用户名: 密码: 验证码:
高陡边坡危岩体稳定性、运动特征及防治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
危岩体通常存在于高陡边坡及陡崖上,是山区常见的地质灾害类型之一,在我国每年都造成人员伤亡和大量的经济损失。本文以锦屏一、二级水电站工程高边坡危岩体为典型,通过大量的现场调查和滚石试验,对高陡边坡危岩体的分类、变形失稳机理、稳定性评价方法、滚石的运动特征以及危岩体防治对策等进行了较为系统的研究,取得了以下主要成果:
     (1)对锦屏一、二级水电站工程高边坡进行了调查,查明研究区发育危岩体333块(区),规模集中在10-1000m~3之间,其中最大的122549m~3,最小的0.1m~3。危岩体发育与地形地貌、地层岩性、岩体结构和风化卸荷等关系密切,表现为:①绝大多数危岩体发育在大于50°的陡坡和高高程部位。②大理岩区危岩体发育密度远大于砂板岩区,大型、特大型的所占比例小于砂板岩区。③顺向坡危岩体发育密度明显大于切向坡和反向坡,三者之间关系从小到大依次为反向坡、切向坡和顺向坡;镶嵌~碎裂和碎裂~松弛结构岩体区危岩体发育密度明显高于块状~次块状和次块~镶嵌结构岩体区。④其它工程地质条件相似的情况下,危岩体发育密度随着边坡强卸荷底界深度增大而增大。
     (2)根据危岩体的结构和状态特征,将危岩体分为悬挂式、贴坡式、倾倒式、楔块式、软弱基座式、砌块式和孤立式等七种基本类型;每类危岩体变形失稳的发展过程都遵循一定的模式,其中悬挂式危岩体对应错落模式,贴坡式危岩体对应平面滑移模式,倾倒式危岩体对应倾倒模式,楔块式危岩体对应空间滑移模式,软弱基座式危岩体对应压缩-倾倒(剪切)模式,砌块式危岩体对应结构溃曲模式,孤立式危岩体对应偏心滚(滑)落模式。
     (3)建立了基于极限平衡法的危岩体稳定性定量评价方法,推导了不同类型危岩体稳定性计算公式,并据此对锦屏一、二级水电站高边坡典型危岩体稳定性进行了计算。
     (4)对悬挂式和砌块式危岩体稳定性进行了非连续变形数值模拟,建立了悬挂式危岩体的“概念模型”,分析了高宽比对悬挂式危岩体稳定性的影响,提出了悬挂式危岩体的稳定性判据公式。通过对砌块式危岩体稳定性与陡倾坡外主控结构面强度参数的关系分析,得到内摩擦角对稳定性影响较大,内聚力的影响相对较小。
     (5)选取代表性强、现场易于收集的危岩体地质参数,即主控结构面倾角、基座情况、地形坡度、凹腔状态、岩体结构和卸荷松弛状态等6个基本因素作为评价指标。采用相互作用关系矩阵方法,半定量地分析了评价指标的重要性和权重。根据快速评价指标重要程度和权重大小,提出了危岩体稳定性快速评价的“危岩体不稳定指数(UMII)”方法,从而建立了定量的危岩体稳定性快速评价方法。并据此对锦屏二级水电站闸址左岸高边坡危岩体稳定性进行了定量快速评价。
     (6)进行了大量现场滚石试验,研究了滚石坡面运动的一般特征和运动学参数的变化规律,试验结果表明:①缓坡、覆盖层和坡面平台对滚石在坡面运动的阻滞作用十分明显;滚石在坡面运动,到达坡底时的动能为自由落下时的1/15-5/12,平均为5/27;滚石运动状态以跳跃为主,在覆盖层较厚处会发生滚动,局部有滑动的可能;滚石与坡面不断碰撞,大量破碎,落入坡底的部分的单个动能大为降低。②边坡覆盖层和植被特征对滚石碰撞前后速度恢复系数的起控制性作用,它们之间可用线性关系来描述,并且有:当边坡覆盖层厚,植被发育,恢复系数为0.40-0.55;边坡覆盖较厚,植被较发育时为0.50-0.60;局部有覆盖层、局部基岩裸露,植被不发育时为0.60-0.70;边坡基岩出露,基本或无植被时为0.70-0.80。③影响运动加速度的诸多因素中,边坡坡度、滚石形状和边坡覆盖层及植被特征是滚石运动速度的决定性因素。滚石运动加速度与上述因素之间可用线性回归公式y_1=-1.5222+0.0891x_1+0.0728x_2+0.1358x_3来描述。工程应用表明,经验回归公式有较强的适应性,具有实际意义。
     (7)通过滚石在平台运动特征分析,得到了滚石与平台碰撞时速度和滚石在平台运动水平距离的计算方法。同时,为了研究平台对滚石的停积作用,进行了大量现场试验,结果表明:①滚石的质量、初始位置(坡高)和平台表面粗糙程度对滚石停留位置有较大影响,表现为滚石质量越大,在平台上运动的距离越远;边坡高度越大,相同质量的滚石在平台运动的距离越远;存在一个临界质量m_临,当滚石的质量m>m_临时,相同质量,相同位置落下的滚石在表面为块碎石的平台上运动距离大于表面为含块碎石粉土的平台上运动距离,当m     (8)为了研究树木对滚石运动的拦挡效应,分析了滚石与树木发生碰撞的概率,进行了大量现场滚石试验,得到:①滚石与树木碰撞的概率和树木的间距和滚石直径有关,提出保证滚石与树木至少发生k次碰撞所需树木排数的计算方法。②滚石与树木碰撞大幅度地降低了滚石的运动速度,表现为:滚石与树木每碰撞一次,速度损失约45%,动能损失约70%。
     (9)在对滚石在坡面运动特征、平台对滚石的停积作用和树木对滚石运动的拦阻效应研究的基础上,分析了平台、树木和平台与树木联合作用作为危岩体防治对策的可行性、采用的设计步骤和设计参数,提出平台、树木以及平台与树木联合作用等新的被动防治措施。
Potential unstable rock mass disaster often happens in high-steep slope and steep cliff zone, which is a kind of common geohazard in mountainous area. Every year, it always induces people's casualty and much economic loss in China. This thesis took the potential unstable rock masses on Jinping I and II hydropower engineering as a typical example. Based on a number of site investigation and rolling rock experiments, the author relatively systematically studied the classification of high-steep slope potential unstable rock masses, its deformation and failure model, evaluation method of its stability, movement characteristics of rolling rock and Countermeasures of potential unstable rock masses. Followings are the main achievements gotten.
     (1) Investigation on the high slope of Jinping I and II hydropower stations told that there were 333 blocks of potential unstable rock masses. The maximum volume among them was 122549m~3, and the minimum was 0.1m~3. Most volume ranged from 10 to 1000m . The development of potential unstable rock masses had a strong relation to topography, lithology of stratum, geologic structure, rock mass structure, weathering, and unloading. Detailed mentions were as follows:①Most of potential unstable rock masses developed on the steep slope whose slope angle is beyond 50 degree and on the high elevation.②The number of potential unstable rock masses of unit area in marble zone was far larger than in slate zone; But good-sized and oversize bulk of potential unstable rock masses had a larger proportion in slate zone than in marble zone.③The number of potential unstable rock masses of unit area of consequent slope was much larger than of obsequent slope and tangential slope; And their number of unit area in mosaic structure~cataclastic structure and cataclastic structure~slack structure zone was much more than in block structure~sub-block structure and sub-block structure~mosaic structure zone.④If other engineering geology conditions were similar, the number of potential unstable rock masses of unit area would increase with increasing bottom depth of strong slope unloading.
     (2) According to potential unstable rock masses structure and morphology, they were basically subdivided into 7 types, i.e., hanging type, sticking slope type, toppling type, wedge type, soft base type, masonry block type, and isolated type. Every type potential unstable rock mass had its deformation and failure model. The 7 types corresponded to 7 types of deformation and failure models in turn, that is, hanging type corresponding to vertical dislocation model, sticking slope type corresponding to planar sliding model, toppling type corresponding to toppling model, wedge type corresponding to block sliding model, soft base type corresponding to compressure-toppling (shearing) model, masonry block type corresponding to bulking failure model, and isolated type corresponding to eccentric rolling (sliding) model.
     (3) Based on limit equilibrium element method, quantitative evaluation method of potential unstable rock masses stability was established, and the stability calculation formulas for different type of potential unstable rock masses were deduced. Using them, typical potential unstable rock masses stability of high slope in Jinping I and II hydropower station were calculated.
     (4) Discontinuous deformation analysis was done for the stability analysis of hanging type and masonry block type of potential unstable rock masses, and conceptual model of hanging type of potential unstable rock masses was made. In addition, the influence of the ratio between height and width on hanging type of potential unstable rock mass was analyzed. As a result, the judgment formula was put forward for its stability. Through the stability analysis of masonry block type of potential unstable rock masses, and the analysis of strength parameters relation of prominent structural plane steeply dipping out of slope, we got that inner friction angle had stronger influence than cohesion.
     (5) Six basic factors were selected as evaluation criteria of potential unstable rock masses, including dipping angle of main controlling discontinuity in potential unstable rock mass, base condition, slope gradient of geomorphology, state of recessed cavity, rock mass structure and state of relief and slack. These geologic parameters of potential unstable rock masses were all typical and easy to get in situation. With relation matrix, the importance and weight of these criteria were semi-quantitatively analyzed. Based on the importance and weight of rapid evaluation criteria, unstable masses instability index (UMII) method of rapid evaluation for potential unstable rock masses was put forward, and rapid quantitative evaluation method of potential unstable rock masses stability was established. Moreover, they were applied to the rapid quantity evaluation of potential unstable rock masses stability of high slope on the left bank, at the lock location of Jinping II hydropower station.
     (6) A number of rolling rock experiments were done to study the common characteristics of rolling rock movement on slope surface and changing rule of kinematic parameters. Experimental results showed:①gentle slope, overburden and platform on slope made evidential resistance to the rolling rock movement on slope; For rolling rock moving on slope, its kinetic energy when it rolled down at the foot of slope was 1/15~5/12 of that when it freely fell off at the same location, average 5/27. The movement type of rolling rock mainly was bounce. But at the site of thicker overburden, it could be turned into rolling, and there was probably local sliding; The collision between rolling rock and slope resulted in a large number of fragments. When part of them dropped to the foot of slope, individual kinetic energy would increase much due to much loss of individual mass.②The characteristics of slope overburden and vegetation made key contribution to speed restitution coefficient before and after collision, and they could be described by a linear correlation. Detailed mentions were as follows: If the overburden was thicker than 1m and vegetation developed, restitution coefficient before and after rolling rock collision could select 0.40~0.55 If the thickness of overburden ranged from 0.5 to 1m, and vegetation developed, the value could select 0.50~0.60; If there was locally overburden and there was locally rock cropout, and vegetation did not develop, restitution coefficient could select 0.60~0.70; If base rock cropout was widespread on slope, and there was no or seldom vegetation, the value of restitution coefficient could select 0.70~0.80.③There were many relevant factors to influence movement acceleration, but slope angle, shape of rolling rock, and the characteristics of overburden and vegetation, were key influence factors to the acceleration of rolling rock. The mutual relationship of rolling rock acceleration, slope gradient, rolling rock shape, slope overburden characteristics and vegetation characteristics could be expressed by a linear regression formula: . Its application of engineeringshowed its stronger applicability. So it had practice sense.
     (7) Through the analysis of rolling rock movement characteristics on a platform, the calculation method was gotten for the collision speed between rolling rock and platform, and horizontal movement distance of rolling rock moving on the platform. At the same time, their influence factors were also analyzed. Meanwhile, to study the platform tarriance effect on rolling rock, a large number of site experiments were accomplished. Their results showed:①The mass of rolling rock, initial position (slope height), and the roughness of the platform had a certain influence on the stop position. In other words, the stop position of rolling rock and its mass accorded nearly with power function. The more rolling rock mass was, the longer displacement on the platform was, and the higher slope height was, the longer displacement on the platform was for same mass rolling rock; There was a threshold mass value, m_临. If m> m_临, rolling rock with the same mass and initial position would move longer on the platform whose surface insisted of block and debris than on the platform whose surface insisted of debris with block; If m< m_临, it was quite the contrary condition; If m= m_临the displacement was equal.②For rolling rock moving on platform, its stop position was influenced by rolling rock mass, shape, velocity when just arriving at platform, and the roughness of platform surface. Their relation could be expressedby the formula, .
     (8) To study trees barrier effect on rolling rock and analyze the collision probability between rolling rock and trees, a large number of rolling rock experiments were accomplished in site. Results were as follows:①Collision probability between rolling rock and trees was related to trees space and rolling rock diameter. The expression of trees rows was gotten to assure that collision at least happened k times between rolling rock and tree.②Collision between rolling rock and trees made the rolling rock speed decrease on a large scale. If only the collision between rolling rock and trees happened once, the speed would lose 45%, and the kinetic energy would lose around 70%.
     (9) Base on the study on rolling rock movement characteristics, platform tarriance effect on rolling rock and trees barrier effect on rolling rock, the feasibility and design steps of countermeasure for potential unstable rock masses were analyzed, when using the methods of platform, trees, or platform and trees together. The new passive countermeasure were put forward, namely, platform, trees, or platform and trees together.
引文
[1]韩祥森雅砻江锦屏一级水电站高位边坡危岩体成因机理及其稳定性研究[D].成都:成都 理工大学硕士学位论文.2006.
    
    [2]陈洪凯,唐红梅,王蓉等.锚固岩体参数的等效方法研究[J].应用数学和力学.2001,22(8): 862-868.
    
    [3]陈洪凯,唐红梅,胡明等.危岩锚固计算方法研究[J].岩石力学与工程学报.2005,24(8): 1321-1327.
    
    [4]杨淑碧,董孝壁.重庆市中心区危岩稳定性研究[M].成都:成都科技大学出版社.1994, 38-41.
    
    [5]赵允辉.危岩崩塌地质灾害调查评价与防治[J].中国地质灾害与防治学报.2004,15(supp): 33-38.
    
    [6]陈洪凯,王蓉.三峡库区危岩体锚固计算方法及应用[J].中国地质灾害与防治学报.2002, 13(4):59-62.
    
    [7]陈国宝.易崩落危岩的调查与防治[J].煤田地质与勘探.1999(3):17-18.
    
    [8]湖北岩崩事故发现 35 具遇难者遗体[EB/OL].[2007-12-04]. http://news.sina.com.cn/c/2007-12-04/201014449275.shtml.
    
    [9]贵州省纳雍县危岩崩塌灾害初步调查[EB/OL].[2004-12-23]. http://www.cigem.gov.cn/readnews.asp?newsid=2039.
    
    [10]陈洪凯,唐红梅,胡明等.三峡库区危岩研究及防治新理念[J],中国地质灾害与防治学 报.2004,15(sl):27-32.
    
    [11]胡厚田编著.崩塌与落石[M].北京:中国铁道山版社,1989.
    
    [12]国家电力公司成都勘测设计研究院 雅砻江锦屏一级水电站可行性研究报告(工程地 质)[R],2003.
    
    [13]贾金生,袁玉兰,李铁洁.我国部分已建、在建坝高100m以上、装机容量50万kW以 上的水电站截至2003年[J].水力发电.2004,30(12):90.
    
    [14]吴世勇.锦屏一级水电站建设在雅砻江流域水电资源开发中的地位和作用[J],四川水力 发电.2004,23(1):5-17.
    
    [15]国家电力公司华东勘测设计研究院 雅砻江锦屏二级水电站预可行性研究报告(工程地 质)[R],2004.
    
    [16]肖明,刘志明.锦屏二级水电站三维地应力场反演回归分析[J].岩石力学与工程学报. 2000,30(9):42-44.
    
    [17]陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J].重庆交通学院学报.2003,22(3):18-22.
    
    [18]卢黎.重庆洪崖洞危岩边坡破坏和加固机理研究[D].重庆大学硕士学位论文.2003.5.
    
    [19]胡克定.重庆市北温泉危岩带特征与防治对策[J].中国地质灾害与防治学报.1995,6(3): 57-62.
    
    [20]吴文雪,刘耕.三峡库区危岩稳定性分析[J].重庆交通学院学报.2003,22(supp.):112-116.
    
    [21]陈智强,李渝生.重庆市南川甑子岩危岩形成演化机制分析及防治措施探讨[J].中国地质??灾害与防治学报.2004,15(2):78-81.
    
    [22]晏石林,张光辉,刘立胜.板岩山危岩体成因有限元分析[J].武汉工业大学学报.1997,19 (2): 129-132.
    
    [23]杜永廉,吴玉庚,刘竹华等.链子崖危岩体裂缝生成机制和发展过程的地质力学模拟[J]. 中国地质灾害与防治学报.1994,5(3):70-78
    
    [24]黄润秋,王贤能,唐胜传.热应力的交变作用对边坡危岩体形成的影响[J].自然科学进 展.1999,9(8):716-722.
    
    [25]刘廷登.砂页岩悬崖陡壁危岩发育机制浅探[J].中国地质灾害与防治学报.2001,12(3): 53-56.
    
    [26]唐红梅,王昌贤,陈洪凯等.三峡库区陡崖形成及长期稳定性初步研究——以万州区太 白岩为例[J].重庆交通学院学报.2005,24(6):104-107.
    
    [27]山田刚二、渡正亮等.滑坡和斜坡崩塌及防治翻译组.滑坡利斜坡崩塌及防治[M].第一 版,北京,科学出版社,1980
    
    [28]陈洪凯,欧阳仲春,廖世荣.三峡库区危岩综合治理技术及应用[J].地下空间.2002, 22(2): 97-101.
    
    [29]陈明东.链子崖危岩体变形破坏机制及整治对策[J].地质灾害与环境保护,1999,2(1):33- 42.
    
    [30]唐红梅,叶四桥,陈洪凯.危岩主控结构面损伤一断裂数值模拟研究[J].重庆交通学院学 报.2005,24(4):84-88.
    
    [31]陈洪凯,唐红梅 长江三峡水库区危岩分类及宏观判据研究[J].中国地质灾害与防治学 报.2005,16(4):53-57.
    
    [32]旷镇国.重庆市中区危岩崩塌特征、形成机制及防治研究[J].中国地质灾害与防治学 报.1995,6(3):51-56.
    
    [33]张奇华,彭光忠,付少兰等.链子崖危岩体变形破坏系统辨识[J].岩石力学与工程学报 1998,17(5):544-551.
    
    [34]高云河,雷建海,田景富等.流杯池小区危岩落石运动特征分析及其防治建议[J].地球 与环境.2005,33(3):150-154.
    
    [35]亚兰,王兰生,赵其华等.崩塌落石运动学的模拟研究[J].地质灾害与环境保护.1996, 7(2):26-32.
    
    [36]周云武,周迎庆,刘明章等.SNS柔性安全防护系统在酒钢矿山崩塌落石防护中的应用 [J].中国地质灾害与防治学报.1998,9(1):101-104.
    
    [37] Yoichi Okura, Hikaru Kitahara, Toshiaki Sammori, etc. The effects of rockfall volume onrunout distance[J]. Engineering Geology, 2000(58): 109-124.
    
    [38] Joachim Schweigl, Carlo Ferretti, Ludwig No¨ssing. Geotechnical characterization androckfall simulation of a slope: a practical case study from South Tyrol (Italy) [J]. EngineeringGeology, 2003 (67):281-296
    
    [39]徐进军,丁窘辋.岩崩滑坡运动模型的建立[J].中国地质灾害与防治学报.1996,7(supp.): 42-48.
    
    [40] F. Agliardi, G.B. Crosta. High resolution three-dimensional numerical modelling of rockfalls[J]. International Journal of Rock Mechanics & Mining Sciences, 2003 (40):455-471
    
    [41] F. Cappaa, Y. Guglielmia, V.M. Soukatchoffb, etc. Hydromechanical modeling of a largemoving rock slope inferred from slope levelling coupled to spring long-term hydrochemicalmonitoring: example of the La Clapie're landslide (Southern Alps, France) [J]. Journal ofHydrology, 2004:(291)67-90.
    
    [42] Luuk K.A. Dorrena,*, Bernhard Maierb, Uif S. Putters, etc. Combining field and modellingtechniques to assess rockfall dynamics on a protection forest hillslope in the European Alps[J]. Geomorphology, 2004(57): 151-167.
    
    [43]罗永忠,徐志文,祝世强.达县城区立石子危岩形成机制分析及稳定性评价[J].地质灾 害与环境保护.2004,15(2):32-37.
    
    [44]孙云志,任自民,王立等.奉节李子垭危岩体稳定性研究[J].人民长江.1994,25(9):48-53.
    
    [45]哈秋舲,张永兴.岩石边坡工程——长江三峡西陵峡链子崖危岩体稳定性研究[M].北京: 重庆大学出版社,1995.6.
    
    [46]刘国明.三峡链子崖危岩体静力稳定性有限元分析[J].河海大学学报,1996,24(4):95-101.
    
    [47]何应强,宋根才,马跃刚.索风营水电站Dr2危岩体稳定性研究[J].中国农村水利水电, 1996,(5):87-90.
    
    [48]赵晓彦,胡厚田.万县长江三峡库区塌岸的数值模拟分析[J].水土保持学报.2003,17 (5): 158-160.
    
    [49] Shi Genhua. Discontinuous deformation analysis-a new numerical model for the statics anddynamics of block system. Dept. of Civil Engineering ,University of California, Berkeley:1988
    
    [50] Lanru ling et al. Modeling of fluid and solid deformation for fractured rocks withdiscontinuous deformation analysis(DDA) method. International Journal of Rock Mechanicsand Mining Sciences, Vo 1.38 No.3, Apr.2001.
    
    [51] C. Sagaseta et al. A general analytical solution for the required anchor force in rockslope withfailure. International Journal of Rock Mechanics and Mining Sciences,Vol.38 No.3,Apr.2001.
    
    [52] Goodman R.E. and Genhua Shi, The Removability of blocks, Block Theory and itsApplication to Rock engineering, new jersey, prentice-hell,Inc,1985: 98-113
    
    [53] Goodman R.E. Applications of Rock Mechanics to Rock Slope Engineering. Introduction toRock Mechanics (second editions). New York: john wiley,1989: 293-340
    
    [54]. Shi G H. Numerical Manifold Method. The Second International Conference on Analysis ofdiscontinuous Deformation, Kyoto, 1997
    
    [55]谢全敏,夏元友.危岩块体稳定性的综合评价方法分析[J].岩土力学,2002,23(6):775-781.
    
    [56]张建海,范景伟,何江达.用刚体弹簧元法求解边坡、坝基动力安全系数[J],岩石力学 与工程学报.1999,18(4):387-391.
    
    [57]姚建伟,王瑞琦.SNS柔性防护系统在危岩落石防护中的应用[J],华中科技大学学报(城??市科学版).2006,23(supp.1):46-50.
    
    [58]叶四桥,陈洪凯,唐红梅.重庆市万州区太白岩危岩综合治理[J].重庆交通学院学报, 2004,23(1):85-89.
    
    [59]叶四桥,唐良琴,陈洪凯,唐红梅.重庆市云阳县磨子岭危岩研究与治理[J].地质灾害与 环境保护,2005,16(1):17-22.
    
    [60]杨锡武,王多银.用锚杆挡墙治理危岩的实践[J].路基工程,1995(1):4-6.
    
    [61]陈洪凯,唐红梅,易朋莹等.危岩支撑计算方法探讨[J].中国地质灾害与防治学报.2004, 15(2): 134-135.
    
    [62]唐红梅,翁其能.岩体边坡最优锚固方向研究[J].重庆交通学院学报.2000,19(2):90-93.
    
    [63]郭映忠.锚杆最优锚固方向和最小锚固力的确定[J].凉山大学学报.2001,7(2):87-93.
    
    [64]殷跃平,康宏达,张颖.链子崖危岩体稳定性分析及锚固工程优化设计[J].岩土工程学 报.2000,22(5):599-603.
    
    [65]郑灵芝,马洪生.塔子山危岩治理工程的数值模拟研究[J].水文地质工程地质.2002,(2): 53-55.
    
    [66]郭映忠.锚杆最优锚固方向和最小锚固力的确定[J].凉山大学学报.2001,7(2):87-93.
    
    [67]唐红梅.危岩拦石墙计算方法研究[J].中国地质灾害与防治学报.2005,16(3):12-15.
    
    [68]谢全敏,刘雄.危岩体柔性网络锁固治理研究[J].岩石力学与工程学报,2000,19(5): 640-642.
    
    [69]陈洪凯,唐红梅,刘光华等.危岩支撑及支撑-锚固联合计算方法研究[J].岩土工程学 报,2004,26(3):383-388.
    
    [70]王兰生,张倬元,斜坡岩体变形破坏的基本地质力学模式,水文工程地质论丛.1983.
    
    [71]王士天,黄润秋、李渝生著,雅砻江晋屏水电站重大工程地质问题研究[M],西南交通大 学出版社,1996.
    
    [72]黄润秋,王士天,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究[M]. 四川:四川大学出版社,2001.
    
    [73]谷德振.岩体工程地质力学基础[M],北京,科学出版社,1979.
    
    [74]孙玉科,李建国,岩质边坡稳定的工程地质研究[J],地质科学,1965,4,
    
    [75]张倬元,王士天,王兰生编著,工程地质分析原理[M],地质出版社,1981.
    
    [76]黄润秋,邓荣贵等著,高边坡物质运动全过程模拟[M],成都科技大学出版社,1993.
    
    [77]王在泉,张黎明,贺俊征.岩石边坡工程块体系统稳定性预测、监测与控制[J].岩石力 学与工程学报,2004
    
    [78]许强.广义系统科学理论及其工程地质应用研究[D].成都:成都理工学院博士学位论 文.1997.
    
    [79]孙广忠著,岩体结构力学[M],科学出版社,1988.
    
    [80]周维垣,孙钧.高等岩石力学[M].北京:水利电力出版社,1990.
    
    [81]孙玉科等,边坡岩体稳定性分析[M],科学山版社,1988.
    
    [82]王兰生等.地壳浅表圈层与人类工程[M].北京:地质出版社,2004.
    
    [83] Goodman R.E. and Genhua Shi, The Removability of blocks, Block Theory and its??Application to Rock engineering, new jersey, prentice-hell,Inc,1985: 98-113 Goodman R.E.Applications of Rock Mechanics to Rock Slope Engineering. Introduction to RockMechanics (second editions). New York: john wiley,1989: 293-340
    
    [84] Shi G H. Numerical Manifold Method. The Second International Conference on Analysis ofdiscontinuous Deformation, Kyoto, 1997
    
    [85]焦玉勇,张秀丽,刘泉声.用非连续变形分析方法模拟岩石裂纹扩展[J].岩石力学与工 程学报.2007,26(4):682-691.
    
    [86]吴建宏;大西有三;石根华,等.三维非连续变形分析(3D DDA)理论及其在岩石边坡失稳 数值仿真中的应用[J].岩石力学与工程学报,2003,22(3):937-942
    
    [87] R. J.Shannely and M. A.Mahhlab, Delineation and Analysis of Cluster in Orientation Data,Mathematical Geology, 1976, 8.(1).
    
    [88] P.H.W. Kulatilake and T.W.Wu. Estimation of mean length of Discontinuity. Rock Eng. 1984,Vol.17.
    
    [89]伍岳,王泽民,徐绍铨.非连续变形分析方法在链子崖危岩体变形预测中的应用[J].武 汉大学学报,2003.
    
    [90] P.H.W. Kulatilake and T.W.Wu. The Density of Discontinuity Traces in Spacing Windows, int.Rock Mech. Min. Sci.
    
    [91] Chen G Q, Yuzo O, Takahiro 1. Development of High Order Manifold Method. The SecondInternational Conference on Analysis on Discontinuous Deformation, Kyoto, 1997
    
    [92]陈洪凯,唐红梅,王蓉.三峡库区危岩稳定性计算方法及应用[J].岩石力学与工程学 报.2004,23(7):614-619.
    
    [93]刘佑荣,唐辉明.岩体力学[M],武汉,中国地质大学出版社,1999.
    
    [94]黄达,黄润秋,周江平,裴向军,刘卫华.雅砻江锦屏一级水电站坝区右岸高位边坡危 岩体稳定性研究[J],岩石力学与工程学报,2007,26(1):175-181.
    
    [95] Priest S.D, J.A. Hudson. Discontinuity of Spacing in Rocks, Int. J. Rock Mech. Sci. AndGeomech. Abstracts , 1976, Vol. 13
    
    [96]殷坤龙;姜清辉;汪洋.新滩滑坡运动全过程的非连续变形分析与仿真模拟[J].岩石力 学与工程学报.2002,21(7):959-962
    
    [97]E.Hoek,J.WBray.岩石边坡工程[M],冶金工业出版社,1983.
    
    [98]石根华.数值流形方法与非连续变形分析[M],北京,清华大学出版社,1993
    
    [99]裴觉民,吕祖晰.裂隙岩体非连续变形的静力利动力分析方法[J],岩土工程学报,1996, 18(6):46-54.
    
    [100]裴觉民,石根华.岩石滑坡体的块体动态稳定和非连续变形分析[J],水利学报,1993, (3):28-34..
    
    [101]王之银,王思敬,杨志法.岩石大变形分析的流形方法[J],岩石力学与工程学报,1997, 16(5):399-404.
    
    [102]周少怀,杨家岭.DDA数值方法及工程应用研究[J].岩土力学,2000,21(2):123-140..
    
    [103]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学博士学位论??文,2005.
    
    [104]沈芳.山区地质环境评价与地质灾害危险性区划的GIS系统[D].成都:成都理工大学 博士学位论文,2000.
    
    [105]黄润秋,许强,沈芳,等.基于GIS的地质灾害区域评价与危险性区划系统研究[A].第 三届海峡两岸三地环境灾害研讨会论文集[C].台北,2001.
    
    [106]赵建军.公路边坡稳定性快速评价方法及应用研究[D].成都:成都理工大学博士学位 论文,2007.
    
    [107] A.Hudson. Rock mechanics principle in engineering practice[M]. CIRIA GroundEngineering Report: Underground Construction, 1989.
    
    [108] A. Hudson., Arnold PN, Tamai A. Rock engineering mechanisms information technology(REMIT): Part Ⅰ-The basic method: Part Ⅱ-Illustrative case examples[C]. In: Proceedings ofthe Seventh International Congress of the ISRM, Sydney. 1991.
    
    [109] J. A. Hudson, J. P. Harrison. A new approach to studying complete rock engineeringproblems [J]. Quarterly Journal of Engineering Geology, 1992(25).
    
    [110] D. F. Mazzoccola, J. A. Hudson. A comprehensive method of rock mass characterizationfor indicating natural slope instability [J].Quarterly Journal of Engineering Geology,1996(29).
    
    [111] Shang Yanjun, Yang Zhifa. Evaluation of rock slope stability in terms of two indices, RMIIand PR[J]. Sciential Geologica Sinica, 1998, 7(2).
    
    [112] Shang Y. J., Wang S. J., Li G. C. etc. Retrospective case example using a comprehensivesuitability index (CSI) for siting the Shisan-ling power station, China [J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2000, 37(5).
    
    [113]张晓晖,王辉,戴福初,等.基于关系矩阵和模糊集合的斜坡稳定性综合评价[J].岩石 力学与工程学报,2000,19(3):346-351.
    
    [114]丁继新,周圣华,陈梦熊,等.基于多因素相互作用关系矩阵的边坡稳定性定量评价[J]. 工程勘察,2006(7):5-8.
    
    [115]唐红梅,易朋莹.危岩落石运动特征研究[J].重庆建筑大学学报.2003,25(1):17-23.
    
    [116]赵旭,刘汉东.运动学在边坡落石计算中的应用[J].华北水利水电学院学报,2004,25(2): 46-50.
    
    [117]黄润秋,刘卫华,周江平等.滚石运动特征试验研究[J].岩土工程学报,2007,29(9): 1296-1302.
    
    [118]方开泰,马长兴著.正交与均匀试验设计[M].北京:科学出版社,2001:35-63.
    
    [119]朱万成,唐春安,黄明利.基于正交试验原理的喷锚参数设计系统及其应用[J].岩土力 学,1999,20(2):87-81.
    
    [120]杨有贵编著.概率统计及其在土建中的应用[M].北京:中国建材工业山版社,1986: 164-175.
    
    [121]孙树林,吴绍明, 裴洪军.多层支撑深基坑变形数值模拟正交试验设计研究[J].岩土 力学,2005,26(11):1771-1774.
    
    [122]杨瑞萍.关于恢复系数定义的适用范围[J].荷泽师专学报,1999,21(4):63-65.
    
    [123]胡斌,冯夏庭,黄小华等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J]. 岩石力学与工程报,2005,24(22):4055-4064.
    
    [124]杨林德,颜建平,王悦照等.围岩变形的时效特征与预测的研究[J].岩石力学与工程学 报,2005,24(2):212-215.
    
    [125]赵德安,陈志敏,蔡小林等.中国地应力场分布规律统计分析[J].岩石力学与工程学 报,2007,26(6):1265-1271.
    
    [126] Day R W, Case studies of rockfall in soft versus hard rock[J] . Environmental andEngineering Geoscience ,1997 ,3 (7): 133 -140.
    
    [127]唐红梅,叶四桥,陈洪凯.危岩主控结构面应力强度因子求解分析[J].地下空间与工 程学报.2006,2(3): 393-397.
    
    [128] Guzzetti F ,Crosta G,Detti R ,Agliardi F. STONE: a computer program for the threedimensional simulation of rock2falls[J] . Computers & Geo sciences , 2002 , 28 : 1079 -1093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700