用户名: 密码: 验证码:
含二氮杂萘酮结构聚醚砜酮共混及填充改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含二氮杂萘酮结构聚醚砜酮树脂(PPESK)是一类新型高性能工程塑料,既耐高温又可溶解,综合性能优于传统耐高温树脂,性价比高,是制备高性能树脂基复合材料的理想基体选材,具有很好的应用前景。但其熔体粘度高,热成型加工较难,限制了其更广泛的应用,急需适当改性。本论文采用熔融挤出的方式对PPESK进行共混改性,系统研究了改性后材料的结构与性能的内在联系。并在此基础上,又用固体润滑剂对改性后PPESK进行填充改性,制备了PPESK树脂基自润滑复合材料,重点考察了复合材料的机械性能和摩擦磨损性能。
     采用双酚A型聚砜(PSF)对PPESK进行熔融共混改性,对不同含量共混物的结构和主要性能进行了系统研究。采用溶解度参数、差示扫描量热法(DSC)、界面张力、傅立叶红外(FT-IR)、扫描电镜(SEM)等方法和手段对该共混体系的相行为进行了研究。PSF与PPESK的溶解度参数差值较小,仅为0.25(J/ml)~(1/2),预示二者有较好的相容能力。所研究组分在其组成范围内,相对于两个均聚物,共混物有2个向中间靠拢的玻璃化转变温度,表明为部分相容体系。由接触角测试结果计算得到PSF、PPESK表面张力进而求得二者的界面张力γ_(12)为0.86mN·m~(-1),粘附强度为69.33mN·m~(-1),表明相界面间有较高粘合力。从SEM微观断面形貌图中观察到共混物相界面较模糊,两相间结合较好。在此基础上,对共混物的流变、力学和耐热性能进行了系统研究。结果表明,PSF的引入显著改善了PPESK的熔融加工性能,共混物在PSF含量较低时呈现典型的假塑性流体特征;随着PSF含量的增加,熔体流动粘度降低,熔体更倾向于牛顿流体;在PSF含量超过20wt%以后便可以顺利挤出注塑成型。共混物耐热性有所下降,PSF含量为40wt%时,热变形温度为195℃,与PPESK相比下降近60℃;5%热失重温度为481℃,与PPESK相比下降近10℃。共混物的力学强度在PSF含量低于40wt%时变化不大,拉伸强度达80MPa,弯曲强度在117MPa以上,PSF含量超过40wt%,力学强度下降明显。
     采用熔融挤出的方法制备了不同配比的PPESK和聚芳醚腈(PEN)共混物,系统研究了不同含量共混物的结构与性能。对该共混体系的相容性进行预测和表征,结果表明PPESK与PEN的溶解度参数相差较小(0.34(J/ml)~(1/2)),预示二者有一定的相容性;相对于PPESK、PEN均聚物,共混物有两个向中间靠拢的玻璃化转变温度,表明PPESK/PEN为部分相容体系。计算得到PPESK、PEN的粘附功为67.93mN·m~(-1),界面张力为0.12mN·m~(-1),表明二者之间的界面粘结性能较好;在SEM微观断面形貌图中发现共混物相界面较模糊,两相之间结合较好。共混物的加工性及力学性能结果表明,加入少量PEN(20wt%),共混物的熔体粘度仍然较大,挤出样条内部有明显缺陷,导致力学性能较低,拉伸强度仅为72MPa;在PEN含量达40wt%后,共混物的挤出工艺得到改善,共混物力学强度保持较高值,拉伸和弯曲强度分别为81MPa和126MPa;再增加PEN含量,共混物的力学强度略有增大。热失重分析表明,PEN的引入并没有明显降低PPESK的热稳定性,共混物的5%热失重温度均高于484℃。
     在改善PPESK树脂熔融加工性的基础上,添加聚四氟乙烯(PTFE)细粉,通过熔融共混改性的方法制备了可注塑加工的改性聚醚砜酮(m-PPESK)/PTFE耐磨自润滑共混材料,考察了m-PPESK/PTFE的力学性能、耐热性及摩擦磨损性能。结果表明,在PTFE含量低于15wt%时,m-PPESK/PTFE复合材料拉伸强度高于72MPa,弯曲强度在105MPa以上,其热变形温度与m-PPESK基体相当。利用M-200型磨损实验机对其在干摩擦条件下的摩擦磨损性能进行了系统研究,结合SEM磨损表面形貌照片分析了复合材料的摩擦磨损机理。结果表明,PTFE的加入显著降低了m-PPESK树脂的摩擦系数和磨耗,PTFE含量为25wt%时,摩擦系数降至0.14,磨损率下降为1.8×10~(-5)mm~3(N·m)~(-1),但此时拉伸强度下降幅度较大,仅为49MPa。m-PPESK/PTFE共混材料的磨损机理主要表现为:较低PTFE含量时和摩擦初期以磨粒磨损为主,较高PTFE含量时和摩擦后期以粘着磨损为主。
     采用熔融挤出填充改性的方法制备了可注塑加工的m-PPESK/石墨(Graphite)自润滑复合材料。力学测试结果表明,随着石墨含量的增加,复合材料的拉伸强度呈现降低的趋势,但在石墨含量低于20wt%时,拉伸强度仍在65MPa以上。复合材料的热变形温度随着石墨含量的增加而略有升高,比PPESK基体提高近10℃。干摩擦条件下的摩擦磨损性能结果表明,石墨的加入显著降低了PPESK树脂的摩擦系数和磨耗,在石墨含量为30wt%时,摩擦系数降为0.11,磨损率也降至1.3×10~(-5)mm~3(N·m)~(-1),此时拉伸强度为51MPa。磨损表面的SEM形貌分析表明,较低石墨含量时,磨粒磨损起主要作用;增加石墨含量,磨粒磨损减轻,粘着磨损占主导地位。
Poly(phthalazinone ether sulfone ketone)(PPESK), a novel high performance polymer developed by our research group, has much better thermal resistance and solubility than some well known commercial high performance polymers. These characteristics permit it to be used in many engineering applications. However, PPESK is very difficult to process in common methods, such as extruding and injecting, owing to its high melting viscosity. Moreover, pure PPESK resin shows high friction coefficient and wear rate. All those are limited its extensive application. Therefore, blending and filling modification of PPESK were adopted in order to improve its processability and wear resistance. In this paper, different kinds of modified PPESK were prepared by meltingly mixing method, and their structures and properties were studied systematically, which is attempted to make foundations in their industrialization and application.
     Bisphenol-A polysulfone (PSF) was used to modify the processability of PPESK and the blends with different compositions were prepared by meltingly extruding on a twin-screw extruder. Phase behaviors of the blends were investigated firstly by soluble parameter, interface tension, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and FT-IR. The blends should show a better miscibility, evaluated by the low soluble parameter difference (Δδ= 0.25 (J/ml)~(1/2)), interface tension (0.86 mN·m~(-1)) and high adhesion strength (69.33 mN·m~(-1)). The further studies using of the differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and FT-IR indicated that PPESK/PSF blends are partially miscible over the studied composition range. The processability and rheology of the blends were studied by a capillary rheometer. The results showed that the melt processability of PPESK were improved obviously with the addition of PSF into PPESK. PPESK/PSF blends were non-Newton pseudoplastic fluid when PSF content was lower, and the viscosity of melt decrease clearly with the increasing of PSF content and the melt were inclined to Newtonian fluid. The blends were injected easily as the PSF additions were above 20 wt%. The results of thermogravimetric analysis exhibited that the heat resistance decreased slightly. The heat temperature and T_(5% )(temperature for 5% weight loss) of PPESK/PSF blends were 195℃and 481℃, and the T_(5%)of the blends declined about 10℃compared to PPESK. The mechanical strength of PPESK/PSF blends decreased a little as the contents of PSF were below 40 wt% (the tensile strength and flexural strength were 80 MPa and 117 MPa), however, declined clearly when the PSF compositions were above 40 wt%.
     Different composition PPESK/Poly(aryl ether nitrile) (PEN) blends were prepared by melt blending. The miseibility of PPESK/PEN forecasted by solubility parameter indicated that the blends should show a better miseibility because of similarity solubility parameter (Δδ= 0.34 (J/ml)~(1/2)). The results of DSC showed that PPESK/PEN were partially miscible, and the two T_g were drawn close to each other. Interface tension and high adhesion strength were about 0.12 mN·m~(-1) and 67.93 mN·m~(-1), which illustrated a better interface properties between PPESN and PEN. The results of processabilities and mechanical properties indicated that the blends showed a higher melt viscosity, and some defect were found in the sample with a lower addition of PEN (20 wt%). This reason resulted in the descending mechanical strength , and the tensile strength was about 72 MPa. As the addition of PEN reached 40 wt%, the technological conditions of PPESK/PEN were improved obviously and the blends maintained a higher mechanical strength. Furthermore, thermogravimetric analyses of PPESK/PEN blends were investigated. The results exhibited that PPESK/PEN blends have excellent high-temperature resistance and all the T_(5%) of the blends were above 484℃.
     The PPESK/PTFE composites were prepared in twin-screw extruder and injection moulding machine based on the modification of the PPESK melt processabilities. The mechanical properties and thermal stability properties of the composites were investigated. The results showed that the mechanical properties of the PPESK/PTFE composites decreased slightly as the content of PTFE were below 15 wt%. The thermal stabilities of the composites were similar to PPESK, and the heat deforming temperatures were about 185℃. The tribological results showed that the composites tribological properties could be remarkably improved because of the addition of PTFE, and as the PTFE content was 25 wt%, the friction coefficient and wear rate of the composites reduced to 0.14 and 1.80×10~(-5) mm~3(N·m)~(-1). The SEM morphology of worn surface indicated that the wear mechanism of PPESK/PTFE mainly included the prior main particle abrasion wear and later main adhesive wear.
     PPESK/Graphite composites were manufactured by twin-screw extruder and injection moulding machine. The mechanical properties, thermal stability properties and tribological properties of the composites were investigated. The results showed that the mechanical properties of the PPESK/Graphite composites decreased slightly as the content of graphite was below 20 wt%, and the tensile strength were above 65 MPa. The thermal stabilities of the composites were not decreased with the increasing graphite content, but increased about 10℃compared to PPESK. The tribological properties of the composites could be remarkably improved with the increasing content of graphite. Friction coefficients decreased to 0.11 and the specific wear rate reduced to 1.25×10~(-5) mm~3(N·m)~(-1) two orders of magnitude compared to PPESK. The SEM morphology of worn surface indicated that the wear mechanism of PPESK/Graphite mainly included the particle abrasion as the graphite low content and adhesive wear play a dominant role as the graphite content was relatively higher.
引文
[1]金国珍.工程塑料.北京:化工工业出版社,2001:397-438.
    [2]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内外研究、开发、生产现状.化工新型材料,2002,30(6):15-18.
    [3]刘克静,张海春,陈天录.CN85101721,1986.
    [4]蹇锡高,廖功雄,王锦艳.含二氮杂萘酮结构聚芳醚酮和聚芳醚砜研究进展.中国塑料,2002,16(4):11-15.
    [5]蹇锡高,王锦艳,廖功雄.含二氮杂萘酮结构高性能树脂的研究进展.新材料发展现状及21世纪发展趋势研讨会摘要集,中国工程院化工、冶金与材料工程学部第三届学术会议,2001,中国西安.
    [6]Attwood T E,Barr D A.,Feasey G G,et al.Poly(arylene ether sulphones)by polyetherification:1.synthesis of halogenophenols.Polymer,1977,18:354-358.
    [7]Attwood T E,Barr D A,King T,et al.Poly(arylene ether sulphones)by polyetherification:2.polycondensation.Polymer,1977,18:359-365.
    [8]Hudson S D,Dnis D D,Lovinger A J.Semicrystalline Morphology of poly(aryl ether ether ketones)/poly(ether imide)Blends.Macromolecules,1992,25:1759-1764.
    [9]黄汉生.应用潜力很大的高性能热塑性塑料-聚芳基醚酮.化工新型材料,1995,8:17-19.
    [10]钱伯章.特种工程塑料发展现状和进展.化工新型材料,2005,33(1):1-5.
    [11]陈贻炽.聚苯硫醚的合成及性能.化工新型材料,1995,5:26-30.
    [12]Bastida S,Eguiazabal J I.Structure and physical properties of reprocessed poly(ether imide).Journal of Applied Polymer Science,1997,63:1601-1607.
    [13]Jaffe M,Chen P,Choe E W,et al.High performance polymer blends.Advances in Polymer Science,1994,117:297-327.
    [14]Hwang S H,Kim M J,Jung J C.Mechanical and thermal properties of syndiotactic polystyrene blends with poly(p-phenylene sulfide).European Polymer Journal,2002,38(9):1881-1885.
    [15]Chen Z B,Li T S,Yang Y L,et al.Mechanical and tribological properties of PA/PPS blends.Wear,2004,257(7-8):696-707.
    [16]Zou H,Zhang Q,Tan H,et al.Clay locked phase morphology in the PPS/PA66/clay blends during compounding in an internal mixer.Polymer,2006,47(1):6-11.
    [17]吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社,1998,338-341.
    [18]邹盛欧.特种工程塑料开发近况.化工新型材料,1996(12):6-13.
    [19]姜振华,马荣堂,寇喜春,等.PEC/PC共混体系的相容性与力学性能.应用化学,1995,12(2):115-116.
    [20]马海云,殷锦捷.聚苯硫醚共混合金的研究进展.工程塑料应用,2004,32(11):68-70.
    [21]周坤鲁.聚苯硫醚合金及其应用.塑胶工业,2007,1:47-49.
    [22]梅震,方鲲,麦堪成.熔融共混PPS/PEEK中PPS组分的结晶行为.工程塑料应用,1996,24(2):1-3.
    [23] Zhang X Q, Wang Y S. Investigation on domain structure of poly(phenylene sulphite) and poly(ether sulphone) blends by solid-state nuclear magnetic resonance method. Polymer, 1989, 60: 1867-1871.
    [24] Harris J E, Robeson L M. Miscible blends of poly(aryl ether ketones) and polyether imides. Journal of Applied Polymer Science, 1988,3(7): 1877-1891.
    [25] Huang B S, Woo E M. Blends of a novel high-temperature poly(oxy-l,4'-diphylenyleneoxy-l,4-phenylenecarbonyl-l,4-phenylene) with poly(ether imide): structure,interaction,and miscibility. Colloid & Polymer Science, 2000,278 (5): 392-398.
    [26] Bicakci S, Cakmak M. Development of structural hierarchy during uniaxial drawing of PEEK/PEI blends from amorphous precursors. Polymer, 2002, 43 (1): 149-157.
    
    [27] Jenkins M J. Relaxation behaviour in blends of PEEK and PEI. Polymer, 2000, 41 (18): 6803-6812.
    [28] Zhou X X, Cakmak M. Influence of composition and annealing on the structure development in biaxially stretched PEN/PEI/PEEK ternary blends. Polymer, 2006,47 (18): 6362-6378.
    [29] Guerrica-Echevarria G, Eguiazabal J I, Nazabal J. Interfacial tension as a parameter to characteriza the miscibility level of polymer blends. Polymer Testing, 2000,19: 849-856.
    
    [30] Jenkins M J. Crystallisation in miscible blends of PEEK and PEL Polymer, 2001,42 (5): 1981-1986.
    [31] Bicaki S, Cakmak M. Development of structural hierarchy during uniaxial drawing of PEEK/PEI blends. Polymer, 2002, 43 (1): 149-157.
    [32] Browne M M, Forsyth M, Goodwin A A. The effect of solvent uptake on the relaxation behavior, morphology and mechanical properties of a poly(ether ethre ketone)/poly(etherimide) blend. Polymer, 1997, 38 (6): 1285-1290.
    [33] Yoo J H, Eiss N S. Tribological behaviour of blends of poly(ether ether ketone) and poly(ether imide). Wear, 1993,162:418-425.
    [34] Hanchi J, Eiss N S. Synergistic friction and wear of terary blends of polyether ether ketone, polyetherimide and a thermoplastic liquid crystalline at elevated temperature. Tribology Trans, 1997, 40(1): 102-110.
    [35] Briscoe B J, Stuart B H, Sebastian S, et al. The failure of poly(ether ether ketone) in high speed contacts. Wear, 1993,162: 407-417.
    [36] Stuart B H, Briscoe B J. Sliding friction studies of a poly(ether ether ketone)/poly(ether imide) blend. High Performance Polymers, 1996, 8: 275-280.
    [37] Stuart B H, Briscoe B J. Scratch hardness studies of poly(ether ether ketone). Polymer, 1996, 37: 3819-3824.
    [38] Stuart B H, Briscoe B J, Rostami S. A Fourier transform Raman spectroscopy study of the crystallisation behaviour of poly(ether ether ketone)/poly(ether imide) blends. Spectrochimica Acta, 1993, 49(1): 753-758.
    [39] Stuart B H. Tribological studies of poly(etherether ketone) blends. Tribology International, 1998, 31 (11): 647-651.
    
    [40] Jenkins M J. Relaxation behavior in blends of PEEK and PEL Polymer, 2000, 41(18): 6803-6812.
    [41] Nandan B, Kandpal L D, Mathur G N. Glass transition behaviour of poly(ether ether ketone)/poly(aryl ether sulphone) blends: dynamic mechanical and dielectric relaxation studies. Polymer, 2003, 44 (4): 1267-1279.
    [42]Nandan B,Kandpal L D,Mathur G N.Poly(ether ether ketone)/poly(aryl ether sulphone)blends:thermal degradation behaviour.European Polymer Journal,2003,39(1):193-198.
    [43]Androsch R,Radusch H J,Zahradnik F,et al.Comparative study of the crystallization of poly(aryl ether ketone)in binary blends,with poly(ether sulfone)and poly(ether imide).Polymer,1997,38(2):397-404.
    [44]张冠星,刘春丽,王孝军等.PPS/TLCP共混体系的结晶行为.四川大学学报,2007,44(6):1285-1288.
    [45]赵小川,龙盛如,杨杰等.PPS/TLCP共混体系结构与流变研究.塑料工业,2007,35(5):37-40.
    [46]余若冰,周持兴,俞炜.TLCP/PEI共混体系的流变特性与结构关系的研究.高等学校化学学报,2004,25(11):2140-2143.
    [47]张卓,张文熊,郭鸿俊等.热致液晶聚酰胺对聚酰胺66结晶行为的影响.中国塑料,2006,20(7):14-17
    [48]Zhang J,He J S.Interfacial compatibilization for PSF/TLCP blends by a modified polysulfone.Polymer,2002,43(4):1437-1446.
    [49]James S G,Donald A M.Blend of a Liquid Crystalline Copolyester with Polyestersulphone.Molecular Crystals and Liquid Crystals,1987,153:491-500.
    [50]王汝敏,杨利,郑水蓉等.聚醚砜增韧双马来酰亚胺树脂研究.西北工业大学学报,2002,20(1):145-150.
    [51]刘柏松,刘国栋,张留成.液晶双马来酰亚胺改性环氧树脂的研究.2006,34(3):20-22.
    [52]Liu X Y,Yu Y F,Li S J.Viscoelastic phase separation in polyethersulfone modified bismaleimide resin.European Polymer Journal,2006,42(4):835-842.
    [53]Liu X Y,Yu Y F,Li S J.Study on cure reaction of the blends of bismaleimide and dicyanate ester.Polymer,2006,47(11):3767-3773.
    [54]Santhosh Kumar K S,Reghunadhan Nair C P,Sadhana R,et al.Benzoxazine-bismaleimide blends:Curing and thermal properties.European Polymer Journal,2007,43(12):5084-5096.
    [55]Pascal T,Mercier R,Sillion B.New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides:2.mechanical and thermal properties of the blends.Polymer,1990,31(1):78-83.
    [56]Pater R H.Interpenetrating polymer netwok approach to tough and microcracking resistant high temperature polymers.Polymer Engineering & Science,1991,31(1):20-27.
    [57]郑林庆.摩擦学原理.北京:高等教育出版社,1994.
    [58]马鸣图,沙维主编.材料科学和工程研究进展[M].北京:机械工业出版社,2000.
    [59]冯新,吕家桢,陆小华等.钛酸钾晶须在复合材料中的应用.复合材料学报.1999,16(4):1-7.
    [60]彭旭东,马红玉,曾群峰等.无机纳米微粒及聚四氟乙烯填充聚醚醚酮复合材料的摩擦学性能.摩擦学学报.2004,24(3):240-243.
    [61]石淼淼主编.固体润滑材料.北京:化学工业出版社,2000.
    [62]Friedrich K,Lu Z,Hager A M.Recent advances in polymer composites' tribology.Wear,1995,190(2):139-144.
    [63]陆再平.航空精密制造技术,1997,33(5):32.
    [64]徐立红,贾艳琴,董允等.SiC粒径对PTFE/SiCp复合材料耐磨性能的影响.河北工业大学学报,2003,32(1):48-53.
    [65]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.
    [66]Lee J Y,Lim D P,Lim D S.Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles.Composites Part B:Engineering,2007,38(7-8):810-816.
    [67]Rico E F,Minondo I,Garcia C D.The effectiveness ofPTFE nanoparticle powder as an EP additive to mineral base oils.Wear,2007,262(11-12):1399-1406.
    [68]史丽萍,何春霞,顾红艳等.PTFE/Al_2O_3纳米复合材料的摩擦磨损性能研究.工程塑料应用,2003,31(9):53-55.
    [69]黄丽,杨儒,郭江江等.微米和纳米SiO_2改性聚四氟乙烯的摩擦磨损性能.复合材料学报,2004,21(4):82-86.
    [70]张洪波,贾鹏,董允等.SiC颗粒增强PTFE基复合材料摩擦磨损特性研究.河北工业大学学报,2004,33(5):38-32.
    [71]徐立红,董允,张洪波等.SiC颗粒填充PTFE复合材料耐磨性能的影响.河北工业大学学报,2002,31(2):58-61.
    [72]Wang Y X,Yah F Y.A study on tribological behaviour of transfer films of PTFE/bronze composites.Wear,2007,262(7-8):876-882.
    [73]Shangguan Q Q,Cheng X H.Tribological properties of lanthanum treated carbon fibers reinforced PTFE composite under dry sliding condition.Wear,2007,262(11-12):1419-1425.
    [74]Bao D D,Cheng X H.Evaluation of Tribological Performance of PTFE Composite Filled with Rare Earths Treated Carbon Fibers under Water-Lubricated Condition.Journal of Rare Earths,2006,24(5):564-568.
    [75]曲建俊,李显凌,宋宝玉.碳纳米管改性聚四氟乙烯复合材料的摩擦磨损性能究.摩擦学学报,2005,25(4):333-337.
    [76]余达强,肖建中,胡树兵.短玻纤填充PTFE复合材料磨损性能研究.润滑与密封,2004,(6):64-66.
    [77]冯新,陈东辉,江晓红等.钛酸钾晶须增强聚四氟乙烯复合材料的摩擦磨损性能.高分子材料科学与工程,2004,20(5):129-132.
    [78]吴培熙,沈健.特种性能树脂基复合材料[M].北京:化学工业出版社,2003.
    [79]Qiao H B,Guo Q,Tian A G,et al.A study on friction and wear characteristics of nanometer Al_2O_3/PEEK composites under the dry sliding condition.Tribology International,2007,40(1):105-110.
    [80]Zhang G,Guessasma S,Liao H,et al.Investigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural network.Surface and Coatings Technology,2006,200(8):2610-2617.
    [81]王齐华,薛群基,沈维长.纳米SiC和微米SiC填充聚醚醚酮的磨损机理研究.功能材料,1998,29(5):558-560.
    [82]Wang Q H,Xu J F,Shen W C.The friction and wear properties of nanometer SiO_2 filled polyetheretherke-tone.Tribology International,1997,30(3):193-197.
    [83]Wang Q H,Xu J F,Shen W C,et al.An investigation of the friction and wear properties of nanometer Si_3N_4 filled PEEK.Wear,1996,196(1-2):82-86.
    [84]彭旭东,马红玉,雷毅.纳米Al_2O_3和聚四氟乙烯填充聚醚醚酮基复合材料摩擦学特性研究.石油大学学报(自然科学版),2004,28(2):69-72.
    [85]彭旭东,马红玉,曾群峰等.无机纳米微粒及聚四氟乙烯填充聚醚醚酮复合材料的摩擦学性能.摩擦学学报,2004,24(3):240-244.
    [86]颜红侠,宁荣昌,黄英.PEEK复合材料的性能研究.塑料工业,2002,30(4):44-45.
    [87]Fu H,Liao B,Qi F J,et al.The application of PEEK in stainless steel fiber and carbon fiber reinforced composites.Composites Part B:Engineering,2008,39(4):585-591.
    [88]Xu L J,Davim J P,Cardoso R.Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks.Journal of Materials Processing Technology,2007,189(1-3):374-378.
    [89]张志毅,章明秋,曾汉民.CF/PEEK复合材料的摩擦磨损行为研究.中山大学学报(自然科学版),1996,35(6):15-18.
    [90]冯显灿,张人佶.碳纤维增强聚醚醚酮复合材料滑动摩擦转移膜的性能.材料研究学报,1999,13(6):645-649.
    [91]Bun'is D L,Sawyer W G.Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces.Wear,2007,262(1-2):220-224.
    [92]Burris D L,Sawyer W G.A low friction and ultra low wear rate PEEK/PTFE composite Wear,2006,261(3-4):410-418.
    [93]Briscoe B J.The friction and wear of PTFE-PEEK composites:an initial appraisal of the optimum composition.Wear,1986,108:357-374.
    [94]Briscoe B J.Boundary lubrication of polymers in model fluids.Yribology International,1984,17(1):129-137.
    [95]Jayashree B,Sukanta S,Anup G.Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes.Wear,2005,258:1536-1542.
    [96]彭旭东,雷毅,马红玉.聚醚醚酮基复合材料的摩擦学研究进展.石油大学学报(自然科学版),2002,26(1):119-125.
    [97]Harsha A P,Tewari U S.Tribo performance of polyaryletherketone composites.Polymer Testing,2002,21(6):697-709.
    [98]龙春光.Ekonol/PEEK复合材料的制备和摩擦学性能.润滑与密封,2004,5(3):20-22.
    [99]龙春光,张厚安.Ekonol/GF/PEEK复合材料的力学性能.功能材料,2003,34(5):589-591.
    [100]区英鸿主编.塑料手册.北京:兵器工业出版社,1991.
    [101]龙春光,王霞瑜.Ekonol/GF/PEEK复合材料的磨损机理研究.润滑与密封.2003,(5):27-29.
    [102]Yu L G,Yang S R,Liu W M,et al.Action of transfer film in improving friction and wear behaviors of iron-and copper- filled poly(etheretherketone)composites.Journal of Applied Polymer Science,2000,76(2):179-184.
    [103]Schelling A,Kausch H H,Roulin A C.Friction behavior of PEEK under dry reciprocation movement.Wear,1991,151:129-142.
    [104]Yamamoto Y,Takashima T.Friction and wear of water lubricated PEEK and PPS sliding contacts.Wear,2002,253(7-8):820-826.
    [105]Yoo J H,Eiss N S.Tribological behavior of blends of PEEK and PEI.Wear,1993,162:418-425.
    [106]Hanchi J,Eiss N S.The tribological behavior of PEEK and PEI at elevated temperature.Tribology Trans,1994,37(3):494-504.
    [107]Hanchi J,Eiss N S.Preliminary study of the elevated temperature tribological behavior of PEEL-based in situ composites under unlubricated sliding conditions.Tribology Trans,1995,38(3):305-310.
    [108]Hanchi J,Eiss N S.Synergistic friction and wear of ternary blends of PEEK,PEI and a TLCP at elevated temperatures.Tribology Trans,1997,40(1):102-110.
    [109]Hanchi J,Eiss N S.Tribological behavior of PEEK,a thermotropic liquid crystalline polymer and in situ composites based on their blends under dry sliding conditions at elevated temperatures.Wear,1996,200:105-121.
    [110]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内外研究、开发、生产现状.化工新型材料,2002,30(6):15-19.
    [111]赵伟岩,李岩,陆再平等.碳纤维增强聚醚砜复合材料的摩擦磨损性能研究.摩擦学学报,2000,20(6):421-427.
    [112]Bahadur S,Gong D L.The action of filler in modification of the tribological behavior of polymers.Wear,1992,158:41-59.
    [113]Lu Z,Friedrich K.On sliding friction and wear ofpolyetheretherketone(PEEK)composites at elevated temperature.Synthetic Lubrication,1995,12:103-114.
    [114]黄如注.日本聚醚砜树脂的生产与应用.化工新型材料,1994,(8):36-39.
    [115]许健南主编.塑料材料.北京:中国轻工业出版社,1999.
    [116]牟维君.特种工程塑料的性能及应用.重庆三峡学院学报,2001,17(5):93-94.
    [117]贾均红,周惠娣,高生强等.聚酰亚胺复合材料的摩擦性能及其机理研究.摩擦学学报,2002,22(4):273-277.
    [118]黄丽,徐定余,程红原.改性聚酰亚胺摩擦磨损性能的研究.复合材料学报,1999,16(1):63-66.
    [119]李学闵,苏衍良,孙成栋等.聚酰亚胺基纳米复合材料轴承的研制.工程塑料应用,2003,31(9):39-44.
    [120]李晓军,浦玉萍,吕广庶等.聚酰亚胺摩擦学性能的研究.材料工程,2004,(6):24-29.
    [121]丛培红,李同生,刘旭军等.温度对线性和交联聚酰亚胺摩擦磨损性能的影响.高分子学报,1998,(5):556-561.
    [122]杨生荣,刘维民,李长林等.离子注入聚酰亚胺的摩擦磨损性能研究.摩擦学学报,1996,16(2):180-183.
    [123]王德禧.聚苯硫醚的特性及应用.塑料,2002,31(2):34-38.
    [124]佟伟,杨杰,王孝军等.聚苯硫醚复合材料摩擦性能的研究.塑料工业,2006,34(4):51-55.
    [125]何志敏,张大伦,张文栓等.聚苯硫醚/聚四氟乙烯复合材料的研究.塑料,2005,34(2):59-63.
    [126]Yu L G,Bahadur S,Xue Q J.An investigation of the friction and wear behaviors of ceramic particle filled polyphenylene sulfide composites.Wear,1998,214:54-63.
    [127]蹇锡高.中国专利.ZL 93109180.2(1993).
    [128]Meng Y Z,Tjong S C,Hay A S.Morphology,rhological and thermal propertie-s of the melt blends of Poly(phthalazinone ether ketone sulfone)with liquid cr-ystalline copolyester.Polymer,1998,39(10):1845-1850.
    [129]刘彦军,蹇锡高,刘圣军.含二氮杂萘结构聚醚砜酮酮的合成及表征.材料研究学报,2000,14(1):100-103.
    [130]Meng Y Z,Hay A S,Jian X G,etc al.Sythesis of Novel Poly(phthalazinone ether ketone sulfone)s and Improvement of Their Melt Flow Properties.Journal of Applied Polymer Science,1997,66(8):1425-1432.
    [131]张军,蹇锡高,朱秀玲等.PPESK/PPS共混合金的研究.大连理工大学学报,1999,39(3):405-409.
    [132]廖功雄,蹇锡高,靳奇峰等.PPEKK/PEI共混物的相容性及拉伸性能.高分子学报,2002,13(7):394-397.
    [133]廖功雄,蹇锡高,郭晓园.PPEKK/PPS共混物流变性能的研究.中国塑料,2001,15(7):18-22.
    [134]廖功雄,蹇锡高,郭晓园等.HQ-PPEK/PC共混物的相容性及流变性能.应用化学,2001,18(11):930-932.
    [135]廖功雄,蹇锡高,郭晓园等.PPEK/PA66共混物流变性能研究.材料科学与工艺,2001,9:117-119.
    [136]曲敏杰,蹇锡高,李建丰等.PPESK/PS共混物流变性能的研究.中国塑料,2002,16(5):34-36.
    [137]曲敏杰,蹇锡高,兰建武等.PPESK/ABS共混物流变性能的研究.工程塑料应用,2003,31(6):22-24.
    [138]王桂梅,廖功雄,蹇锡高等.聚飒低聚物改性PPES流变性能的研究.工程塑料应用,2004,32(2):21-23.
    [139]彭静,蹇锡高,刘少琼.PPESK树脂基复合材料的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [140]刘少琼,张军,蹇锡高.聚醚砜酮树脂基摩擦材料的性能研究.工程塑料应用,2000,28(2):6-8.
    [141]曲敏杰,蹇锡高,郭晓园.钛酸钾晶须填充新型聚芳醚酮的性能.中国塑料,2002,16:27-30.
    [142]邵鑫,薛群基.纳米和微米SiO_2颗粒对PPESK复合材料摩擦学性能的影响.机械工程材料,2004,28(6):39-42.
    [143]邵鑫,田军,刘维民等.纳米TiO_2填充聚醚砜酮复合材料的摩擦学性能.高分子材料科学与工程,2003,19(3):208-211.
    [144]邵鑫,刘红华,薛群基等.纳米、微米ZnO对PPESUK复合材料性能的影响.工程塑料应用,2004,32(10):43-46.
    [145]彭静,蹇锡高,刘少琼等.PPESK树脂基复合材料的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [146]蹇锡高,孟跃中,郑海滨.中国专利:3109179.9,1993.
    [147]Meng Y Z,Tjong S C,Hay A S.Morphology,rheological and thermal properties of the melt blends of poly(phthalazinone ether ketone sulfone)with liquid crystalline copolyeste.Polymer,1998,39(10):1845-1850.
    [148]吴培熙,张留城.聚合物共混改性.[M].北京:中国轻工业出版社,1996.
    [149]桂红星,罗运军,廖建和等.PA6/PAMAM共混物的加工与流变性能.高分子材料科学与工程,2004,20(6):173-175.
    [150]何嘉松,张洪志,袁强等.含热致液晶性共聚酯的聚砜共混物.高分子学报,1994,6(3):342-347.
    [151]Hidebrand J H,Scott R L.The Solubility of Non-Electrolytes.[M].New York:Reinhold,1956
    [152]张连来,顾宜,江璐霞等.特种工程塑料——聚芳醚腈.中国塑料,1995,9(3):11-18.
    [153]Jia J H,Zhou H D,Gao S Q,et al.A Comparative Investigation of the Friction and Wear Behavior of Polyimide Composites under Dry Sliding and Water-lubricated Condition.Materials Science and Engineering A,2003,356(1-2):48-53.
    [154]Pozdnyakov A O,Kudryavtsev V V,Friedrich K.Sliding Wear of Polyimide-C60 Composite Coatings.Wear,2003,254(5-6):501-513.
    [155]Tanaka A,Umeda K,Takatsu S.Friction and Wear of Diamond-containing Polyimide Composites in Water and Air.Wear,2004,257(11):1096-1102.
    [156]Samyn P,Schoukens G,Quintelier J,et al.Friction,Wear and Material Transfer of Sintered Polyimides Sliding against Various Steel and Diamond-like Carbon Coated Surfaces.Tribology International,2006,39(6):575-589.
    [157]朱鹏,王晓东,黄培,等.二硫化钼改性热塑性聚酰亚胺复合材料的摩擦磨损性能研究.摩擦学学报,2005,25(9):441-445.
    [158]彭旭东,马红玉,曾群峰,等.无机纳米微粒及聚四氟乙烯填充聚醚醚酮复合材料的摩擦学性能.摩擦学学报,2004,24(3):240-243.
    [159]林有希,高诚辉,李志方.碳酸钙晶须含量对聚醚醚酮复合材料摩擦磨损性能的影响.摩擦学学报,2006,26(5):448-451.
    [160]Zhang Z,Breidt C,Chang L,et al.Wear of PEEK composites related to their mechanical performances.Tribology International,2004,37(3):271-277.
    [161]Li J F,Liao H L,Coddet C.Friction and wear behavior of flame-sprayed PEEK coatings.Wear,2002,252(9-10):824-831.
    [162]Yamamoto Y J,Takashima T.Friction and wear of water lubricated PEEK and PPS sliding contacts.Wear,2002,253(7-8):820-826.
    [163]蹇锡高.含二氮杂萘酮结构的聚醚砜及制备方法.中国专利93109180,2(1993).
    [164]Meng Y Z,Hay A S,Jian X G,et al.Synthesis and Properties of Poly(aryl ether sulfone)s Containing the Phthalazinone Moiety.Journal of Application Polymer Science,1998,68(1):137-143.
    [165]彭静,蹇锡高,刘少琼,等.PPESK树脂基共混物的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [166]刘少琼,张军,蹇锡高.聚醚砜酮树脂基摩擦材料的性能研究.工程塑料应用,2000,28(2):6-8.
    [167]Bharat Bhushan,B.K.Gupta,Handbook of Triboloty Materials,coating and surface treatment,1991.
    [168]Tabor D.,Advances in Polymer Friction and Wear,vol.5A,Plenum Press,1974:5.
    [169]Lee,I.H.,Advances in Polymer Friction and Wear,vol.5A,Plenum Press,1974:31.
    [170]章明秋,Friedrich K.高聚物塑性流动磨损机理研究.高分子材料科学与工程,1997,13(4):90-94.
    [171]贾均红,高生强,陈建敏,等.聚四氟乙烯/碳纤维增强聚酰亚胺复合体系的摩擦学性能.材料科学与工程学报,2003,21(2):183-186.
    [172]Jayashree B,Sukanta S,Anup G.Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes.Wear,2005,258(10):1536-1542.
    [173]王黎钦,孙健伟,古乐.石墨填充聚醚酰亚胺摩擦学性能分析.润滑与密封,2007,32(10):1-3.
    [174]徐瑾,万青,王习群.无机填料改善CPVC/PVC合金耐热性能的研究.中国塑料,2005,19(4):29-32.
    [175]路家斌,桂馥.聚合物合金的摩擦磨损特性的研究.润滑与密封,1996,6:37-40.
    [176]邵荷生编著.摩擦与磨损.北京-煤炭工业出版社,1992.
    [177]丁华东,李道金.自润滑摩擦对材料表层和亚表层位错密度的影响.兵器材料科学与工程,1999,22(5):33-34.
    [178]丁华东,傅苏黎.自润滑材料滑动摩擦磨损性能与机理.中国有色金属学报,2001,11(4):616-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700