用户名: 密码: 验证码:
偏心支撑结构在现代钢结构应用的试验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据“利用两个或多个耗能元件协同工作,同时耗能”的设计思路,提出一种新型的框架支撑形式—耗能器偏心支撑,即在偏心支撑斜杆上设置一种摩擦型耗能器。同时,还针对传统梁柱连接节点加强措施存在的不足,提出了用于单斜杆偏心支撑结构的剪切型耗能梁段与柱连接节点的新型改进加盖板方案。本文采用Q235B钢制作了三榀偏心支撑结构试件,并进行了拟静力试验研究。同时采用ANSYS有限元分析程序对偏心支撑结构试件进行了有限元分析,并分析了各截面参数对构件性能的影响。具体完成了如下工作:
     1)进行了三榀单斜杆偏心支撑框架结构的1/3缩尺试验方案设计和拟静力试验。主要研究耗能器偏心支撑结构及新型改进加盖板方案用于单斜杆偏心支撑结构在循环荷载作用下的破坏机理和抗震性能,并与传统的剪切型耗能梁段与柱直接相连的单斜杆偏心支撑结构试件在循环荷载作用下的破坏机理和抗震性能相比较,分析了本文提出的两种新型偏心支撑结构的抗震耗能能力和承载力。
     2)运用ANSYS分析程序建立框架的有限元模型,系统地分析了上述三榀1/3缩尺试验中的偏心支撑结构试件在单向加载和循环荷载两种加载方式作用下的破坏机理和抗震性能,得到偏心支撑框架的滞回曲线、骨架曲线、刚度退化曲线等一系列相关结果,研究了本文提出的两种新型偏心支撑结构的抗震耗能能力和承载力。
     3)将三榀试件的有限元分析结果与试验结果对比,两者吻合较好,验证了有限元分析的精度和正确性。
     4)改变两种新型偏心支撑结构的相关参数,利用ANSYS分析程序建立有限元分析模型,研究了不同参数对两种新型偏心支撑结构耗能能力的影响,并提出两种新型偏心支撑结构的改进措施。
     综合试验和有限元分析的结果,本文研究主要得到以下结论:
     1)新型改进加盖板方案中A段的设置,可以避免剪切铰和弯曲铰在柱边形成,使耗能梁段的剪切破坏远离钢柱翼缘,从而也可以放松钢柱对耗能梁段的约束,并避免在钢柱翼缘处产生层状撕裂,减少震后修复工作量,达到新型节点方案的设计目的。
     2)只有在满足耗能梁段与节点加强域(A段)的长度之和≤1.6M_p/V_p的前提条件下,新型改进加盖板方案用于单斜杆偏心支撑结构的剪切型耗能梁段与柱连接节点中,才会表现出较好的抗震耗能能力。
     3)新型改进加盖板方案中盖板厚度的改变对单斜杆偏心支撑结构的刚度几乎没有影响,将盖板加厚对试件承载力和耗能能力的影响不大;梁柱连接板厚度的加厚、在A段增设加劲肋、A段长度适当减小等措施可以使耗能梁段的屈服远离钢柱翼缘,可以明显提高试件的耗能能力。
     4)单斜杆耗能器偏心支撑结构:由于支撑斜杆上设置了耗能器,相当于在支撑斜杆上设置了一个薄弱部位,在地震荷载下耗能梁段进入塑性以后,耗能器可以产生滑移耗散一部分地震能量,和耗能梁段一起构成两个耗能元件,增加了试件的延性,减少了耗能梁段吸收的能量和转动变形,减轻了耗能梁段的破坏程度,起到了“双保险”的作用,可以达到减少结构地震反应的目的。
     5)在弹性阶段,耗能器偏心支撑试件中的耗能器不产生滑移,以支撑作为加强框架侧移刚度的手段,在耗能梁段进入屈服以后,耗能器产生滑移,依靠摩擦耗散地震能量。
     6)耗能器偏心支撑结构中的耗能器刚度加大以后,增强了单斜杆偏心支撑结构的刚度,承载力略有提高,耗能梁段的转角明显增大,柱顶位移明显减小,但是试件最终还是因为耗能器的平面外失稳而失去承载力,因而在耗能器偏心支撑结构中的设计中,可以将耗能器刚度适当加大,并在C段采取一定的加强措施。
According to the design ideas of associating work of two or more energy components, a new braced steel frame system—energy dissipating eccentrically brace is proposed, which adds an endergonic device in diagonal brace. Because of the shortcomings of current beam-column joint of D-type eccentrically braced frames, one new reinforced connection protocol between shear links and column—adding cover-plate is advanced, which is used to enhance moment and shear bearing capacity of beam. Major works are shown as follow:
     1) The quasi-static experiment on three 1/3 eccentrically braced model frames is described first. Compared with ordinary beam-column joint of D-type eccentrically braced frames, this paper primarily study the failure mechanism and seismic performance of two new type of eccentrically braced frames under cyclic loading and analyzes the energy capacity and ultimate strength of two new frames shown above.
     2) The finite element models are created by ANSYS Program. We can receive the result of backbone curve about eccentrically braced frames by analyzing the failure mechanism and seismic performance of two new eccentrically braced frames under cyclic loading and researching the energy capacity and ultimate strength of two new frames shown above.
     3) Comparison of finite element analysis and test results to verify the accuracy of finite element analysis.
     4) Using ANSYS Program, study the energy capacity of two new eccentrically braced frames by changing the relevant parameters and propose the improvement measures of two new eccentrically braced frames.
     The main results of this study according to the comparison of the test results and finite element results are listed below:
     1) The setup of A segment can draw the formation of shear hinges and flexural hinges away from column face, preclude yielding in the link, and relax the extreme local deformation in the link flanges. It can also avoid the appearance of lamellar tearing and reduce the mending after the earthquake according to the design purpose of the new type.
     2) The premise condition of the adding cover-plate protocol applying for eccentrically braced frame is that the link must be shear and the length summation of the link and A segment must be less than 1.6M_p/V_p.
     3) The thickness of cover-plate almost did not have any influence on carrying capacity and dissipating energy of structure. Some factors which affect resisting seismic behavior were the thickness of the connection-plate between beam and column, adding stiffeners, and the decrease of the length of A segment etc.
     4) The diagonal energy dissipating eccentrically braced frame: the setup of endergonic device equals the setup of a weak part in the brace. After the link yielded, the endergonic device slipped, dissipated energy along with the link and increased the ductile of the specimen. It can reduce the input energy and the rotation deformation of the link. It provided double insurance and realized the purpose of decreasing the seismic action.
     5) In the elastic phase, the endergonic device should not slip. The brace is the major component to resist the lateral load. After the link yielded, the endergonic device began to slip and deform to dissipate energy.
     6) The increase of the stiffness of the endergnic device strengthens the stiffness of the frame and enhances the carrying capacity. The rotation of link increased, and the displacement of top column decreased obviously. Finally the specimen failed because the lateral buckling of the endergnic device. In the design of energy dissipating eccentrically brace, the stiffness should be enhanced properly and some strengthen details should be introduced in C segment.
引文
[1]Kelly J M,Skinner R I,Heine A J.Mechanisms of energy absorption in special devices for use in earthquake resistant structures.Bull.N.Z.Nat.Soc.For Earthquake Engineering,1972,5(3):63-88.
    [2]邹向阳,王晓天,刘丽华,徐学东,范国庆,结构振动控制发展概况综述。长春工程学院学报,2001,2(4):10-12.
    [3]刘季,周云,结构抗震控制的研究与应用状况。哈尔滨建筑大学学报,1995,28(4):1-10.
    [4]Ou Jinping,Wu Bo,Soong T T.Recent advances in research on and application of passive energy dissipation systems.地震工程与工程振动,1997,16(3):72-98.
    [5]T T Soong,G F Dargush.Passive Energy Dissipation System in Structural Engineering[M].John Wiley & Sons Inc.1997.
    [6]欧进萍,吴斌,龙旭,结构被动耗能减振效果的参数影响。地震工程与工程振动,1998,18(1):60-70.
    [7]叶正强,李爱群,程文,杨国华,丁幼亮,采用粘滞流体阻尼器的工程结构减振设计研究。建筑结构学报,2001,22(4):61-66.
    [8]欧进萍,邹向阳,弹性阻尼器的性能试验研究。振动与冲击,1999,18(3):12-19.
    [9]吴波,郭安薪,粘弹性阻尼器的性能研究。地震工程与工程振动,1998,18(2):108-116.
    [10]Yokota H,Saruta M,Nakamura Y,Satake Okada K,Structureal Control for Seismic Load Using Viscoelastic Damper,Proc,10WCEE,Madrid,Spain,1992.
    [11]Lai M L,Chang K C,Soog T T,Hao D S,Yeh Y C,Full-scale Viscoelastic Damped Steel Frame,Journal of Structure Engineering,ASCE,1995,121(10):1443-1457.
    [12]Soog T T,Lai M L.Correlation of Experimental Results and Prediction of Seismic Response of Structure,Proc of Damping'91,San Diego,California,1991:1-9.
    [13]欧进萍,吴斌,摩擦型与软钢屈服型耗能器的性能与减振效果的试验比较。地震工程与工程振动,1995,15(3):73-87.
    [14]吴斌,欧进萍,Pall摩擦耗能器的设计方法,哈尔滨建筑大学学报,1997,30(4):9-14.
    [15]吴斌,张纪刚,欧进萍,Pall型摩擦阻尼器的试验研究与数值分析。建筑结构学报,2003,24(2):7-13.
    [16]A S Pall and R Pall.Friction-Dampers for Seismic Control of Buildings:a Canadian Experience[R].11WCEE,Acapulco Mexico,1996.
    [17]11th International Conference on Structural Mechanics in Reactors Technology(SMIRT11)[C].August 18-23,1991,Tokyo,Japan.
    [18]Grigorian,C.E and Popov,E.P.Slotted bolted connections for energy dissipation,Proc.Of seminar on seismic Isolation,Passive Energy Dissipation and Active Control,Vol.2,San Francisco,USA,1993.
    [19]陈宗明,陈立兴,赵禹民,吕明智,新型抗震耗能支撑试验研究。建筑结构学报, 1989,(4):21-29.
    [20]陈宗明,张清,多层摩擦剪切铰消能支撑框架动力试验研究。工程抗震,1991,(1):24-28.
    [21]张维嶽,杨蔚彪,低周反复荷载下二阶摩擦减振控制支撑框架的试验研究[J]。建筑科学,1997,(4):3-7.
    [22]吴斌,欧进萍,拟粘滞摩擦耗能器的试验与分析[A],第五界全国地震工程会议文集[C],北京,1998.
    [23]刘季,周云,李暄,新型摩擦耗能支撑试验研究。工程抗震,1996,(2):10-13.
    [24]杨蔚彪,严士超,钢制消能节点砼斜撑框架结构体系研究。工程抗震,1996,(2):14-17.
    [25]刘伟庆,魏琏,韦承基,低周反复荷载作用下摩擦阻尼支撑框架的试验研究。土木工程学报,1996,10(5):3-10.
    [26]刘伟庆,丁大钧,魏琏,摩擦阻尼支撑框架的实验研究和理论分析。博士学位论文,东南大学,南京,1995.
    [27]赵川,潘文,叶燎原,杨晓东,摩擦耗能支撑装置的构造与安装。建筑结构,2003,33(8):47-48.
    [28]赵川,潘文,叶燎原,杨晓东,摩擦耗能支撑装置的性能及工程应用。工程抗震,2004,100(3):10-12.
    [29]周云,刘季,两种摩擦耗能器的比较试验研究。地震工程与工程振动,1997,17(1):40-48.
    [30]吴斌,欧进萍,软钢屈服型耗能器的疲劳性能和设计准则。世界地震工程,1996,(4):8-13.
    [31]李玉顺,大井谦一,沈世钊,钢框架结构软钢阻尼器振动控制的试验及理论研究。建筑结构学报,2004,25(2):1-7.
    [32]周云,刘季,双环软钢耗能器的试验研究。地震工程与工程振动,1998,18(2):117-123.
    [33]周云,周富霖,邓雪松,铅耗能器的研究与应用[J],世界地震工程,1999,15(3):53-60
    [34]王威,王社良,苏三庆,铅芯消能支撑框架模型结构的试验研究。建筑结构,2003,33(12):60-64.
    [35]倪立峰,韩玉林,李爱群,黄镇,基于形状记忆超弹性拉索耗能器的框架振动研究。工程抗震,2003,96(3):26-28.
    [36]M D Monti and W H Robinson.A Lead Shear Damper Suitable For Reducing the Motion Induced by Wind and Earthquake[R].11WCEE,Acapulco,Mexico,June 23-28,1996.
    [37]Whittaker A S and Bertero V V,et al.seismic testing of steel plate energy dissipation devices [J].Earthquake Spectra,1991,7(4):563-604.
    [38]吴斌,欧进萍,钢板屈服型耗能器的薄膜效应。世界地震工程,1997,(3):27-34.
    [39]欧进萍,吴斌,组合钢板耗能器--一种新型耗能减振装置。地震工程与工程振动,1997,17(1):32-39.
    [40]王铁英,王艳武,王焕定,张永山,钢铅组合耗能器力学性能试验研究。工程力学,2005,22(2):149-154.
    [41]F Sadek and B Mohraz.Semiactive Control,Algorithms for Structures with Variable Dampers [J].Journal of Engineering Mechanics,ASCE,1998,124(9):981-990.
    [42]C Li.Performance of Multiple Tuned Mass Dampers for Attennating Undesirable Structures Under the Ground Acceleration[J].Earthquake Engineering and Structural Dynamics,2000,29(9):1405-1421.
    [43]欧进萍,王永富,设置TMD、TLD控制系统的高层建筑风振分析与设计方法。地震工程与工程振动,1994,14(2):61-75.
    [44]李宏男,阎石,林皋,建筑结构利用TLCD减振的神经网络智能控制[J]。地震工程与工程振动,2000,20(3).
    [45]S D Xue,j m k o and Y L Xu.Optimum Parameters of Tuned Liquid Column Damper for Suppressing Pitching Vibration of an Undamped Structure[J].Journal of Sound and Vibration,2000,234(4):639-653.
    [46]S K Yalla and A Karee.Optimum Absorber Parameters for Tuned Liquid Column Dampers[J].Journal of Structural Engineering.ASCE,2000,126(8).
    [47]刘季,孙作玉,结构可变阻尼主动控制[J]。地震工程与工程振动,1997,17(2).92-97.
    [48]刘栋栋,系统反应H∞优化理论在结构主动控制中的应用[C]。第五届全国结构工程学术会议论文集(第一卷),1996.
    [49]吴波,铃木祥之,藤原悌三,AMD对非对称空间结构的抗震控制研究。世界地震工程,1997,13(1):1-7.
    [50]赵林,结构振动半主动控制的实用性研究。工程抗震与加固改造,2005,27(2):32-39.
    [51]孙清,史庆轩,张可,文建波,王学明,周进雄,张陵,半主动变阻尼结构的振动台试验研究。建筑结构学报,2003,24(6):11-17.
    [52]N Kurate et al.Actual Seismic Response Controlled Building with Semi-active Damper System[J].Earthquake Engineering and Structural Dynamics,1999,28(11):1427-1447.
    [53]姜德生,Richard O Claus.智能材料器件结构与应用[M]。武汉:武汉工业大学出版社,2000.
    [54]欧进萍,关新春,磁流变耗能器及其性能[J]。地震工程与工程振动,1998,18(3):74-81.
    [55]徐赵东,沈亚鹏,磁流变阻尼器的计算模型及仿真分析。建筑结构,2003,33(1):68-70.
    [56]徐赵东,李爱群,程文,叶继红,磁流变阻尼器带质量元素的温度唯象模型。工程力学,2005,22(2):144-148.
    [57]Egor P.Popov & Michael D.Engelhardt.Seismic Eccentrically Bracd Frames.J.Construct.Steel Research,1988,10:321-354.
    [58]Stefano Sorace.Seismic Assessment of Steel Frames.Journal of the Structural Engineering.Vol.124,No.5,May,1998 ASCE:531-540.
    [59]崔鸿超,日本兵库县南部地区地震震害综述。建筑结构学报,Vol.17,No.1,2-13,1996.
    [60]Dune K.Miller.Lessons Learned from the Northridge Earthquake.Engineering Structures,1998;20(4-6):249-260.
    [61]Architectural Institute of Japan.Reconnaissance Report on Damage to Steel Building Structures Observed from the 1995 Hyogoken-Nanhu(Hanshin/Awaji)Earthquake May 1995.
    [62]Gates W.E.& Morden M.Professional Structure Engineering Experience Related to Welded Steel Moment Frame Following the Northridge Earthquake.The Structure Design of Tall Building,Vol.5,1996:29-44.
    [63]Engelhardt M.D.& Sabot T.A.Seismic-Resistant Steel Moment Connections:Development Since the Northridge Earthquake.Construction Research Communications Limited,1997,ISSN:1365-1566.
    [64]Whittaker A.Gilani A.& Bertero V.Evaluation of Pre-Northridge Steel Moment-Resisting Frame Joints.The Structural Design of Tall Buildings,Vol.7,1998:263-283.
    [65]陈富生 邱国桦 范重,高层建筑钢结构设计。北京:中国建筑工业出版社,2000 ISBN 7-112-03766-2.
    [66]Robert Tremblay & Nathalie Robert.Seismic Design of Low and Medium-Rise Chevron Braced Steel Frames.Can.J.Civ.Eng.27:1992-1206(2000).
    [67]M.S.Medhekar & D.J.L.Kennedy.Seismic Response of Two-Story Buildings with Concentrically Braced Steel Frames.Can.J.Civ.Eng.26:497-509(1999).
    [68]Nariman M.Haroun and Robin Shepherd,F.ASCE.Inelastic Behavior of X-Bracing in Plane Frames.Journal of Structural Engineering,Vol.112,No.4,April,1986.
    [69]Bruce F.Maison and Egor P.Popov,F.ASCE.Cyclic Response Prediction for Braced Steel Frames.Journal of the Structural Division,Vol.106,No.ST7,July,1980.
    [70]Addison B.Higginbotham,A.M.ASCE and Rober D.Hanson,M.ASCE.Axial Hysteretic Behavior of Steel Members.Journal of the Structural Division,Vol.102,No.ST7,July,1976.
    [71]K.Ikeda and S.A.Mahin,M.ASCE.Cyclic Response of Steel Braces.Journal of Structural Engineering,Vol.112,No.2,February,1986.
    [72]Shouji Toma and Wai F.Chen,M.ASCE.Inelastice Cyclic Analysis of Pin-Ended Tubes.October,17423,1982.
    [73]Sanda Koboevic & Richard Redwood.Design and Seismic Response of Shear Critical Eccentrically Braced Frames.Can.J.Civ.Eng.24:761-771(1997).
    [74]Egor P.Popov.Recent Research on Eccentrically Braced Frames.Eng.Struct.1983,Vol.5,January:3-9.
    [75]Ashok K.Jain and Subhash C.Goel,M.ASCE.Seismic Response of Eccentrically Braced Frames.Journal of the Structural Division,Vol.106,No.ST7,April,1980.
    [76]X.Qi.,K.L.Chang & K.C.Tsai.Seismic Design of Eccentrically Braced Space Frame.Journal of Structural Engineering,Vol.123,No.8,August,1997 ASCE:997-985.
    [77]James R.Libby.Eccentrically Braced Frame Construction-A Case History.Engineering Journal/American Institute of Steel Construction.Fourth Quarter,1981:149-153.
    [78]Andrew T.Merovich,M.ASCE,Joseph P.Nicoletti,F.ASCE,and Earl Hartle,M.ASCE.Eccentric Bracing in Tall Buildings.Journal of the Structural Division Vol.108,No.ST9,September,1982.
    [79]Keith D.Hjelmstad and Egor P.Popov,F.ASCE.Characteristices of Eccentrically Braced Frames.Journal of Structural Engineering,Vol.112,No.2,February,1984.
    [80]Charles W.Roeder,A.M.ASCE and Egor P.Popov,F.ASCE.Eccentrically Braced Steel Frames for Earthquakes. Journal of the Structural Division Vol. 104, No. ST3, March, 1978.
    [81] Keith D. Hjelmstad and Egor P. Popov, F. ASCE. Cyclic Behavior and Design of Link Beams. Journal of Structural Engineering, Vol. 109, No. 10, October, 1983.
    [82] James O. Malley and Egor P. Popov, F. ASCE. Shear Links in Eccentrically Braced Frames. Journal of Structural Engineering, Vol. 110, No. 9, September, 1984.
    [83] Kazuhiko Kasai, S. M. ASCE and Egor P. Popov, F. ASCE. Cyclic Web Buckling Control for Shear Link Beams. Journal of Structural Engineering, Vol. 112, No. 3, March, 1986.
    [84] Kazuhiko Kasai, S. M. ASCE and Egor P. Popov, F. ASCE. General behavior of WF steel shear link beams. Journal of Structural Engineering, Vol. 112, No. 2, February, 1986.
    [85] James M. Ricles, Member, ASCE, and Egor P. Popov, Honorary Member, ASCE. Composite Action in Eccentrically Braced Frames. Journal of Structural Engineering, Vol. 115, No. 8,August, 1989.
    
    [86]张斌,Y形支撑框架研究西安建筑科技大学硕士论文.1999.
    
    [87] M. D. Engelhardt, Associate Member, ASCE, and E. P. Popov, Honorary Member, ASCE.Experimental Performance of Long Links in Eccentrically Braced Frames. Journal of Structural Engineering, Vol. 118, No. 11, November, 1992.
    [88] A. Ghobarah and T. Ramadan. Bolted Link-Column Joints in Eccentrically Braced Frames. Engrg. Struct. 1994, Volume 16, Number 1:33-41.
    [89] Taichiro Okazaki, BE, ME, MA. Seismic Performance of Link-to-Column Connections in Steel Eccentrically Braced Frames. A dissertation for Doctor of Philosophy. The University of Texas of Austin. December, 2004.
    [90] Paul W. Richards. Cyclic Stability and Capacity Design of Steel Eccentrically Braced Frames.A dissertation for Doctor of Philosophy. The University of California, San Diego. 2004.
    [91] Taichiro Okazaki, Gabriela Arce, Han-Choul Ryu, and Michael D. Engelhardt. Experimental Study of Local Buckling, Overstrength, and Fracture of Links in Eccentrically Braced Frames.Journal of Structural Engineering, Vol. 131, No. 10, October, 2005.
    [92] Paul W. Richards and Chia-Ming Uang. Effect of Flange Wideth-Thickness Ratio on Eccentrically Braced Frames Link Cyclic Rotation Capacity. Journal of Structural Engineering, Vol. 131, No. 10, October, 2005.
    [93] Gilberson.M.F. Two Nonlinear Beams with Definitions of Ductility. Struct Engrg. ASCE 95(2):137-157.
    [94] Daniel N. Manheim, M. ASCE and Egor P. Popov, F. ASCE. Plastic Shear Hinges in Steel Frames. Journal of Structural Engineering, Vol. 109, No. 10, October, 1983.
    [95] A. Ghobarah and T. Ramadan. Effect of Axial Force on the Performance of Links in Eccentrically Braced Frames. Eng. Struct. 1990,Vol. 12,April:106-113.
    [96] James M. Ricles and Egor P. Popov, Inelastic Link Element for EBF Seismic Analysis, ASCE.Journal of Structural Engineering, Vol. 120, No. 2, February, 1994.
    [97] T. Ramadan and A. Ghobarah. Analytical Model for Shear-Link Behavior. Journal of Structural Engineering,Vol.121,No.11,November,1995:1574-1580.
    [98]Egor P.Popov,F.ASCE.Seismic Steel System for Tall Buildings,Engineering Journal,AISC,Third Quarter,1982.
    [99]Egor P.Popov,F.ASCE,M.D.Engelhardt,Associate Member,ASCE,and James M.Ricles,Member,ASCE.Eccentrically Braced Frames:U.S.Practice Engineering Journal,AISC,2nd Quarter,1989.
    [100]Manheim and Popov,Inelastic shear hinges in steel frames,Journal of Structure Engineering,Vol.109,No.9,September,1984.
    [101]Egor P.Popov,F.ASCE.An Update on Eccentric Seismic Bracing,Engineering Journal,AISC,1980.
    [102]Y.Fukumoto G.Lee.Stability and ductility of steel structures under cyclic loading,CRC Press,INC.1992.
    [103]Grigorian,C.E and Popov,E.P.Slotted bolted connections for energy dissipation,Proc.of seminar on seismic Isolation,Passive Energy Dissipation and Active Control,Vol.2,San Francisco,USA,1993.
    [104]V.Kalyanaraman,K.Mahadevan and Vikram Thairani.Core Loaded Earthquake Resistant Bracing System[J].Construct Steel Res,1998,46(3).
    [105]C.K.Soh,T.C.Fung,F.Qin,and W.M.Gho.Behavior of Completely Overlapped Tubular Joints under Cyclic Loading.Journal of Structural Engineering,Vol.127,No.2,February,2001.
    [106]Seyed Mehdi Zahrai and Michel Bruneau,Member,ASCE.Cyclic Testing of Ductile End Diaphragms for Slab-on-Girder Steel Bridges.Journal of Structural Engineering,Vol.125,No.9,September,1999.
    [107]Seyed Mehdi Zahral and Michel Bruneau,Member,ASCE.Ductile End-Diaphragms for Seismic Retrofit of Slab-On-Girder Steel Bridges.Journal of Structural Engineering,Vol.125,No.1,January,1999.
    [108]M.A.Crisfield.A Fast Incremental/Iterative Solution Procedure That Handles "Snap-Through".Computers & Structures,Vol.13,1981:55-62.
    [109]J.H.Kim and S.W.Lee.A Finite Element Formulation with Stabilization Matrix for Geometrically Non-Linear Shells.International Journal for Numerical Methods in Engineering,Vol.33,1992:1703-1720.
    [110]Yupu Guan,Limin Tang.Geometrically Non-Linear Quasi-Conforming Nine-Node Quadrilateral Degenerated Solid Shell Element.International Journal for Numerical Methods in Engineering,Vol.38,1995:927-942.
    [111]K.Y.Sze and H.Fan,C.L.Chow.Elimination of Spurious Pressure and Kinematic Modes in Biquadratic Nine-Node Plane Element.International Journal for Numerical Methods in Engineering,Vol.38,1995:3913932.
    [112]J.J.Rhiu and S.W.Lee.A Nine Node Finite Element for Analysis of Geometrically Non-Linear Shells. International Journal for Numerical Methods in Engineering, Vol. 26,1988:1945-1962.
    [113] Worsak Kanok-Nukulchal. A Simple and Efficient Finite Element for General Shell Analysis. International Journal for Numerical Methods in Engineering, Vol. 14,1979:179-200.
    [114] Junho Jang and Peter M. PINSKY. An Assumed Covariant Strain Based 9-Node Shell Element. International Journal for Numerical Methods in Engineering, Vol. 24,1987:2389-2411.
    [115] Ted Belytschko and Jame Shau-Jen ONG. A Consistent Control of Spurious Singular Modes in the 9-Node Lagrange Element for the Laplace and Mindlin Plate Equations. Computer Methods in Applied Mechanics and Engineering. 44(1984):269-295.
    [116] J. G. Teng and M. Rotter. Elastic-Plastic Large Deflection Analysis of Axisymmetric Shells. Computers & Structures, Vol. 31, No. 2,1989:211-233.
    [117] Ted Belytschko, Wing-Kam Liu, Jame Shau-Jen ONG § and Dennis Lam § Advances in Finite Element Technology Implementation and Application of A 9-Node Lagrange Shell Element with Spurious Mode Control. Computers & Structures, Vol. 20, No. 3,1985:121-128.
    [118] H. Parisch. A Critical Survey of the 9-Node Degenerated Shell Element with Special Emphasis on Thin Shell Application and Reduced Integration. Computer Methods in Applied Mechanics and Engineering. 20(1979):323-350.
    [119] H. C. Huang & E. Hinton. A New Nine Node Degenerated Shell Element with Enhanced Membrane and Sear Interpolation. International Journal for Numerical Methods in Engineering, Vol. 22,1986:73-92.
    [120] Klaus-Jurgen Bathe and Said Bolourch. A Geometric and Material Nonlinear Plate and Shell Element. Computers & Structures, Vol. 11,1980:23-48.
    [121] David Bushnell. A Strategy for the Solution of Problems Involving Large Deflections,Plasticity and Creep. International Journal for Numerical Methods in Engineering, Vol. 11,683-708,1977.
    [122] K. Axelsson and A. Samuelsson. Finite Element Analysis of Elastic-Plastic Materials Displaying Mixed Hardening. International Journal for Numerical Methods in Engineering,Vol. 14, 21225,1979.
    [123] C. Nyssen. An Efficient and Accurate Iterative Method, Allowing Large Incremental Steps, To Solve Elastic-Plastic Problems. Computers & Structures, Vol. 13,1981:63-71.
    [124] P. G. Hodge. Discussion to 'a new method of analysis and strains in working hardening solids' J. Appl. Mech, Trans. ASME, 24, 1957:481-484.
    [125] Kee Dong Kim & Michael D. Engelhardt. Beam-Column Element for Nonlinear Seismic Analysis Steel Frames. Journal of Structural Engineering, Vol. 126, No. 8, August,2000:916-925.
    [126] Ansgar Neuenhofer and Fillip C. Filippou, Geometrically Nonlinear Flexibility-Based Frame Finite Element. Journal of Structural Engineering, Vol. 124, No. 6, June, 1998:704-711.
    [127]S.Mukherhee,J,J,N.Reddy and C.S.Krishamoorthy.Convergence Properties and Derivative Extraction of the Super-Convergent Timoshenko Beam Finite Element.Computer Methods inApplied Mechanics and Engineering.190(2001):3475-3500.
    [128]Cenap Oran,M.ASCE.Tangent Stiffness in Plane Frames.Journal of the Structural Division,Vol.99,No.ST6,June,1973.
    [129]Cenap Oran,M.ASCE.Tangent Stiffness in Space Frames.Journal of the Structural Division,Vol.99,No.ST6,June,1973.
    [130]Yeong-Bin Yang,A.M.ASCE and William McGuire,F.ASCE.Stiffness Matrix for Geometric Nonlinear Analysis.Journal of Structural Engineering,Vol.112,No.4,April,1986.
    [131]Yeong-Bin Yang,A.M.ASCE and William McGuire,F.ASCE.Joint Rotation and Geometric Nonlinear Analysis.Journal of Structural Engineering,Vol.112,No.4,April,1986.
    [132]Yeong-Bin Yang,Jung-Huai Chou and Liang-Jenq Leu.Rigid Body Considerations for Non-Linear Finite Element Analysis.International Journal for Numerical Methods in Engineering,Vol.33,1992:1597-1610.
    [133]Yeong-Bin Yang and Liang-Jenq Leu.Force Recovery Procedures in Nonlinear Analysis.Computers & Structures,Vol.41,No.6,1991:1255-1261.
    [134]Yeong-Bin Yang,John F.ABEL.Equilibrium Considerations of the Updated Lagrangian Formulation of Beam-Columns with Natural Concepts.International Journal for Numerical Methods in Engineering,Vol.24,1987:2119-2141.
    [135]Z.Friedman and J.B.Kosmatka.An Improved Two-Node Timoshenko Beam Finite Element.Computers & Structures,Vol.47,No.3,1993:473-481.
    [136]Klaus-Jurgen Bathe and Said Bolourch.Large Displacement Analysis of Three-Dimensional Beam Structures.International Journal for Numerical Methods in Engineering,Vol.14,1979:961-986.
    [137]Roy Becker and Michael Ishler,Seismic Design Practice For Eccentrically Braced Frames,1995.
    [138]Charles W.Roeder,A.M.ASCE,and Egor P.Popov,F.ASCE.Design of an Eccentrically Braced Steel Frame,Engineering Journal,AISC,Third Quarter,1978.
    [139]Seismic Provisions for Structural Steel Buildings,AISC 1997.
    [140]Farzad Naeim,Seismic Design of Steel Structures,The Seismic Design Handbook,2001.
    [141]American Institute of Steel Construction,Inc.(AISC)(1989),Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design,AISC,Chicago,IL.
    [142]American Institute of Steel Construction,Inc.(AISC)(1993),Load and Resistance Factor Design Specification for Structural Steel Buildings,AISC,Chicago,IL,December 1.
    [143]American Institute of Steel Construction,Inc.(AISC)(1999),Load and Resistance Factor Design Specification for Structural Steel Buildings,AISC,Chicago,IL,December 27.
    [144]于安麟,EK形、Y形支撑的抗震性能研究 西安冶金建筑学院学报,Vol.22.3 1990,9:253-260.
    [145]钱稼茹 陈茂盛 张天申 王明弹,偏心支撑钢框架拟动力地震反应试验分析[J].工程抗震,1992,(1):15-18..
    [146]钱稼茹 陈茂盛 张天申,偏心支撑钢框架在水平力作用下试验研究和极限分析[J].建筑结构,1993,(4):3-7.
    [147]陈新孝 牛荻涛 石建光 朱梅生,偏心支撑钢筋混凝土框架的试验研究与极限分析。工业建筑,2003,33(3):35-38.
    [148]陈新孝,偏心支撑钢筋砼门式框架结构的极限分析。武警技术学院学报,1997,13(1):25-28.
    [149]刘伟 卞延彬,偏心支撑钢框架抗震性能的试验研究。钢结构,2003,18(6):27-30.
    [150]吴华英 周小平,偏心支撑科技抗震性能试验研究和有限元分析。国外建材科技,2004,25(1):84-86.
    [151]赵宝成 顾强,单斜杆偏心支撑钢框架在循环荷载作用下的滞回性能分析。苏州科技学院学报(工程技术版),2005,18(3):10-14.
    [152]赵宝成 王孟鸿 张学渊,偏心支撑钢框架耗能分析的非线性有限元模型。工业建筑,2006,36(1):75-77.
    [153]赵宝成 顾强,偏心支撑钢框架在循环荷载作用下非线性有限元分析。土木工程学报,2005,38(2):27-31.
    [154]赵宝成,偏心支撑钢框架在循环荷载作用下的破坏机理与抗震设计对策。西安建筑科技大学博士学位论文,2003.
    [155]易方民 高小旺 张维嶽 杨蔚彪,高层建筑偏心支撑钢框架构件参数的研究。建筑科学,2000,16(3):7-11.
    [156]管克俭 王新武 彭少民,偏心支撑钢框架耗能特性和简化分析。武汉理工大学学报,2002,24(12):37-40.
    [157]李新华 高公略,偏心支撑钢框架的耗能探讨。淮海工学院学报,2001,10(3):53-56.
    [158]李新华 舒赣平,偏心支撑钢框架的设计探讨。工业建筑,2001,31(8):8-10.
    [159]陈子毅 石建光 朱梅生,偏心支撑钢筋砼框架耗能梁的有限元分析。包头钢铁学院学报,1996,15(3):1-4.
    [160]石建光 陈子毅 陈新孝,偏心支撑框架结构的性能分析研究。包头钢铁学院学报,1997,16(3):207-213.
    [161]王新武,偏心支撑钢框架有限元分析。建筑科学,2004,20(4):14-18.
    [162]张磊,高层建筑偏心支撑钢框架抗震性能的研究。西南交通大学硕士学位论文,2004.
    [163]申林,高层结构钢支撑滞回性能分析及抗震设计对策。西安建筑科技大学博士学位论文,2000.
    [164]郭彦林 刘建彬 蔡益燕 邓科,结构的耗能减震与防屈曲支撑。建筑结构,2005,35(8):18-23.
    [165]盛昌 周群英 张卫民,偏心支撑框架体系性能研究。金华职业技术学院学报,2003,3(3):13-15.
    [166]赵春荣 史三元 崔炜,3种偏心支撑钢框架的塑性设计方法。四川建筑科学研究, 2005,31(6):42-45.
    [167]赵春荣 史三元 崔炜 原冬霞,弯剪作用下偏心支撑框架塑性分析。河北建筑科技学院学报,2005,22(2):23-25.
    [168]郭洋波,偏心支撑框架结构整体刚度方程的建立和求解。山西建筑,2005,31(6):38-39.
    [169]郭仕群,使用偏心支撑减小不规则高层建筑的扭转振动效应。地震工程与工程振动,2005,25(3):76-80.
    [170]舒磊,高层偏心支撑钢框架的优化设计。西南交通大学硕士学位论文,2004。
    [171]李志刚 王浩 郝际平 蔡益燕,偏心支撑框架的设计计算方法。钢结构,2004,19(3):4-7.
    [172]申林 蔡益燕 郁银泉,偏心支撑钢框架设计方法,建筑结构,2002,32(2):13-16.
    [173]蔡益燕,高层建筑的抗震钢框架系统,高层建筑钢结构设计参考资料选编,1986.
    [174]建筑抗震设计规范(GB 50011),北京:2001.
    [175]刘其祥 蔡益燕 朱知信 顾泰昌,多高层房屋钢结构梁柱刚性连接节点的抗震设计[J].建筑结构,2001,31(8):9-13.
    [176]陈骥,钢结构稳定理论与应用。北京:科学技术文献出版社,1994.9.
    [177]陈绍蕃,钢结构设计原理.北京:科学出版社,1997.
    [178]郝际平 潘秀珍 谢振清,一种偏心支撑,中华人民共和国,发明专利号:ZL200610043128.1,授权公告日:2008.2.6.
    [179]郝际平 潘秀珍 谢振清,一种偏心支撑,中华人民共和国,实用新型专利号:ZL200620079339.6,授权公告日:2007.5.16.
    [180]郝际平 潘秀珍 谢振清 陈小峰,一种用于偏心支撑结构的节点,中华人民共和国,实用新型专利号:ZL2006 20079338.1,授权公告日:2007.9.12.
    [181]郝际平 潘秀珍,沈桂联,王丰平,用于偏心支撑结构中剪切型耗能梁段与柱连接的节点,中华人民共和国,实用新型专利号:ZL200720031355.2,授权公告日:2008.5.14.
    [182]郝际平 潘秀珍,用于偏心支撑结构中剪切型耗能梁段与柱连接的加盖板节点,中华人民共和国,实用新型专利号:ZL200720032148.9,授权公告日:2008.5.14.
    [183]钢结构设计规范(GB 50017),北京:2003.
    [184]高层民用建筑钢结构技术规程(JGJ 99-98),北京:1998.
    [185]钢结构工程施工质量验收规范(GB50205-2001),北京:2001.
    [186]建筑结构荷载规范(GB50009-2001),北京:2002.
    [187]建筑抗震试验方法规程(JGJ 101-96),北京:1997.
    [188]金属拉伸试验试样(GB 6397-86),北京:1987.
    [189]钢及钢产品力学性能试验取样位置及试样制备(GB/T 2975-1998),北京:1999.
    [190]张汝清 詹先义,非线性有限元分析 重庆大学 1988.
    [191]王勖成 邵敏,有限单元法基本原理和数值分析。北京:清华大学出版社,1996 ISBN 7-302-02429.
    [192]王勖成,有限单元法。北京:清华大学出版社,1990.
    [193]孟凡中 著 弹塑性有限变形理论和有限元方法。北京:清华大学出版社,1985年.
    [194]ANSYS非线性分析指南,ANSYS中国,北京:2001.
    [195]ANSYS高级技术分析指南,ANSYS中国,北京:2001.
    [196]ANSYS基本过程手册,ANSYS中国,北京:2001.
    [197]ANSYS建模与分网指南,ANSYS中国,北京:2001.
    [198]Yeong-Bin Yang,Theory & Analysis of Nonlinear Framed Structures.Prentice Hall 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700