用户名: 密码: 验证码:
新型半导体材料和红外器件的输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要是利用深低温强磁场条件下的变磁场霍耳效应测量和Shubnikov-de Hass(SdH)测量,并借助多载流子输运分析——迁移率谱分析技术,研究了p型ZnO薄膜和三种新型半导体红外器件结构——GaAs单周期远红外反射镜结构,InAsSb量子点中红外发光二极管结构和InAs/GaSb/AlSb量子级联激光器多层结构在磁场下的输运性质。
     通常情况下,由于本征缺陷的自补偿作用和受主掺杂物的低固溶度,p型ZnO的制备一般需要较高的受主掺杂浓度,从而制约了高空穴迁移率的获得。通过变温霍耳效应测量,我们证实并分析了超声喷雾热解方法生长的N-In共掺杂p型ZnO薄膜中的高空穴迁移率和空穴浓度的热激发行为。根据多晶半导体的电学输运理论并结合结构测量分析可知,N-In共掺杂ZnO薄膜是由平均晶粒尺寸为8-10 nm的微晶粒组成的,由于各晶粒之间的能带平坦,从而不存在晶界势垒对空穴迁移率的限制。同时我们计算了各种散射机制对空穴迁移率的贡献,发现在低温和高温下制约空穴迁移率的主要散射机制分别为电离杂质散射和声学声子散射。正是由于缺乏晶界势垒效应和存在较弱的电离杂质散射从而导致了N-In共掺杂p型ZnO薄膜中的高空穴迁移率。另外我们分析了空穴浓度随温度的热激发行为,从中获得的低激发能(~20 meV)是对应于晶界陷阱能级,而非受主能级。N-In共掺杂p型ZnO薄膜的电导率随温度的关系则表现为跳跃电导机制。为了进一步确认霍耳效应测量结果,我们研究了不同浓度的N-In共掺杂p型ZnO薄膜的拉曼光谱性质,并从中提取了空穴浓度和迁移率值。光学分析结果很好地符合了霍耳实验数据,一方面说明了光学分析方法的可行性,另一方面也证明了N-In共掺杂p型ZnO薄膜中高空穴迁移率的可靠性。由此我们获得了一种提取载流子输运参数的光学分析方法,这对于p型ZnO特别是高电阻率ZnO薄膜的输运性质的研究具有重要的意义。
     值得注意的是,半导体中不同能量的载流子在输运过程中受到的散射程度是不同的,从而导致了载流子的速度统计分布。在弱电场的弛豫时间近似下,载流子的速度统计分布可以看成是载流子浓度对迁移率的分布。然而固定磁场下传统霍耳效应测量由于忽略了载流子弛豫时间和能量的依赖关系,因而无法获得样品中可能存在的多种载流子的输运信息。但是建立在载流子弛豫时间分布的玻尔兹曼输运理论基础上的迁移率谱分析技术可以通过变磁场霍耳效应测量将样品中的多种载流子输运参数分别提取出来。
     为了深入研究p型ZnO薄膜中的载流子输运性质以及不同的掺杂机制,我们对N-In共掺杂和N掺杂p型ZnO薄膜进行了变磁场霍耳效应测量和迁移率谱分析计算。从中我们分别提取了三种不同载流子的输运信息,包括来自ZnO薄膜的自由电子和自由空穴以及来自ZnO薄膜与本征Si衬底之间界面层的二维空穴气。其中ZnO薄膜中的自由电子和自由空穴的室温迁移率都大于100 cm2/Vs,但由于它们对电导率的贡献会相互抵消,所以通过p型掺杂得到的ZnO薄膜一般都表现出低迁移率的弱p型或弱n型电导。此时正是因为有了高迁移率的二维空穴气的存在,才使得生长在本征Si衬底上的p型ZnO薄膜呈现出高迁移率和高导电性。这也是为什么相同生长条件下在绝缘衬底和本征Si衬底上生长的ZnO薄膜的导电性会产生如此大差异的原因。结合对N-In共掺杂和N掺杂p型ZnO薄膜的光致发光性质的分析,我们发现N-In共掺杂技术导致了受主束缚能的减小和施主束缚能的增大,而且与N掺杂ZnO相比,N-In共掺杂ZnO中的受主能级得到了进一步的展宽。这与我们在N-In共掺杂ZnO的迁移率谱中观察到的自由空穴浓度的增大是一致的。同时由于In元素的引入,N-In共掺杂ZnO的自由电子浓度也略高于N掺杂ZnO。此外我们还揭示了N-In共掺杂和N掺杂p型ZnO薄膜中不同的载流子复合过程,以及非掺杂ZnO薄膜中的深能级可见发光峰(~2.5 eV)的来源。
     其次,我们研究了掺杂/非掺杂GaAs单周期远红外反射镜结构在磁场下的输运性质。通过变磁场霍耳效应测量和迁移率谱分析方法,以及低温强磁场下的SdH测量,我们计算得到了该反射镜结构的电子浓度、迁移率和量子散射时间,并揭示了在低温下的主要散射机制为电离杂质散射。同时我们采用菲涅耳系数矩阵法计算了该反射镜结构随纵向深度变化的能流分布,发现能流衰减主要是发生在较厚的重掺杂GaAs层。虽然计算得到的该反射镜结构的反射率要低于传统的工作在近红外和中红外的分布式布喇格反射镜,但是比单一的掺杂GaAs层的反射率增大了两倍,说明在较宽的远红外范围内该反射镜结构都表现出很好的谐振增强效应。为了验证上述光学分析结果,我们在室温下测量了该反射镜结构在空气中的远红外反射谱和透射谱。理论计算结果很好地符合了实验光谱,从而证实了该反射镜结构对于n-GaAs同质结远红外探测器腔体内光吸收的共振增强效应,同时也说明了我们上述光学计算方法的正确性和可靠性。
     接着,我们研究了InAsSb量子点中红外发光二极管结构的电学输运性质。由于我们研究的InAs1-xSbx量子点样品的Sb组分(x=0.25)正处在从应变量子阱结构转变为孤立量子点结构的临界处,因此包含了应变量子阱和聚集量子点的结构信息。通过变磁场霍耳效应测量和迁移率谱分析技术,我们提取了样品中三种不同载流子的输运信息,分别是来自聚集量子点结构的重空穴和轻空穴以及来自InAs1-xSbx应变量子阱的二维电子气。同时我们分析了制约三种载流子迁移率的主要散射机制。对于重空穴,电离杂质散射在整个温度范围都占据主导地位;对于轻空穴,合金无序散射和声子散射分别是低温和高温下的主要散射机制;二维电子气的低温迁移率与温度无关,高温下则主要受声子散射影响。通过低温强磁场下的SdH测量,我们获得了来自InAs1-xSbx应变量子阱结构的二维电子气的有效质量和量子散射时间等物理参数。
     最后,我们还对InAs/GaSb/AlSb量子级联激光器多层结构在磁场下的输运现象作了详细的研究工作。由于AlSb势垒层的高电阻性,它对整个样品的电导率贡献可以忽略不计。通过变磁场霍耳效应测量结合迁移率谱分析技术,我们分别获得了来自GaSb覆盖层的电子和来自InAs势阱中的二维电子气的输运参数。随着温度的降低,我们发现GaSb电子的迁移率先增大后减小,表现出典型的体载流子的温度行为。由于InAs和GaSb能带的负交迭,InAs势阱中的二维电子气可以直接进入GaSb价带,然后需要穿越多周期的AlSb势垒层才能到达位于样品顶层的电极端,因而其迁移率值要远小于InAs体电子的迁移率。随着温度的降低,二维电子气的迁移率峰逐渐与GaSb电子峰叠加在一起,且在低温下表现出载流子析出行为,从而对电导率的贡献可忽略不计。因此低温强磁场下的SdH振荡主要是由GaSb电子所引起的,计算得到的有效质量也证实了这一点。通过比较低温下的经典散射时间和量子散射时间的比值,我们发现制约GaSb电子低温迁移率的主要散射机制为界面粗糙度散射。
     以上的研究得到了国家自然科学基金(10125416, 60576067, 10674094,和10734020),国家重点基础研究项目(2006CB921507)和教育部“长江学者和创新团队发展计划”创新团队计划(IRT0524)的资助。
By the aid of magnetic-field-dependent Hall effect measurements combined with the mobility spectrum analysis (MSA) and Shubnikov-de Hass (SdH) measurements, we have investigated the electrical transport properties of the p-type ZnO thin films and three kinds of novel semiconductor infrared devices, including GaAs far-infrared (FIR) mirror structures, InAsSb quantum dots (QDs) mid-infrared light emitting diodes (LEDs) and InAs/GaSb/AlSb quantum cascade lasers (QCLs) material.
     Usually, due to the self-compensation effect from native defects and the low solubility of the acceptor dopants in ZnO, high acceptor doping seemly becomes necessary to obtain p-ZnO, which will result in the low hole mobility. Through temperature-dependent Hall effect measurements, we have achieved the high mobility and conductivity in our studied N-In codoped p-type ZnO thin films. As the average grain size of our polycrystalline p-type ZnO thin films is among 8-10 nm, the bands will be effectively flat. Due to the lack of the grain boundary barrier effect and weak ionized impurity scattering, relatively high mobility can be achieved in our polycrystalline p-ZnO thin films. Meanwhile, we have observed the thermal activating behavior of the hole concentration and the yielded activation energy (~20 meV) is related to the shallow grain boundary trapping level rather than the acceptor level. We have also revealed the scattering and conduction mechanisms in these p-ZnO thin films. As we know, Hall effect measurements will become difficult and unreliability when the measured ZnO samples exhibit high resistivity. Hence, we have established an optical method to extract the useful carrier transport information from the Raman spectrum analysis. The good agreement between Raman and Hall measurements on the transport information demonstrates the reliability of this method and reconfirms the obtained high mobility in our p-ZnO thin films.
     It should be noted that the carriers with different energy will be scattered differently in the transport process, which results in the statistical distribution of carrier velocity. Under the relaxation time approximation at weak electric field, the statistical distribution of carrier velocity will be considered as the mobility distribution of carrier concentration. However, the dependency of relaxation times on energy is neglected in the classic Hall effect measurements under a single magnetic field and cannot be employed for obtaining the individual transport information of multi-carrier in measured samples. Fortunately, the magnetic-field-dependent Hall effect measurements have the ability to extract the transport parameters of all carrier species present within samples that are contributing to the conduction process by using the MSA, based on the distribution of relaxation times. The MSA transforms the experimental Hall data into the dependence of the conductivity density function on mobility, in which each carrier contributing to the total conductivity appears as a separate peak at a given mobility.
     In order to reveal the carrier transport properties and different doping mechanisms, we have presented a compared investigation of N-In codoped and N-doped p-type ZnO thin films on the basis of the magnetic-field-dependent Hall effect measurements followed by the MSA. The transport information of three carrier species has been obtained, including the free electrons and holes from ZnO thin film as well as the two-dimensional hole gas (2DHG) from the interface between ZnO film and intrinsic silicon substrate. The yielded mobilities of free electrons and holes at room temperature are both larger than 100 cm2/Vs. When the conductivity contributions between free electrons and free holes are comparable, the existence of high mobility 2DHG becomes especially important and results in the high mobility and conductivity of p-ZnO thin films grown on intrinsic silicon substrates. Through the investigation of temperature-dependent photoluminescence spectra, we have clarified that the N-In codoping, compared with the N-doping, leads to the decrement of acceptor binding energy and increment of donor binding energy in ZnO, and also broadens the acceptor level. This result is consistent with the observation of more free hole concentration in the mobility spectra for N-In codoped ZnO. Meanwhile, the introducing of In dopants results in the more free electron concentration in N-In codoped ZnO. In addition, we have revealed the different carrier recombination processes in N-In codoped and N-doped p-type ZnO thin films, as well as the mechanism of the deep-level visible emission (~2.5 eV) in undoped ZnO.
     Secondly, we investigate the carrier transport and optical properties in doped/undoped GaAs single-period FIR mirror structures for GaAs-based FIR device application. Through variable magnetic field Hall and SdH measurements, the carrier concentration, mobility and scattering times are obtained and analyzed. It is found that ionized impurity scattering is the dominant scattering mechanism at low temperatures for the GaAs FIR mirror structures. The calculation of energy flux along the depth of the mirror structures shows that most of the absorption falls inside the highly doped bottom GaAs layer. Even though the reflection is lower than the traditional distributed Bragg reflectors (DBRs) working in the near- and mid-infrared, the present GaAs single-period FIR mirror structures show perfect enhancement effect in a wide FIR region compared with a single doped GaAs layer. The calculated FIR transmission and reflection spectra agree well with the experimental results for the mirror structures, demonstrating that all the optical analysis about GaAs FIR mirror structures is reliable.
     Thirdly, we investigate the electrical transport properties of InAs1-xSbx QDs mid-infrared LEDs under magnetic field. With relatively small Sb content (x=0.2), the InAs1-xSbx sample exhibits quite a smooth continues strained layer. Coalesced QDs and isolated QDs are formed with increasing Sb composition (x=0.2-0.3) and hence strain, while our studied InAs1-xSbx sample is just at the critical composition (x=0.25). The transport information of three carrier species has been obtained through magnetic-field-dependent Hall measurements followed by the MSA, including heavy holes and light holes from coalesced InAsSb QDs, as well as two-dimensional electron gas (2DEG) from InAs1-xSbx strained layer. The major scattering mechanism for heavy holes is ionized impurity scattering. While alloy scattering limits the low temperature mobility and photon scattering limits the high temperature mobility for light holes. The 2DEG mobility exhibits temperature-independent at low temperatures and decreases with temperature due to the photon scattering limits at high temperatures. We have also analyzed the effective mass and quantum scattering time of 2DEG by using SdH measurements.
     Finally, we have studied the carrier transport phenomenon in InAs/GaSb/AlSb QCLs multilayer structures. The transport information of electrons in GaSb cladding layer and 2DEG from InAs quantm wells have been extracted and analyzed. The electron mobility in GaSb exhibits the characteristic behavior of bulk carrier. While the 2DEG mobility is much smaller than the electron mobility in InAs film because of the block off effect from multi-periods of AlSb barrier layer. With the decrease of temperature, the mobility peak of 2DEG coincides with the peak of GaSb electrons and its conductivity contribution can be ignored at very low temperatures due to the carrier freeze-out behavior. Therefore we have observed the SdH oscillations mainly from GaSb electrons and calculated effective mass and quantum scattering time. Through the ratio between classical scattering time and quantum scattering time, we can identify interface roughness scattering as the dominant scattering mechanism at low temperatures for GaSb electrons.
     This work is supported in part by the Natural Science Foundation of China under Contract Nos. 10125416, 60576067, 10674094, and 10734020, National Major Basic Research Project of 2006CB921507, and Innovative Research Team in University (PCSIRT) of IRT0524.
引文
1. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys., 1995, 34: L1332-1335.
    2. A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong, and Y. Segawa, “Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE”, Mater. Sci. Eng. B, 1998, 54: 24-28.
    3. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 1998, 72: 3270-3272.
    4. J. J. Hopfield and D. G. Thomas, “Photon Momentum Effects in the Magneto-Optics of Excitons”, Phys. Rev. Lett., 1960, 4: 357-359.
    5. Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO”, Phys. Rev., 1966, 143: 512-519.
    6. W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals”, Phys. Rev. Lett., 1968, 20: 59-62.
    7. F. S. Hickernell, “Zinc oxide films for acoustoelectric device applications”, IEEE Trans. Sonics Ultrason., 1986, 32: 621-629.
    8. F. S. Hickernell, “dc triode sputtered zinc oxide surface elastic wave transducers”, J. Appl. Phys., 1973, 44: 1061-1071.
    9. B. T. Khuri-Yakub, G. S. Kino, and P. Galle, “Studies of the optimum conditions for growth of rf-sputtered ZnO films”, J. Appl. Phys., 1975, 46: 3266-3272.
    10. F. Hamdani, A. E. Botchkarev, H. Tang, W. Kim, and H. Morko?, “Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO”, Appl. Phys. Lett., 1997, 71: 3111-3113.
    11. T. Ueda, T. -F. Huang, S. Spruytte, H. Lee, M. Yuri, K. Itoh, T. Baba, and J. S. Harris Jr., “Vapor phase epitaxy growth of GaN on pulsed laser deposited ZnO
    1. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys., 1995, 34: L1332-1335.
    2. A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong, and Y. Segawa, “Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE”, Mater. Sci. Eng. B, 1998, 54: 24-28.
    3. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 1998, 72: 3270-3272.
    4. J. J. Hopfield and D. G. Thomas, “Photon Momentum Effects in the Magneto-Optics of Excitons”, Phys. Rev. Lett., 1960, 4: 357-359.
    5. Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO”, Phys. Rev., 1966, 143: 512-519.
    6. W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals”, Phys. Rev. Lett., 1968, 20: 59-62.
    7. F. S. Hickernell, “Zinc oxide films for acoustoelectric device applications”, IEEE Trans. Sonics Ultrason., 1986, 32: 621-629.
    8. F. S. Hickernell, “dc triode sputtered zinc oxide surface elastic wave transducers”, J. Appl. Phys., 1973, 44: 1061-1071.
    9. B. T. Khuri-Yakub, G. S. Kino, and P. Galle, “Studies of the optimum conditions for growth of rf-sputtered ZnO films”, J. Appl. Phys., 1975, 46: 3266-3272.
    10. F. Hamdani, A. E. Botchkarev, H. Tang, W. Kim, and H. Morko?, “Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO”, Appl. Phys. Lett., 1997, 71: 3111-3113.
    11. T. Ueda, T. -F. Huang, S. Spruytte, H. Lee, M. Yuri, K. Itoh, T. Baba, and J. S. Harris Jr., “Vapor phase epitaxy growth of GaN on pulsed laser deposited ZnO
    23. J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy”, J. Appl. Phys., 2007, 102: 043522-(1-6).
    24. F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, “p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy”, Appl. Phys. Lett., 2006, 88: 052106-(1-3).
    25. D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, “As-doped p-type ZnO produced by an evaporation/sputtering process”, Appl. Phys. Lett., 2004, 85: 5269-5271.
    26. Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, “Preparation of p-type ZnO films by Al+N-codoping method”, J. Crystal Growth, 2004, 265: 127-132.
    27. M. Joseph, H. Tabata, and T. Kawai, “p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping”, Jpn. J. Appl. Phys., 1999, 38: L1205-1207.
    28. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. J. Lu, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01 2) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys., 1999, 85: 2595-2602.
    29. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, “Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis”, Appl. Phys. Lett., 2004, 84: 541-543.
    30. W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, and W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors”, Appl. Phys. Lett., 1997, 71: 2677-2679.
    31. A. G. U. Perera and W. Z. Shen, “GaAs homojuction interfacial workfunction internal photoemission (HIWIP) far-infared detectors”, Opto-Electron. Rev., 1999, 7: 153-180.
    32. E. E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Technol., 1994, 35: 127-146.
    33.D. M. Watson, M. T. Guptill, J. E. Huffman, and T. N. Krabach, “Germanium blocked-impurity-band detector arrays: Unpassivated devices with bulk substrates”, J. Appl. Phys., 1993, 74: 4199-4206.
    34. M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys., 1995, 78: 607-639.
    35. M. S. Unlu, M. Gokkavas, B. M. Onat, E. Ata, E. Ozbay, T. P. Mirin, K. J. Knopp, K. A. Bartness, and D. H. Christensen, “High bandwidth-efficiency resonant cavity enhanced Schottky photodiodes for 800-850 nm wavelength operation”, Appl. Phys. Lett., 1998, 72: 2727-2729.
    36. H. Nie, K. A. Anselm, V. Hu, S. S. Murtaza, B. G. Streetman, and J. C. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product”, Appl. Phys. Lett., 1997, 70: 161-163.
    37. C. Lennox, H. Nie, P. Yuan, G. Kinsley, A. L. Holmes Jr., B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz”, IEEE Photonics Technol. Lett., 1999, 11: 1162-1164.
    38. A. Rogalski, “Infrared detectors:status and trends”, Progress in Quantum Elec., 2003, 27: 59-210.
    39. J.-I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morko?, “Growth of InSb and InAs1?xSbx on GaAs by molecular beam epitaxy”, Appl. Phys. Lett., 1988, 53: 1092-1094.
    40. S. Kim, M. Erdtmann, D. Wu, E. Kass, H. Yi, J. Diaz, and M. Razeghi, “Photoluminescence study of InAsSb/InAsSbP heterostructures grown by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett., 1996, 69: 1614-1616.
    41. A. Krier, X. L. Huang, and A. Hammiche, “Midinfrared photoluminescence of InAsSb quantum dots grown by liquid phase epitaxy”, Appl. Phys. Lett., 2000, 77: 3791-3793.
    42. J. F. Chen, R. S. Hsiao, W. D. Huang, Y. H. Wu, L. Chang, and J. S. Wang, “Strainrelaxation and induced defects in InAsSb self-assembled quantum dots”, Appl. Phys. Lett., 2006, 88: 233113-(1-3).
    43. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-Cascade Laser Measurements of Stratospheric Methane and Nitrous Oxide”, Appl. Opt., 2001, 40: 321-326.
    44. R. M. Williams, J. F. Kelly, J. S. Hartman, S. W. Sharpe, M. S. Taubman, J. L. Hall, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers”, Opt. Lett., 1999, 24: 1844-1846.
    45. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace-Gas Detection in Ambient Air with a Thermoelectrically Cooled, Pulsed Quantum-Cascade Distributed Feedback Laser”, Appl. Opt., 2000, 39: 6866-6872.
    46. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of Balanced Detection to Absorption Measurements of Trace Gases with Room-Temperature, Quasi-cw Quantum-Cascade Lasers”, Appl. Opt., 2001, 40: 812-820.
    47. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser”, Science, 1994, 264: 553-556.
    1. 刘恩科, 朱秉升, 罗基升, 半导体物理学, 第四版, 北京, 国防工业出版社, 1994, p309.
    2. L. J. van der Pauw, “A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shapes”, Philips Res. Repts., 1958, 13: 1-9.
    3. M. C. Gold and D. A. Nelson, “Variable magnetic field Hall effect measurements and analyses of high purity, Hg vacancy (p-type) HgCdTe”, J. Vac. Sci. Technol. A, 1986, 4: 2040-2046.
    4. J. S. Kim, D. G. Seiler, and W. F. Tseng, “Multicarrier characterization method for extracting mobilities and carrier densities of semiconductors from variable magnetic field measurements”, J. Appl. Phys., 1993, 73: 8324-8335.
    5. W. A. Beck and J. R. Anderson, “Determination of electrical transport properties using a novel magnetic field-dependent Hall technique”, J. Appl. Phys., 1987, 62: 541-554.
    6. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, D. J. Arnold, S. Sivananthan, and J. P. Faurie, “Methods for magnetotransport characterization of IR detector materials”, Semicond. Sci. Technol., 1993, 8: 805-823.
    7. Z. Dziuba and M. Gorska, “Analysis of the Electrical Conduction Using an Iterative Method”, J. Phys. III France, 1992, 2: 99-110.
    8. J. R. Meyer, C. A. Hoffman, J. Antoszewski, and L. Faraone, “Quantitative mobility spectrum analysis of multicarrier conduction in semiconductors”, J. Appl. Phys., 1997, 81: 709-713.
    9. I. Vurgaftman, J. R. Meyer, C. A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J. R. Lindemuth, “Improved quantitative mobility spectrum analysis for Hall characterization”, J. Appl. Phys., 1998, 84: 4966-4973.
    10. K. Seeger, 半导体物理学, 北京, 人民教育出版社, 1980, p362.
    11. E. N. Adams and T. D. Holstein, “Quantum theory of transverse galvano-magnetic phenomena”, J. Phys. Chem. Solids, 1959, 10: 254-276.
    12. L. M. Roth and P. N. Argyres, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (New York, Academic, 1966), Vol. 1, p159.
    13. A. E. Stephens, D. G. Seiler, J. R. Sybert, and H. J. Mackey, “Determination of the g factor from unsplit Shubnikov-de Haas oscillations in n-InSb”, Phys. Rev. B, 1975, 11: 4999-5001.
    14. W. Zawadzki and W. Szymanska, “Electron scattering and transport phenomena in n-InSb”, J. Phys. Chem. Solids, 1971, 32: 1151-1174.
    1. . zgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 2005, 98: 041301-(1-103).
    2. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci., 2005, 50: 293-340.
    3. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO”, Phys. Rev. B, 2002, 65: 075207-(1-12).
    4. C. Klingshirn, “ZnO: From basics towards applications”, Phys. Stat. Sol. (b), 2007, 244: 3027-3073.
    5. A. Mang, K. Reimann, and St. Rübenacke, “Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure”, Solid State Commun., 1995, 94: 251-254.
    6. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, “Hydrothermal growth of ZnO single crystals and their optical characterization”, J. Cryst. Growth, 2000, 214/215: 72-76.
    7. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth, 1999, 203: 186-196.
    8. M. Shiloh and J. Gutman, “Growth of ZnO single crystals by chemical vapour transport”, J. Cryst. Growth, 1971, 11: 105-109.
    9. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual Native Shallow Donor in ZnO”, Phys. Rev. Lett., 1999, 82: 2552-2555.
    10. J. E. Nause, “ZnO broadens the spectrum”, III-Vs Rev., 1999, 12: 28-31.
    11. A. Hachigo, H. Nakahata, K. Higaki, S. Fujii, and S. Shikata, “Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering”, Appl. Phys. Lett., 1994, 65: 2556-2558.
    12. R. J. Lad, P. D. Funkenbusch, and C. R. Aita, “Postdeposition annealing behaviorof rf sputtered ZnO films”, J. Vac. Sci. Technol., 1980, 17: 808-811.
    13. S. Jeong, B. Kim, and B. Lee, “Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient”, Appl. Phys. Lett., 2003, 82: 2625-2627.
    14. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO”, Nat. Mater., 2005, 4: 42-46.
    15. V. Craciun, J. Elders, J. G. E. Gardeniers, and I. W. Boyd, “Characteristics of high quality ZnO thin films deposited by pulsed laser deposition”, Appl. Phys. Lett., 1994, 65: 2963-2965.
    16. A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V. N. Kulkarni, and T. Venkatesan, “Investigation of laser-ablated ZnO thin films grown with Zn metal target: A structural study”, J. Appl. Phys., 2004, 96: 3228-3233.
    17. Y. F. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy”, J. Cryst. Growth, 1997, 181: 165-169.
    18. T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, “Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy”, J. Appl. Phys., 2003, 93: 1961-1965.
    19. Y. Chen, H.-J. Ko, S.-K. Hong, and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer”, Appl. Phys. Lett., 2000, 76: 559-561.
    20. M. N. Kamalasanan and S. Chandra, “Sol-gel synthesis of ZnO thin films”, Thin Solid Films, 1996, 288: 112-115.
    21. Y. Zhang, B. X. Lin, X. K. Sun, and Z. X. Fu, “Temperature-dependent photoluminescence of nanocrystalline ZnO thin films grown on Si (100) substrates by the sol-gel process”, Appl. Phys. Lett., 2005, 86: 131910-(1-3).
    22. Y. G. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, and Y. Hayashi, “Low resistivity p-ZnO films fabricated by sol-gel spin coating”, Appl. Phys. Lett., 2006, 88: 251116-(1-3).
    23. F. T. J. Smith, “Metalorganic chemical vapor deposition of oriented ZnO films over large areas”, Appl. Phys. Lett., 1983, 43: 1108-1110.
    24. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. J. Lu, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01 2) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys., 1999, 85: 2595-2602.
    25. A. Dadgar, N. Oleynik, D. Forster, S. Deiter, H. Witek, J. Bl?sing, F. Bertram, A. Krtschil, A. Diez, J. Christen, and A. Krost, “A two-step metal organic vapor phase epitaxy growth method for high-quality ZnO on GaN/Al2O3 (0001)”, J. Cryst. Growth, 2004, 267: 140-144.
    26. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, “Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis”, Appl. Phys. Lett., 2004, 84: 541-543.
    27. G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, and T. P. Yang, “Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis”, Appl. Phys. Lett., 2006, 89: 052113-(1-3).
    28. T. Y. Ma, S. H. Kim, H. Y. Moon, G. C. Park, Y. J. Kim, and K. W. Kim, “Substrate Temperature Dependence of ZnO Films Prepared by Ultrasonic Spray Pyrolysis”, Jpn. J. Appl. Phys. Part1, 1996, 35: 6208-6211.
    29. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, 2001, 291: 1947-1949.
    30. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications”, J. Phys.: Condens. Matter, 2004, 16: R829-858.
    31. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 2001, 292: 1897-1899.
    32. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts”, Science, 2004, 303: 1348-1351.
    33. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions”, Appl. Phys. Lett., 2003, 83: 141-143.
    34. Z. Qiu, K. S. Wong, M. Wu, W. Lin, and H. Xu, “Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation”, Appl. Phys. Lett., 2004, 84: 2739-2741.
    35. M. Haupt, A. Ladenburger, R. Sauer, K. Thonke, R. Glass, W. Roos, J. P. Spatz, H. Rauscher, S. Riethmüller, and M. M?ller, “Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers”, J. Appl. Phys., 2003, 93: 6252-6257.
    36. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO”, Phys. Rev. B, 2000, 61: 15019-15027.
    37. B. J. Lokhande, P. S. Patil, and M. D. Uplane, “Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique”, Physica B, 2001, 302/303: 59-63.
    38. S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl3(6H2O) as New Doping Material”, Jpn. J. Appl. Phys. Part 2, 1997, 36: L1078-1081.
    39. B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD”, Thin Solid Films, 1995, 260: 19-20.
    40. B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots”, Appl. Phys. Lett., 2002, 81: 748-750.
    41. M. D. L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, “Characteristics of ZnO:F thin films obtained by chemical spray. Effect of the molarity and the doping concentration”, Thin Solid Films, 2001, 394: 241-248.
    42. T. Minami, H. Sato, H. Nanto, and S. Takata, “Highty Conductive and TransparentSilicon Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering”, Jpn. J. Appl. Phys., 1986, 25: L776-779.
    43. B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. R. Rabadanov, “Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system”, J. Crystal Growth, 1999, 198/199: 1222-1225.
    44. T. Yamamoto and H. Katayama-Yoshida, “Physics and Control of Valence States in ZnO by Codoping Method”, Physica B, 2001, 302/303: 155-162.
    45. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu, “Realization of p-type ZnO films via monodoping of Li acceptor”, J. Crystal Growth, 2005, 283: 180-184.
    46. O. F. Schirmer, “The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide”, J. Phys. Chem. Solids, 1968, 29: 1407-1429.
    47. A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films”, J. Vac. Sci. Technol. A, 1991, 9: 286-289.
    48. Y. Kanai, “Admittance Spectroscopy of Cu-Doped ZnO Crystals”, Jpn. J. Appl. Phys. Part 1, 1991, 30: 703-707.
    49. H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee, “Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant”, Appl. Phys. Lett., 2006, 88: 202108-(1-3).
    50. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., 2002, 81: 1830-1832.
    51. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Part 2, 1997, 36: L1453-1455.
    52. F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, “p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy”, Appl. Phys. Lett., 2006, 88: 052106-(1-3).
    53. D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, “As-dopedp-type ZnO produced by an evaporation/sputtering process”, Appl. Phys. Lett., 2004, 85: 5269-5271.
    54. O. Lopatiuk-Tirpak, W. V. Schoenfeld, L. Chernyak, F. X. Xiu, J. L. Liu, S. Jang, F. Ren, S. J. Pearton, A. Osinsky, and P. Chow, “As-doped p-type ZnO produced by an evaporation/sputtering process”, Appl. Phys. Lett., 2006, 88: 202110-(1-3).
    55. G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen, K. B. Ucer, and R. T. Williams, “Control of p- and n-type conductivity in sputter deposition of undoped ZnO”, Appl. Phys. Lett., 2002, 80: 1195-1197.
    56. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, “Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy”, J. Appl. Phys., 2004, 95: 6268-6272.
    57. Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, “Preparation of p-type ZnO films by Al+N-codoping method”, J. Crystal Growth, 2004, 265: 127-132.
    58. M. Joseph, H. Tabata, and T. Kawai, “p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping”, Jpn. J. Appl. Phys., 1999, 38: L1205-1207.
    59. S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, and D. L. Kwong, “p-type conduction in unintentional carbon-doped ZnO thin films”, Appl. Phys. Lett., 2007, 91: 072101-(1-3).
    60. C. H. Park, S. B. Zhang, and S.-H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B, 2002, 66: 073202-(1-3).
    61. H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic”, Science, 1998, 281: 951-956.
    62. T. Dietl, H. Ohno, F. Matsukura, J. Cubert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”, Science, 2000, 287: 1019-1022.
    63. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, “An oxide-diluted magnetic semiconductor: Mn-doped ZnO”, Appl. Phys. Lett., 1999, 75: 3366-3368.
    64. S-J. Han, J. W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y. H. Jeong, and K. W.Rhie, “A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu”, Appl. Phys. Lett., 2002, 81: 4212-4214.
    65. H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, “Study of diluted magnetic semiconductor: Co-doped ZnO”, Appl. Phys. Lett., 2002, 81: 4020-4022.
    66. D. A. Schwartz, K. R. Kittilstved, and D. R. Gamelin, “Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots”, Appl. Phys. Lett., 2004, 85: 1395-1397.
    67. 赵俊亮, 李效民, 边继明, 张灿云, 于伟东, 高相东, “喷雾热解法生长 N 掺杂ZnO 薄膜机理分析”, 无机材料学报, 2005, 20: 959-964.
    68. J. L. Zhao, X. M. Lia, J. M. Bian, W. D. Yua, and C. Y. Zhang, “Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties”, J. Crystal Growth, 2005, 280: 495-501.
    69. P. Parayanthal and F. H. Pollak, “Raman Scattering in Alloy Semiconductors: "Spatial Correlation" Model”, Phys. Rev. Lett., 1984, 52: 1822-1825.
    70. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon”, Solid State Commun., 1981, 39: 625-629.
    71. I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors”, Solid State Commun., 1986, 58: 739-741.
    72. H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy”, J. Appl. Phys., 1995, 78: 6705-6708.
    73. M. Yoshikawa, Y. Mori, H. Obata, M. Meagawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from nanometer-sized diamond”, Appl. Phys. Lett., 1995, 67: 694-696.
    74. J. W. Beeman and E. E. Haller, “Ge:Ga photoconductor arrays: Design considerations and quantitative analysis of prototype single pixels”, Infrared Phys. Technol., 1994, 35: 827-836.
    75. W. Z. Shen, A. G. U. Perera, H. C. Liu, M. Buchanan, and W. J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors”, Appl.Phys. Lett., 1997, 71: 2677-2679.
    76. A. G. U. Perera, W. Z. Shen, H. C. Liu, M. Buchanan, M. O. Tanner, and K. L. Wang, “Demonstration of Si homojunction far-infrared detectors”, Appl. Phys. Lett., 1998, 72: 2307-2309.
    77. M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices”, J. Appl. Phys., 1995, 78: 607-639.
    78. M. S. ünlü, M. G?kkavas, B. M. Onat, E. Ata, E. ?zbay, T. P. Mirin, K. J. Knopp, K. A. Bartness, and D. H. Christensen, “High bandwidth-efficiency resonant cavity enhanced Schottky photodiodes for 800–850 nm wavelength operation”, Appl. Phys. Lett., 1998, 72: 2727-2729.
    79. H. Nie, K. A. Anselm, V. Hu, S. S. Murtaza, B. G. Streetman, and J. C. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product”, Appl. Phys. Lett., 1997, 70: 161-163.
    80. C. Lennox, H. Nie, P. Yuan, G. Kinsley, A. L. Holmes Jr., B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz”, IEEE Photonics Technol. Lett., 1999, 11: 1162-1164.
    81. Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors”, J. Appl. Phys., 2002, 91: 5538-5544.
    82. Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Design of bottom mirrors for resonant cavity enhanced GaAs homojunction far-infrared detectors”, Euro. Phys. J. Appl. Phys., 2003, 22: 165-170.
    83. Z. Knittl, Optics of Thin Films, London, Wiley, 1976, p35-51.
    84. M. V. Klein and T. E. Furtak, Optics, 2nd Ed., New York, Wiley, 1986, p295-300.
    85.J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide”, J. Appl. Phys., 1982, 53: R123-181.
    86. Y. H. Zhang, H. T. Luo, and W. Z. Shen, “Demonstration of bottom mirrors for resonant-cavity-enhanced GaAs homojunction far-infrared detectors”, Appl. Phys.Lett., 2003, 82: 1129-1131.
    87. L. O. Bubulac, A. M. Andrews, E. R. Gertner, and D. T. Cheung, “Backside-illuminated InAsSb/GaSb broadband detectors”, Appl. Phys. Lett., 1980, 36: 734-736.
    88. M. Y. Yen, B. F. Levine, C. G. Bethea, K. K. Choi, and A. Y. Cho, “Molecular beam epitaxial growth and optical properties of InAs1-xSbx in 8-12 μm wavelength range”, Appl. Phys. Lett., 1987, 50: 927-929.
    89. J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi, “8-13 μm InAsSb heterojunction photodiode operating at near room temperature”, Appl. Phys. Lett., 1995, 67: 2645-2647.
    90. M. Yano, Y. Seki, H. Ohkawa, K. Koike, S. Sasa, and M. Inoue, “Characteristics of Self-Assembled InSb Dots Grown on (100) AlGaSb by Molecular Beam Epitaxy”, Jpn. J. Appl. Phys. Part 1, 1998, 37: 2455-2459.
    91. B. R. Bennett, P. M. Thibado, M. E. Twigg, E. R. Glaser, R. Magno, B. V. Shanabrook, and L. J. Whitman, “Self-assembled InSb and GaSb quantum dots on GaAs(001)”, J. Vac. Sci. Technol. B, 1996, 14: 2195-2198.
    92. B. R. Bennett, R. Magno, and B. V. Shanabrook, “Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer-scale dots on GaAs”, Appl. Phys. Lett., 1996, 68: 505-507.
    93. S. P. Guo, H. Ohno, A. D. Shen, Y. Ohno, and F. Matsukura, “Photoluminescence Study of InAs Quantum Dots and Quantum Dashes Grown on GaAs(211)B”, Jpn. J. Appl. Phys. Part 1, 1998, 37: 1527-1531.
    94. E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Mock, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: A photoluminescence, magnetoluminescence, and atomic force microscopy study”, Appl. Phys. Lett., 1999, 74: 2041-2043.
    95. A. Krier, X. L. Huang, and A. Hammiche, “Midinfrared photoluminescence of InAsSb quantum dots grown by liquid phase epitaxy”, Appl. Phys. Lett., 2000, 77: 3791-3793.
    96. A. Krier and X. L. Huang, “Electroluminescence from InAsSb quantum dot light-emitting diodes grown by liquid phase epitaxy”, Proc. SPIE, 2002, 4646:70-78.
    97. R. F. Kazarinov and R. A. Suris, “Possibility of the amplification electromagnetic waves in a semiconductor with superlattice”, Sov. Phys. Semicond., 1971, 5: 707-711.
    98. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser”, Science, 1994, 264: 553-556.
    99. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Vertical transition quantum cascade laser with Bragg confined excited state”, Appl. Phys. Lett., 1995, 66: 538-540.
    100. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Laser action by tuning the oscillator strength”, Nature, 1997, 387: 777-782.
    101. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, “GaAs/AlxGa1-xAs quantum cascade lasers”, Appl. Phys. Lett., 1998, 73: 3486-3488.
    102. L. R. Wilson, D. A. Carder, J. W. Cockburn, R. P. Green, D. G. Revin, M. J. Steer, M. Hopkinson, G. Hill, and R. Airey, “Intervalley scattering in GaAs-AlAs quantum cascade lasers”, Appl. Phys. Lett., 2002, 81: 1378-1380.
    103. G. Strasser, S. Gianordoli, L. Hvozdara, W. Schrenk, K. Unterrainer, and E. Gornik, “GaAs/AlGaAs superlattice quantum cascade lasers at λ≈13 μm”, Appl. Phys. Lett., 1999, 75: 1345-1347.
    104. D. Hofstetter, J. Faist, and D. P. Bour, “Midinfrared emission from InGaN/GaN-based light-emitting diodes”, Appl. Phys. Lett., 2000, 76: 1495-1497.
    105. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, “Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures”, Science, 2000, 290: 2277-2280.
    106. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature”, Science, 2002, 295: 301-305.
    1. L. M. Levinson and H. R. Philipp, “The physics of metal oxide varistors”, J. Appl. Phys., 1975, 46: 1332-1341.
    2. R. F. Belt and G. C. Florio, “Preparation of ZnO Thin-Film Transducers by Vapor Transport”, J. Appl. Phys., 1968, 39: 5215-5223.
    3. S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO”, Phys. Rev. B, 2001, 63: 075205-(1-7).
    4. C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett., 2000, 85: 1012-1015.
    5. C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B, 2002, 66: 073202-(1-3).
    6. S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide”, Phys. Rev. Lett., 2004, 92: 155504-(1-4).
    7. T. Yamamoto and H. Katayama-Yoshida, “Physics and control of valence states in ZnO by codoping method”, Physica B, 2001, 302/303: 155-162.
    8. D. C. Look, “Electrical and optical properties of p-type ZnO”, Semicond. Sci. Technol., 2005, 20: S55-61.
    9. T. Aoki, Y. Hatanaka, and D. C. Look, “ZnO diode fabricated by excimer-laser doping”, Appl. Phys. Lett., 2000, 76: 3257-3259.
    10. X. L. Guo, H. Tabata, and T. Kawai, “p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma”, Opt. Mater., 2002, 19: 229-233.
    11. T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide”, Appl. Phys. Lett., 2005, 86: 112112-(1-3).
    12. G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins and S. B. Zhang, “Control of conduction type in Al- and N-codoped ZnO thin films”, Appl. Phys. Lett., 2005, 86: 202106-(1-3).
    13. Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, “Preparation of p-type ZnO films by Al+N-codoping method”, J. Crys. Growth, 2004, 265: 127-132.
    14. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci., 2005, 50: 293-340.
    15. D. C. Look and B. Claflin, “p-type doping and devices based on ZnO”, Phys. Stat. Sol. (b), 2004, 241: 624-630.
    16. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, “Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis”, Appl. Phys. Lett., 2004, 84: 541-543.
    17. F. Zhu-ge, L. P. Zhu, Z. Z. Ye, D. W. Ma, J. G. Lu, J. Y. Huang, F. Z. Wang, Z. G. Ji, and S. B. Zhang, “ZnO p-n homojunctions and ohmic contacts to Al–N-co-doped p-type ZnO”, Appl. Phys. Lett., 2005, 87: 092103-(1-3).
    18. L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu, “p-type behavior in In-N codoped ZnO thin films”, Appl. Phys. Lett., 2005, 87: 252106-(1-3).
    19. J. W. Orton and M. J. Powell, “The Hall effect in polycrystalline and powdered semiconductors”, Rep. Prog. Phys., 1980, 43: 1263-1307.
    20. Y. Natsume, H. Sakata, T. Hirayama, and H. Yanagida, “Low-temperature conductivity of ZnO films prepared by chemical vapor deposition”, J. Appl. Phys., 1992, 72: 4203-4207.
    21. D. L. Rode, “Low-field electron transport”, Semicond. Semimet., 1975, 10: 1-89.
    22. T. Makino, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Hole Transport in p-Type ZnO”, Jpn. J. Appl. Phys., 2006, 45: 6346-6351.
    23. R. Mansfield, in Hopping Transport in Solids, edited by M. Pollak and B. I. Shklovshii (North-Holland, Amsterdam, 1991), p349.
    24. N. F. Mott, “Electrons in disordered structures”, Adv. Phys., 1967, 16: 49-144; “Conduction in non-crystalline materials”, Philos. Mag., 1969, 19: 835-852.
    25. S. Bandyopadhyay, G. K. Paul, R. Roy, S. K. Sen, and S. Sen, “Study of structuraland electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique”, Mater. Chem. Phys., 2002, 74: 83-91.
    26. N. F. Mott and R. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd Ed., Oxford University, Oxford, 1979.
    27. B. B. Varga, “Coupling of Plasmons to Polar Phonons in Degenerate Semiconductors”, Phys. Rev., 1965, 137: A1896-1902.
    28. R. Fukasawa and S. Perkowitz, “Raman-scattering spectra of coupled LO-phonon-hole-plasmon modes in p-type GaAs”, Phys. Rev. B, 1994, 50: 14119-14124.
    29. A. Mooradian and G. B. Wright, “Observation of the Interaction of Plasmons with Longitudinal Optical Phonons in GaAs”, Phys. Rev. Lett., 1966, 16: 999-1001.
    30. B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, “Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO”, Phys. Stat. Sol. (b), 1983, 119: 227-234.
    31. H. Yugami, S. Nakashima, and A. Mitsuishi, “Characterization of the free-carrier concentrations in doped β-SiC crystals by Raman scattering”, J. Appl. Phys., 1987, 61: 354-358.
    32. R. Cuscó, J. Ib ňez, and L. Artús, “Raman-scattering study of photoexcited plasma in semiconducting and semi-insulating InP”, Phys. Rev. B, 1998, 57: 12197-12206.
    33. S. Katayama and K. Murase, “Raman Scattering by Coupled LO Phonon-Plasmon Mode in n-GaAs”, J. Phys. Soc. Jpn., 1977, 42: 886-894.
    34. G. T. Du, Y. Ma, Y. T. Zhang, and T. P. Yang, “Preparation of intrinsic and N-doped p-type ZnO thin films by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., 2005, 87: 213103-(1-3).
    35. 黄昆, 韩汝琦, 固体物理学, 北京, 高等教育出版社, 2002, p119-122.
    36. X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Temperature dependence of Raman scattering in hexagonal indium nitride films”, J. Appl. Phys., 2005, 98: 033527-(1-6).
    37. V. Srikant and D. R. Clarkea, “Optical absorption edge of ZnO thin films: Theeffect of substrate”, J. Appl. Phys., 1997, 81: 6357-6364.
    38. T. Inushima, T. Shiraishi, and V. Y. Davydov, “Phonon structure of InN grown by atomic layer epitaxy”, Solid State Commun., 1999, 110: 491-495.
    39. S. Kim, B. S. Kang, F. Ren, Y. W. Heo, K. Ip, D. P. Norton, and S. J. Peartona, “Contacts to p-type ZnMgO”, Appl. Phys. Lett., 2004, 84: 1904-1906.
    40. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide”, Phys. Rev., 1966, 142: 570-574.
    41. F. Demangeot, J. Frandon, M. A. Renucci, N. Grandjean, B. Beaumont, J. Massies, and P. Gibart, “Coupled longitudinal optic phonon-plasmon modes in p-type GaN”, Solid State Commun., 1998, 106: 491-494.
    42. 沈学础, 半导体光谱和光学性质, 第二版, 北京, 科学出版社, 2002, p205.
    43. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO”, Phys. Rev. B, 2002, 65: 075207-(1-12).
    44. H. J. Lee and D. C. Look, “Hole transport in pure and doped GaAs”, J. Appl. Phys., 1983, 54: 4446-4452.
    45. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, “Electrical properties of bulk ZnO”, Solid State Commun., 1998, 105: 399-401.
    46. . zgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 2005, 98: 041301-(1-103).
    47. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che, and S. B. Zhang, “p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth”, Appl. Phys. Lett., 2006, 88: 262103-(1-3).
    48. J. D. Ye, S. L. Gu, F. Li, S. M. Zhu, R. Zhang, Y. Shi, Y. D. Zheng, X. W. Sun, G. Q. Lo, and D. L. Kwong, “Correlation between carrier recombination and p-type doping in P monodoped and In-P codoped ZnO epilayers”, Appl. Phys. Lett., 2007, 90: 152108-(1-3).
    49. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”,Physica (Amsterdam), 1967, 34: 149-154.
    50. A. R. Hutson, “Electronic properties of ZnO”, J. Phys. Chem. Solids, 1959, 8: 467-472.
    51. H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, “Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy”, Appl. Phys. Lett., 2000, 76: 1905-1907.
    52. Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition”, Appl. Phys. Lett., 2003, 83: 87-89.
    53. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., 2002, 81: 1830-1832.
    54. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. C. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals”, Phys. Rev. B, 1998, 57: 12151-12155.
    55. T. Yamamoto, “Control of N-Impurity States in N-Doped ZnO, ZnS and ZnTe”, Jpn. J. Appl. Phys. Part 2, 2003, 42: L514-516.
    56. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy”, Appl. Phys. Lett., 2000, 76: 3549-3551.
    57. D. S. Jiang, H. Jung, and K. Ploog, “Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy”, J. Appl. Phys., 1988, 64: 1371-1377.
    58. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films”, J. Appl. Phys., 2004, 95: 1246-1250.
    59. Z. S. Liu, X. P. Jing, L. X. Wang, and Y. Li, “Effects of low-pressure O2 and Zn atmosphere on the green emission of ZnO phosphor”, J. Electrochem. Soc., 2006, 153: G1035-1038.
    1. D. A. Anderson, N. Apsley, P. Davies, and P. L. Giles, “Compensation in heavily doped n-type InP and GaAs”, J. Appl. Phys., 1985, 58: 3059-3067.
    2. R. G. Mani and J. P. Anderson, “Study of the single-particle and transport lifetimes in GaAs/AlxGa1-xAs”, Phys. Rev. B, 1988, 37: 4299-4302.
    3. U. Bockelmann, G. Abstreiter, G. Winmann, and W. Schlapp, “Single-particle and transport scattering times in narrow GaAs/AlxGa1-xAs quantum wells”, Phys. Rev. B, 1990, 41: 7864-7867.
    4. D. Jena and U. K. Mishra, “Quantum and classical scattering times due to charged dislocations in an impure electron gas”, Phys. Rev. B, 2002, 66: 241307-(1-4).
    5. A. Gold, “Collapse of M?ssbauer spectra in strong applied radio-frequency fields”, Phys. Rev. B, 1988, 38: 10798-10811.
    6. H. Ohno, J. K. Luo, K. Matsuzaki, and H. Hasegawa, “Low-temperature mobility of two-dimensional electron gas in selectively doped pseudomorphic N-AlGaAs/GaInAs/GaAs structures”, Appl. Phys. Lett., 1989, 54: 36-38.
    7. R. J. Egan, V. W. L. Chin, and T. L. Tansley, “Dislocation scattering effects on electron mobility in InAsSb”, J. Appl. Phys., 1994, 75: 2473-2476.
    8. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys., 2001, 89: 5815-5875.
    9. S. Elhamri, A. Saxler, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Persistent photoconductivity study in a high mobility AlGaN/GaN heterostructure”, J. Appl. Phys., 2000, 88: 6583-6588.
    10. A. E. Stephens, R. E. Miller, J. R. Sybert and D. G. Seiler, “Shubnikov-de Haas effect in n-InAs and n-GaSb”, Phys. Rev. B, 1978, 18: 4394-4401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700