep mantle convection. Geol, Soc. Am, Mem, 1972,132:7-22
    Loper D E and Stacey F A.The dynamical and thermal structure of mantle plumes.Earth planet. Inter, 1983, 304-317
    Davis C H. A shear zone model for the structural evolution of metamorphic core complexes in southeastern Arizona continental tectonics. Geological society publication, 1987, 28:247-266
    
    Boss A P and Sack I S. Formation and growth of deep mantle plumes.Geophys.J.R.Astron,Soc,1985,80:241-255
    Block L and Royden,Core complex geometries and regional scale flow in the lower crust. Tectonics, 1990, a : 557-567
    Clemens J D and Mawer C K.Granitic magma transport by fracture propagation.Tectonophysics,1992,204:339-360
    Chalmers J A,Larsen L M and Pedersen A K.Widespread Palaeocene volcanism around the northern North Atlantic and Lanbrador sea:evidence for a large,hot,early plume head.J.Geol.Soci.1995,6:965-970
    Carlson C A.Spatial distribution of ore deposits.Geology,1991,19:111-114
    Eastman J R.Decision theory and GIS.Proceedings,Africa GIS'93.Geneva:Unitar,1993
    Lorenz E N.The Essence of chaos,the University of Washington Press,1993
    McCaffrey K J W and Johnston J D.FractaI analysis of a mineralized vein deposit:Curraghinalt gold deposit,County Tyrone Mineralium Deposita,1996,31:52-58
    Turcotte D L.Fractals and chaos in Geology and Geophysics Cambridge Uni Press,1992
    Walduck G P.Qualitative modeling fractal geometry in mineral deposit evaluation In:Annels A E(ed),Case Histories and Methods in Mineral Resource Evaluation Geological Society Special Publication,1992,63:299-305
    Witten T A and Sander L M.Diffusion-limited aggregation,a kinetic critical phenomenons.Phys.Rev.Lett.,1981,47:1400-1403
    Britter R E and Lindon P F.The motion of the front of a gravity current traveling down an incline J.Fluid Mech.,1980,99:531-543
    CamPbell I H and Turner J S.Turbulent mixing between fluids with different viscosities.Nature,1985,313:39-42
    Huppert H E.The fluid mechanics of solidification.J.Fluid Mech.,1990,212:209-240
    Norton D.Theory of hydrothermal systems,Ann Rev.Earth Plan.,Sci.,1984,12:155-177
    Jensen H J.Self-organized Criticality-Emergent Complex Behavior in Physical and Biological Systems Cambridge University Press,1998,152
    Rees D A S and Riley D S.The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below,Jour.Fluid Mech.,1990,211:437-461
    久宁(苏),杨立中译.深部地下径流的研究方法.北京:地质出版社.1990
    陈爱国,徐恒力.地下水系统与地下水系统分析.武汉:中国地质大学.1987
    巴斯科夫(苏),沈照理译.成矿规律研究中的古水文地质分析.北京:科学出版社.1981
    李学礼.水文地球化学.北京:原子能出版社.1988
    里奇,霍兰,彼得森(美),巴山,孙段译.热液铀矿床.北京:原子能出版社.1980
    图加林诺夫(苏),雷文高等译.火山洼地铀矿床.北京:原子能出版社.1977
    覃慕陶,刘师先.南岭花岗岩型和火山岩型铀矿床.北京:地质出版社.2001
    卢新卫,马东升.湘中区域古流体及锡矿山锑矿成矿作用模拟.北京:地质出版社.2003
    於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社.2003
    於崇文(编著).地质系统的复杂性.北京:地质出版社.2003
    加弗里连科(苏),孙杉译.构造圈水文地质学.北京:地质出版社.1981
    文冬光,沈照理,钟佐焱.水—岩相互作用的地球化学模拟理论及应用.武汉:中国地质大学出版社.1998
    冯启言,韩宝平.任丘油田水文地球化学演化与水—岩作用研究.徐州:中国矿业大学出版社.2002
    张荣华,胡书敏,王军,等.长江中下游典型火山岩区水—岩相互作用.北京:中国大地出版社.2002
    杜乐天.中国热液铀矿基本成矿规律和—般热液成矿学.北京:原子能出版社.2001
    夏林圻,夏祖春,张成,等.相山中生代含铀火山杂岩岩石地球化学.北京:地质出版社.1992
    黄志章,蔡根庆,李秀珍.热液铀矿床蚀变场及蚀变类型.北京:原子能出版社.1999
    金景福,黄广荣.铀矿床学.北京:原子能出版社.1991
    张理刚,陈振胜,刘敬秀,等.两阶段水—岩同位素交换理论及其勘查应用.北京:地质出版社.1995
    闵茂中,张富生.成因铀矿物学概念.北京:原子能出版社.1992
    李长江,麻土华,朱兴盛,等.矿产勘查中的分形、混沌与ANN.北京:地质出版社.1999
    章邦桐,张祖还,倪琦生.内生铀矿床及其研究方法.北京:原子能出版社.1990
    张荣华,胡书敏,张雪彤,等.重要金属矿来源—迁移—堆积过程和化学动力学.北京:科学出版社.2006
    周涛发,岳书仓,袁峰.安徽月山矿田成岩成矿作用.北京:地质出版社.2005
    李学礼,孙占学,周文斌.古水热系统与铀成矿作用.北京:地质出版社.2000
    李守义,叶松青.矿产勘查学.北京:地质出版社.2003
    刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社.1984
    中国科学院地球化学研究所(编).高等地球化学.北京:科学出版社.2000
    毛景文,李晓峰,张荣华,等.深部流体成矿系统.北京:中国大地出版社.2005
    邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用.北京:地质出版社.2004
    李兆鼐,权恒,李之彤.等.中国东部中、新生代火成岩及其深部过程.北京:地质出版社.2003
    刘丛强,黄智龙,许成,等.地幔流体及其成矿作用.北京:地质出版社.2004
    范永香,阳正熙.成矿规律与成矿预测.徐州:中国矿业大学出版社.2003
    谭凯旋.谢焱石,杨建明.构造成矿作用非线性动力学.北京:地质出版社.2003
    王德滋,周新民.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化.北京:科学出版社.2002
    蔡祖煌,石慧馨.地震流体地质学概论.北京:地震出版社.1980
    翟裕生,张湖,宋鸿林,等.大型构造与超大型矿床.北京:地质出版社.1997
    吕古贤,林文蔚,罗元华,等.构造物理化学与金矿成矿预测.北京:地质出版社.1999
    蔡春芳,梅博文,马亭,等.塔里木盆地流体—岩石相互作用研究.北京:地质出版社.1997
    李文达(译).火山成矿作用.北京:地质出版社.1983
    邱爱金,郭令智,郑大瑜,等.大陆构造作用对相山富大铀矿形成的制约.北京:地质出版社.2002
    李文达(译).稀土元素在矿床研究中的应用.北京:地质出版社.1987
    程裕淇.中国区域地质概论.北京:地质出版社.1994
    李兆鼐,毋瑞身,李汉声,等.中国火山岩地区金矿床.北京:地质出版社.2004
    於崇文.地质系统的复杂性.北京:地质出版社.2003
    章邦桐,陈培荣,倪奇生.赣闽长英质隐爆角砾岩和基底围岩水—岩作用的实验研究及其地质意义.华东地质学院学报,1998,21(3):201-205
    陈振胜.热液体系水—岩作用过程中的氢氧同位素行为.大地构造与成矿学,1997,(1):51-61
    温志坚,杜乐天,刘正义.相山矿田热液水云母化及其与铀成矿关系研究.矿床地质,2000,19(3):257-263
    陈迪云,周文斌,关伯林.相山碎斑熔岩铷—锶、氧、铅同位素地球化学研究.南京大学学报,1994,60):45-50
    周文斌,饶冰.相山铀矿田水—岩氢氧同位素交换的实验研究.地质论评,1997,43(3):322-326
    张可清,杨勇.蚀变岩质量平衡计算方法介绍.地质科技情报,2002,21(3):104-106
    凌其聪,刘丛强.水—岩反应与稀土元素行为.矿物学报,2001,2l(1):107-114
    费红新,肖荣阁.成矿流体演化与成矿物理化学.矿物岩石地球化学通报,2002,21(2):139-144
    张荣华,胡书敏.地球深部流体演化与矿石成因.地学前缘,2001,8(4):297-308
    周涛发,袁峰,岳书仓,等.安徽月山矿田夕卡岩型矿床形成的水岩作用.矿床地质,2002,21(1):1-9
    邵飞.邹家山矿床低温热水成因及其与铀矿化关系.华东地质学院学报,2000,23(1):24-24
    陈肇博,谢佑新,万国良,等.华东南中生代火山岩中的铀矿床.地质学报,1982,56(3):235-243
    瞿裕生.关于构造—流体—成矿作用研究的几个问题.地学前缘,1996,3(3-4):230-236
    胡瑞忠.上升热液浸取成矿过程中铀的迁移沉淀机制探讨.地质论评,1990,36(4):317-325
    李学礼.论热源、水源、矿(铀)源三源成矿问题.华东地质学院学报,1992,15(2):101-113
    华仁民.流体在金属矿床形成过程中的作用和意义.南京大学学报,1993,5(3):351-358
    周文斌,李学礼.相山铀矿田成矿古水文地质分析.高校地质学报,1995,1(1):101-108
    季克俭.热液矿床研究的重要进展和“三源”交代热液成矿学说.地学前缘,1994,1(3-4):126-132
    张荣华,胡书敏.含矿热液来源的化学动力学若干基本问题.矿床地质,1998,17(增刊):1035-1038
    陈贵华,陈名佐.相山铀矿田成矿条件分析.铀矿地质,1999,15(6):329-337
    吴仁贵,余达金,张树明.相山铀矿田流纹英安斑岩的鉴定及与铀矿化的关系.铀矿地质,2003,19(2):81-87
    范洪海,凌洪飞,王德滋,等.相山铀矿田成矿机理研究.铀矿地质,2003,19(4):208-213
    范洪海,凌洪飞,王德滋,等.江西相山矿田成矿物质来源的Nd、Sr、Pb同位素证据.高校地质学报,2001,7(2):139-145
    林祥铿.赣杭构造带若干铀矿床的同位素年龄研究及铀源初探.铀矿地质,1990,6(5):257-264
    徐国庆.1220铀矿田成矿模式的研究.铀矿地质,1985,1(5):1-8
    温志坚,杜乐天,刘正义,等.相山铀矿田特富矿成矿模式.地质论评,1999,45(增刊):765-767
    杨建明,熊绍峰.浙赣若干火山岩型铀矿床成矿模式及找矿勘探方向.铀矿地质,2003,19(5):283-289
    李学礼,孙占学,周文斌.相山成矿古水热系统的水文地球化学特征.华东地质学院学报,1992,15(3):234-242
    薛振华,蒋振频,董永杰,等.相山铀矿田邹家山工区含铀凝灰岩的矿化特征.铀矿地质,2004,20(2):85-89
    蔡春芳.沉积盆地中流体—岩石相互作用研究的现状.地球科学进展,1996,(6):577-579
    瞿建平,胡凯,陆建军.应用氢氧同位素研究矿床成因的一些问题探讨.地质科学,1996,3l(3):229-233
    张理刚,刘敬秀,陈振胜,等.江西德兴铜厂铜矿水—岩体系氢、氧同位素演化.地质科学,1996,31(3):250-263
    周涛发,岳书仓.长江中下游铜、金矿床成矿流体系统的形成条件及机理.北京大学学报,2000,36(5):697-707
    邵飞.相山矿田低温热水及其与铀矿化关系.地球科学,2005,30(2):206-210
    周祖权,宋汉周.水—岩作用模拟中地下水质组分存在形式的研究.水利水电科技进展,2001,21(6):17-20
    庞忠和.全体系地球化学模拟与水岩相互作用研究.地学前缘,1996,3(3-4):119-123
    张静,陈衍景,张复新,等.陕西金龙山卡林型金矿带成矿流体地球化学研究.矿床地质,2002,21(3):99-103
    徐晓春,谢巧勤,岳书仓.粤东地区中生代金属矿床的成矿机制.合肥工业大学学报,2002,23(1):99-103
    龚文君,谭凯旋,李小明,等.兰坪白秋坪铜银多金属矿床流体地球化学特征及成矿机制探讨.大地构造与成矿学,2000,24(2):175-181
    刘小于.中国火山岩型铀矿成矿期及矿化类型划分.铀矿地质,1991,7(2):94-98
    章邦桐,吴俊奇,丘志力,等.论热液蚀变与铀成矿富集作用的关系.地质论评,1990,36(3):238-244
    周文斌,史维俊,吕跃进.相山铀矿田成矿作用的地球化学模拟.地球化学,1997,26(5):62-70
    刘凤山,石准立.国外岩浆热液成矿理论研究现状与进展.地质科技情报,1994,13(2):75-80
    杨建明,王前.某地区火山岩型铀矿床成矿热液运移形式及沉淀机理.中南工学院学报,1999,13(1):53-58
    章邦桐,饶冰,陈培荣,等.论长英质隐爆角砾岩的气热流体溶浸成矿机制.矿床地质,2001,20(2):129-137
    廖宇华.相山铀矿田稀土元素地球化学特征及示踪研究.华东地质学院学报,2000,23(2):150-153
    刘金辉,李学礼,史维俊.成矿古水热系统与热液铀矿床研究历史、现状与展望.地球科学进展,1996,11(6):569-574
    戚华文,胡瑞忠.华南花岗岩岩浆期后热液与铀成矿热液的初步对比.矿物学报,2000,20(4):401-405
    邓吉牛,戴塔根.热液系统中水—岩反应前锋传播速度基本模型.中南矿冶学院学报,1994,25(6):669-673
    孙占学.古地温方法在热液金属矿床研究中的应用.矿产与地质,1996,10(5):330-335
    余达淦.华南中生代花岗岩型、火山岩型、外接触带型铀矿找矿思路.铀矿地质,2001,17(5):257-265
    刘金辉,李学礼,史维俊,等.下庄铀矿田成矿热液的水源研究.长春地质学院学报,1997,27(4):415-419
    谭克仁,候惠群,蔡新平,等.斯特列佐夫斯克铀矿床构造岩浆活化控矿特征及成矿规律.大地构造与成矿学,2003,27(1):91-98
    朱永峰.长英质岩浆中不混溶流体的运移机理.地学前缘,1994,1(3-4):119-126
    岳书仓,徐晓春.火山—侵入杂岩带的成岩成矿专属性.地学前缘,1999,6(2):305-314
    陈繁荣,沈渭洲,王德滋,等.1220铀矿田同位素地球化学和矿床成因研究.大地构造与成矿学,1990,14(1):69-78
    马东升.地壳中流体的大规模流动系统及其成矿意义.高校地质学报,1998,4(2):250-261
    胡荣任,章邦桐.相山火山塌陷盆地基底变质岩铀的地球化学研究.铀矿地质,1998,14(1):1-6
    刘家远.相山岩体—一个壳源花岗质浅成侵入火山杂岩体.地球化学,1985,(2):142-149
    温志坚,杜乐天,刘正义,等.610矿田气体地球化学研究.矿床地质,1998,17(增刊):921-924
    陈小明,陆建军,刘昌实,等.桐庐、相山火山一侵入杂岩单颗粒锆石U-Pb年龄.岩石学报,1999,15(2):272-278
    范洪海,刘昌实,王德滋,等.江西相山潜火山岩中岩浆包体的发现及其成因机制探讨.地质学报,2001,75(1):64-69
    俞时清,邸瑞洁.关于火山岩型铀矿床成矿规律中一些问题的探讨.铀矿地质,1993,9(2):90-96
    邱爱金,郭令智,郑大瑜,等.江西相山地区中、新生代构造演化对富大铀矿形成的制约.高校地质学报,1999,5(4):418-424
    陈培荣.华南中生代岩浆作用:动力学背景及其与铀成矿关系.铀矿地质,2004,20(5):266-270
    陈培荣,章邦桐,张祖还.某些花岗岩型铀矿床成矿热液中的含铀离子和沉淀机理.地球化学,1991,20(4):351-358
    邓平,沈渭洲,凌洪飞,等.地幔流体与铀成矿作用:以下庄矿田仙石铀矿床为例.地球化学,2003,32(6):520-528
    胡瑞忠.花岗岩型铀矿床一种可能的成矿模式.科学通报,1990,35(7):526-528
    胡瑞忠.成矿流体氦、氩同位素地球化学.矿物岩石地球化学通报,1997,16(2):120-124
    李建红,罗毅,赵瑞金.若干热液铀、金矿床稀土元素地球化学行为对比及其成因解释.矿床地质,1998,17(增刊):327-330
    刘丛强,黄智龙,李和平,等.地幔流体及其成矿作用.地学前缘,2001,8(4):231-244
    毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程中的碳氢氧同位素证据.矿床地质,2002,21(1):121-128
    倪师军.337铀矿床REE地球化学特征与成矿物质来源.成都地质学院学报,1987,14(4):18-28
    王学成,章邦桐,张祖还.暗色岩脉与铀成矿关系研究.矿床地质,1991,10(4):359-370
    李建红,梁良,刘成东.622铀矿床近矿围岩蚀变地球化学特征.华东地质学院学报,1995,18(4):335-343
    金景福.中国东南部中生代含铀花岗岩成岩物质来源与铀成矿作用.岩石矿物及测试,1984,3(2):112-119
    胡瑞忠.花岗岩型铀矿床成因探讨—以华南为例.地球科学进展,1994,9(2):41-46
    邓平,舒良树,肖旦红.中国东南部晚中生代火成岩的基底探讨.高校地质学报,2002,8(2):169-179
    杜乐天.幔汁H-A-C-O-N-S流体.大地构造与成矿学,1988,12(1):87-94
    杜乐天.地壳流体与地幔流体间的关系.地学前缘,1996,(3):172-180
    张勤文.黄怀曾.中国东部中新生代构造岩浆活化史.地质学报.1982,56(2):111-122
    周新民.对华南花岗岩研究的若干思考.高校地质学报,2003,9(4):556-565
    刘小于.大陆中、酸性火山岩的成因演化与铀成矿作用.核工业北京地质研究院博士论文,1991
    周文斌.华东南中生代典型铀成矿水热系统与成矿作用研究,南京大学博士论文,1995
    陈跃辉.华东南中生代伸展构造与铀成矿作用.核工业北京地质研究院博士论文,1995
    范洪海.江西相山壳源型火山—侵入杂岩及其深部成矿作用.南京大学博士论文,2001
    邓平.南岭东段中、新生代盆一山动力学及其铀成矿作用.南京大学博士论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700