用户名: 密码: 验证码:
不同类型寄生蜂翅面超微结构的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以29种寄生蜂为研究对象,并以中华蜜蜂工蜂为参比对照,利用扫描电镜和透射电镜对翅的超微结构进行了研究报道。根据研究表明,这30种膜翅目昆虫的翅表面主要具有三种类型感器:毛形感器、钟形感器、锥形感器。
     供试的二十九种寄生蜂隶属三个总科:小蜂总科、姬蜂总科、青蜂总科。
     大腿小蜂翅表面具有毛形感器与锥形感器,没有发现钟形感器的存在。
     蝶蛹金小蜂的前翅具有毛形感器与钟形感器,钟形感器分布在翅痣表面;后翅具有毛形感器。
     丽蝇蛹集金小蜂的前翅以毛形感器为主,具有毛形感器与锥形感器;后翅以锥形感器为主,具有毛形感器、锥形感器、钟形感器。
     负泥虫金小蜂的前翅具有两种毛形感器,后翅具有四种毛形感器与两种锥形感器。
     泛金蝇蛹金小蜂的前翅背面与腹面具有不同类型的感器,前翅背面具有毛形感器、钟形感器,腹面具有毛形感器、钟形感器、锥形感器;后翅的背面与腹面具有不同类型的感器,后翅背面具有毛形感器,后翅腹面具有锥性感器。
     荔蝽卵跳小蜂前翅背面与腹面具有不同类型的感器。前翅背面具有毛形感器与钟形感器,前翅腹面具有毛形感器、锥形感器与钟形感器;后翅仅具有无臼状突的毛性感器。
     平腹小蜂的前翅背面以毛形感器为主,腹面以锥性感器为主;后翅背面以毛形感器为主,腹面以锥性感器为主。
     体型微小的蚜小蜂科的丽蚜小蜂和浅黄恩蚜小蜂翅面均以毛形感器主,在浅黄恩蚜小蜂的前翅翅痣表面观察到了钟形感器。
     体型微小的赤眼蜂科的螟黄赤眼蜂翅面仅有毛形感器。
     三棒缨小蜂、裂骨缨小蜂、柄翅缨小蜂、负泥虫缨小蜂和稻虱缨小蜂,其感器都是以无臼状突的毛形感器为主。
     卷叶螟黄脸姬蜂、卷叶螟白星姬蜂、横带沟姬蜂、螟蛉刺姬蜂、趋稻厚唇姬蜂和半闭弯尾姬蜂,其具有的感器类型都是以毛形感器为主,在翅脉上有半圆形钟形感器的存在。
     绒茧蜂、螟蛉绒茧蜂、三化螟茧蜂、稻纵卷叶螟绒茧蜂、菜蛾盘绒茧蜂、单白绵绒茧蜂、烟蚜茧蜂,其感器都是仅有毛形感器。
     肿腿蜂科的管氏肿腿蜂前翅具有毛形感器,后翅具有锥形感器。
     蜜蜂科的中华蜜蜂工蜂前翅具有毛形感器,后翅具有两种锥形感器。
     对于蝶蛹金小蜂翅表面的感器进行超薄切片处理,利用透射电镜观察,未观察到受神经支配的结构。
In this study,the sensilla on the Wing of the twenty-nine wasps and Apis cerana cerana worker were investigatied by using scanning electron microscopy and transmission electron microscopy.Three types of sensilla were mainly found on the thirty hymenopteran insects wing:trichoid sensilla,campaniform sensilla,basiconica sensilla.
     The twenty-nine wasps belonged to three superfamilies:Chalcidoidea, Ichneumonoidea,Chrysidoidea.
     Only trichoid sensilla and basiconica sensilla are found on the Brachymeria spp.wing,and no campaniform sensilla was observed on the Brachymeria spp. wing.
     Trichoid sensilla and campaniform sensiila are found on the Pteromalus puparum forewing,while campaniform sensilla on the surface of stigma.Only trichoid sensilla exist on the hingwing of Pteromalus puparum.
     Two types of trichoid sensilla are observed on the Nasonia vitripennis forewing,and four types of trichoid sensilla,two types of basiconica sensilla located on the hind wing.
     There are different types of sensilla on the dorsal aspect and ventral aspect of the Pachycrepoideus dubius forewing,trichoid sensilla,campaniform sensilla on the dorsal ascpect while trichoid sensilla,campaniform sensilla and basiconica sensilla on the ventral aspect.On the hind wing of Pachycrepoideus dubius,trichoid sensilla are located on the dorsal aspect and basiconica sensilla on the ventral aspect.
     Trichoid sensilla,basiconica sensilla and campaniform sensilla are located on the forewing of Ooencyrtus sp.,and campaniform sensilla are located on the stigma.Only trichoid sensilla with no sockets are distributed on the hind wing.
     Trichoid sensilla are the most numerous of the sensilla found on the forewing and hind wing dorsal aspect of Anastatus japonicus,while basiconica sensilla on the ventral aspect of forewing and hind wing.
     Trichoid sensilla are the most numerous of the sensilla found on the Encarsia formosa,Encarsia sophia,and campaiform sensilla are observed on the forewing stigma on the Encarsia sophia.
     Only trichoid sensilla are found on the wing of Trichogramma chilonis.
     Trichoid sensilla with no sockets are mainly observed on the wing of Stethynium sp.,Schizophragma sp.,Gonatocerus spp.,Anaphes japonicus, Anagrus nilaparvatae.
     Trichoid sensilla are the most numerous of the sensilla observed on the Chorinaeus sp.,Vulgichneumon diminutus,Goryphus basilaris,Diatora sp., Phaeogenes sp.,Diadegma semiclausum and semicircular campaniform sensilla are found on the vein of these wasps.
     Only trichoid sensilla are observed on the wing of Apanteles spp., Apanteles rificrus,Tropobracon schoenobii,Apanteles cypris,Cotesia plutellae, Apanteles sp.,Aphidius gifuensis.
     Trichoid sensilla are found on the forewing and basiconica sensilla on the hind wing of the Scleroderma guani.
     Trichoid sensilla are found on the forewing and two types of basiconica sensilla on the hind wing of the Apis cerana cerana worker.
     No innervated structure were found among the wing sensilla of Pteromalus puparum by TEM.
引文
李明忠,李琦玫,林金盾,童丽珠.美洲蟑螂翅上感觉毛和感觉神经元的形态及其分布情形.生物学报.2007,42:81-87.
    Albert P L,Zacharuk R Y,Wong L.Structure,innervation,and distribution of sensilla on the wings of a grasshopper.Can.J.Zool.1976,54,1542-1553.
    Altman J S,Anselment E,Kutsch W.Postembryonic development of an insect sensory system:ingrowth of axons from hind wing sense organs in Locusta migratoria.Pro.R..Soc.Lond.B.1978,202,497-516.
    Altner,H.and Stetter.Olfactory input from the maxillary palps in the cockroach as compared with the antennal input.Joint Cong.Chemoreception.1980,ECRO Ⅳ/ISOT Ⅶ,Noordwiijkeshout,Holland.
    Anderson H.The development of sensory nerves within the wing of Drosophila melanogaster.Roux's Arch.Dev Biol.1984,193,226-233.
    Berkowitz A,Laurent G J.Local control of leg movement and motor patterns during grooming in locusts.J.Neurosci.1996,16,8067-8078.
    Brich J M,Dickinson M H.Spanwise flow and the attachment of the leading-edge vortex on insect wings.Nature.2001,412,729-733.
    Chevalier,R.L.The fine structure of campaniform sensilla on the halteres of Drsophila melanogaster.J.Morph.1969,128,443-464.
    Cole E S,Palka J.The pattern of campaniform sensilla on the wing and haltere of Drosophila melanogaster and several of its homeotic mutants.J.Embryol.Exp.Morphol.1982,71,41-61.
    Dickinson M H.Haltere-mediated equilibrium reflexes of the fruit fly,Drosophila rnelanogaster.Phil.Tians.R.Soc.Lond.B.1999,354,903-916.
    Dickinson M H.Solving the mystery of insect flight.Sci Ameri.2001,6,31-34.
    Dickinson M H.The initiation and control of rapid flight maneuvers in fruit flies.Integr.Comp.Biol.2005.45,274-281.
    Ebbs M L, Amrein H. Taste and pheromone perception in the fruit fly Drosophila melanogster. Pflugers. Arch. Eur. J. Physiol. 2007, 454, 735-747.
    Elliott C J H. Wing hair plates in crickets: physiological characteristics and connections with stridulatory motor neurons. J. Exp. Biol. 1983, 107, 21-47.
    Ellington C P. The aerodynamics of hovering insect flight i . the quasi-steady analysis. Phil. Trans, of the Royal Soc. B 1984a, 305, 1-15.
    Ellington C P. The aerodynamics of hovering insect flight iii. kinematics. Phil. Trans, of the Royal Soc. B 1984b, 305, 41-78.
    Ellington C P. The novel aerodynamics of insect flight: applications to micro-air vehicle. J. Exp. Biol. 1999, 202, 3439-3448.
    Fudalewicz-Niemczyk, W and M. Rosciszewska. The innervation and sense organs of the wings of Gryllus domesticus L. (Orthoptera). Acta Biol. Cracov. Ser. Zool. 1972a, 15:36-51.
    Fudalewicz-Niemczyk, W and M. Rosciszewska. Organogenesis of the nerves and sense organs in the wings of Gryllus domesticus L. (Orthoptera). Acta Biol. Cracov. Ser. Zool. 1972b, 15: 73-85.
    Gettrup E, 1965. Sensory mechanisms in locomotion: the campaniform sensilla of the insect wing and their function during flight. Cold Spring Harb. Symp. Quant. Biol. 1965,30,615-622.
    Gettrup E. Sensory regulation of wing twisting in locusts. J. Exp. Bio. 1966, 44, 1-16.
    Gnatzy W, Griinert U, Bender M. Campaniform sensilla of Calliphora vicina (Insecta, Diptera). Zoomorphology. 1987, 106, 320-328.
    Ghysen A. Sensory neurons recognize defined pathways in Drosophila central nervous system. Nature. 1978, 274, 869-872.
    Ghysen A. The projection of sensory neurons in the central nervous system of Drosophila: choice of the appropriate pathway. Dev. Biol. 1980, 78. 521-541.
    Hallberg, E., B. S. Hansson, and R. A. Steinbrecht. Morphological characteristics of antennal sensilla in the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae). Tiss. Cell. 1994, 26: 489-502.
    Hansson, B. S., A. Blackwell, E. Hallberg, and J. Lofqvist. Physiology and morphological characteristics of the sex pheromone detecting system in male corn stemborers, Chilo partellus (Lepidoptera: Pyralidae). J. Insect Physiol. 1995,41(2):171-178.
    Heide G, 1983. Neural mechanisms of flight control in Diptera. In W. Nachtigall(ed.),BIONA-report 2. Fischer, Stuttgart. 1983, 35-52.
    Hengstenberg R. Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala. J. Comp. Physiol. A. 1988. 163, 151-165.
    Hirguchi T, Yamaguchi T. Escape behavior in response to mechanical stimulation of hind wing in cricket, Gryllus bimaculatus. J. Insect. Physiol. 2000,46, 1331-1340.
    Hiraguchi T, Yamaguchi T, Takahata M. Mechanoreceptors involved in the hind wing-evoked escape behaviour in cricket, Gryllus bimaculatus. J. Exp. Biol. 2003, 206,523-534.
    Knyazeva N I. Receptors of the wing apparatus regulating the flight of the migratory locust, Locusta migratoria (Orthoptera acrididae). Annu. Entomol. Rev. 1970,49,311-317.
    Knyazeva N I. Wing receptors in the cockroach Periplaneta americana. J. Evol. Biochem. Physiol. 1976, 12, 490-495.
    Kutsch W, Hanloser H, Reinecke M. Light- and electron-microscopic analysis of a complex sensory organ: the tegula of Locusta migratoria. Cell Tissue Res. 1980,210,461-478.
    Matheson T. Hindleg targeting during scratching in the locust. J. Exp. Biol. 1997, 200,93-100.
    Matheson T. Contralateral coordination and retargeting of limb movements during scratching in the locust. J. Exp. Biol. 1998, 201, 2021-2032.
    Matheson T. Metathoracic neurons integrating intersegmental sensory information in the locust. J. Comp. Neurol. 2002, 444, 95-114.
    Murray M A, Palka J. Growth of sensory axons in the developing wing of Drosophila melanogaster. Abstr. Soc . Neurosci. 1983, 9, 1043.
    Murray M A, Schubiger M, Palka J. Differentiation of sensory neurons in the pupal wing of Drosophila. Abstr. Soc. Neurosci. 1982, 9, 928.
    Nardi J B. Neuronal pathfinding in developing wings of moth Manduca sexta. Dev. Biol. 1983, 1, 163-174.
    Nardi J B, Vernon R A, 1990. Topographical features of the substratum for growth of pioneering neurons in the Manduca wing disc. Neurobiol. 21, 189-201.
    Nardi J B. Dynamic expression of a cell surface protein during rearrangement of epithelial cell in the Manduca wing monolayer. Dev. Biol. 1992, 152, 161-172.
    N(?)stvik E. Biological studies of Pachycrepoideus dubius ashmead (Chalcidoidea: Pteromalidae), a pupal parasite of various diptera. Oikos. 1954,5:195-204.
    Norton, W. N. and S. B. Vinson. A comparative ultrastructural and behavioral study of the antennal sensory sensilla of the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J. Morphol. 1974, 142: 329-349.
    Palka J, Lawrence P A, Hart H S. Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. Dev. Biol. 1979.69.549-575.
    Palka J, Schubiger M. Ellision R L. The polarity of axon growth in the wings of Drosophila melanogaster. Dev. Biol. 1983. 98. 481-492.
    Palka J, Schubiger M, Murray M A. Peripheral neurogenesis in Drosophila. BioScience. 1984,34,318-321.
    Palka J, Malone M A, Ellison R L, Wigston D J. Central projections of identified Drosophila sensory neurons in relation to their time of development. J. Neurosci. 6, 1986, 1822-1830.
    Page K L, Matheson T. Wing hair sensilla underlying aimed hindleg scratching of the locust. J . Exp. Biol. 2004, 207, 2691-2703.
    Ochieng, S. A., K. C. Park, J. W. Zhu, and T. C. Baker.. Functional morphology of antennal chemoreceptors of the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Arthropod Structure & Development. 2000, 29: 231-240.
    
    Quick D L J. Parasite Wasps. Chapman and Hall, London. 1997, 470pp.
    Schaffner K H, Koch U T. Effects of wing campaniform sensilla lesions on stridulaition in crickets. J. Exp. Biol. 1987, 129, 25-40.
    Schmidt J M, Smith J J B. The ultrastructure of the wings and the external sensory morphology of the thorax in female Trichogramma minutum Riley (Hymenoptera: Chalcidoidea: Trichogrammatidae). Proc. R. Soc .Lond .B. 1985,224,287-313.
    Stocker R F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell. Tissue. Res. 1996, 275, 3-26.
    Uga S, Kuwabara M. The fine structure of the campaniform sensilla on the haltere of the fleshfly, Boettcherisca peregrine. J. Electron Micros. 1967, 16, 304-312.
    Waddington G H. The genetic control of wing development in Drosophila. J. Genet. 1940,41,75-139.
    Wcislo, W. T.'Sensilla numbers and antennal morphology of parasitic and non-parasitic bees (Hymenoptera: Apoidea). Im. J. Insect Morphol. & Embryol. 1995,24(1): 63-81.
    Weis-Fogh T. Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Phil. Trans. R... Soc. Lond. B 1956, 239, 553-584.
    Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 1973, 59, 169-230.
    Whitelock K E. Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development. 1993, 117, 1251-1260.
    Wootton R J. Functional morphology of insect wings. Annul .Rev. Entomol. 1992,37, 113-140.
    Wotton R J, Evans K E, Herbert R, Smith C W. The hind wing of the desert locust (Schistocerca gregria Forskal). I . Functional morphology and mode of operation. J. Exp. Biol. 2000, 203, 2921-2931.
    Wu W, Schenato L, Wood R. Biomimetic sensor suite for flight control of MFI: design and experimental results. Taiwan, ICRA. 2003, 1146-1151.
    Yan J, Wood R J, Avadhanula S, Sitti M, Fearing R S. Towards flapping wing control for a micromechanical flying insect. IEEE International Conference on Robotics and Automation, Seoul Korea. 2001, 4, 3901-3908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700