用户名: 密码: 验证码:
形变碳纳米管的结构及晶格振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管自从被发现以来,已经成为碳材料纳米技术和凝聚态物理研究的前沿和热点。晶格振动是研究碳纳米管宏观性质和微观结构的重要物理基础,当碳纳米管发生形变时,其晶格振动特性也随之改变。拉曼散射实验是表征碳纳米管结构和晶格振动特性的重要光谱方法。鉴于实验条件差异和样品组分不同常会导致拉曼实验现象不一致,本论文结合分子动力学方法和力常数模型,配以群论分析方法,对径向和轴向形变碳纳米管的声子振动谱及拉曼振动模式进行了系统的理论研究,探明了形变碳纳米管中拉曼振动模式的固有属性,澄清了拉曼实验现象的物理本质,获得了一系列有意义的结果。
     以下为本论文的主要研究结果:
     1.修正了力常数矩阵表达式,构建了常压力常数模型,在系统研究静水压力对拉曼活性呼吸模式作用规律的基础上,发现呼吸模式频率在某一临界压强处发生突变,此突变对应碳纳米管横截面由圆形转变为椭圆形,表明呼吸模式频率突变可以作为碳纳米管结构转变的标志。进一步研究不同管径、不同手性碳纳米管,发现呼吸模式突变的临界压强与管径呈立方反比关系,且不依赖于碳纳米管的手性,这一新发现的关系为判断实验样品中碳纳米管的直径和类型奠定了重要的科学基础。
     2.采用群论分析方法探明了临界压强之上呼吸模式的本质特征,由不同对称点群之间的相适关系证明形变碳纳米管的呼吸模式仍为拉曼活性,进一步研究发现呼吸模式的强度在临界压强处骤降,揭示了拉曼实验中较高压强下呼吸模式消失的本质原因。
     3.针对拉曼实验中存在的G带对压强变化的不一致性,研究了静水压力对拉曼活性伸缩模式的影响,发现伸缩模式频率在临界压强附近表现出反常压力行为,即频移率呈现大于零、等于零和小于零三种现象,揭示了静水压力对伸缩模式的作用规律,澄清了G带对压强变化的不一致性的本质原因。
     4.鉴于目前拉曼实验难于沿轴向压缩碳纳米管,研究了压缩应变对拉曼活性呼吸模式和伸缩模式的影响,发现呼吸模式频率在某一临界应变处骤降,这与碳纳米管的结构发生屈曲形变相对应,而且呼吸模式骤降的临界应变与管径呈反比关系,且依赖于碳纳米管的手性,预言了压缩形变碳纳米管中呼吸模式变化的新规律。进一步研究发现,轴向形变碳纳米管的三个伸缩模式呈现两类频移率,且与实验上观测的G+峰和G-峰对应,这有助于理解碳纳米管受非静水压力压缩时传输介质中引入的轴向应变效应。
Since their identification, carbon nanotubes (CNTs) have become a hotspot and frontier of material research and condensed matter physics. Lattice vibration properties of CNTs are of considerable importance not only in the basic interest in the phonons but also in a number of nanomechanical devices. Once the tube structure transformed, the phonon vibration characteristics will be certainly affected. In this thesis, phonon dispersion relations and Raman-active modes of radial- and axial-deformed CNTs are theoretically investigated, using molecular-dynamics (MD) simulations and the force-constant model combining with group theory calculations. The results catch on the intrinsic properties of Raman-active modes for deformed CNTs, and clarify the physical essence of Raman scattering experiments.
     The important results obtained are summed up as following:
     1. The expression of force constant is modified, from which the force constant model under constant pressure is developed. Adopting this method, the effects of hydrostatic pressure on Raman-active radial breathing mode (RBM) are systemically investigated. It has been found that the RBM transition occurs at certain critical pressure, where the tube undergoes structural transition from circle to oval shape in the cross section. The results indicate that the RBM transition can be proved as a sign of the structural transition of CNTs. Furthermore, the dependence of the RBM transition pressure on tube diameters is achieved, i.e., P~1/d3, which provides the theoretical foundation for experimental determination of nanotube diameters and species.
     2. On the basis of the correlation between different point groups, it is indicated that the deformed RBMs are still Raman-active above the critical pressure. It means that the RBMs still exist under higher pressure. Furthermore, it is shown that, above the critical pressure, the Raman intensity of the RBMs becomes too weak to be experimentally detected, which may help us clarify the essence of the experimental observations.
     3. Aiming at the controversial results about shifting rate of G band in Raman experiments, pressure effects on Raman-active tangential stretching modes (TSMs) are mainly studied. It has been found that the TSMs present anomalous pressure behaviors near the critical pressure, i.e. the shifting rate of TSMs showing an increased value, a constant value, or a negative value. The results consumedly help us understand the nature of the experimental G band for CNTs.
     4. Due to the experimental difficulty of compressing CNTs under axial stress, the effects of axial compression on RBM and TSMs are systemically studied. Under larger compression, a sharp reduction of the RBM frequency is found at certain critical strain, where the tube buckling deformation occurs exactly. Moreover, the critical strain of the RBM is inversely proportional to the tube diameter, and also depends on the tube chirality, which predicts new phenomena of Raman experiments. Furthermore, three TSMs present two kinds of different slopes with axial strain, which can be assigned to the experimentally measured G+ and G- peaks. The results are valuable to understand the effect of axial strain on tubes under non-hydrostatic pressure.
引文
1. T. Henning, F. Salama. Carbon in the Universe. Science. 1998, 282 (5397): 2204-2210
    2. 王茂章,杨全会,成会明. 碳的结构及其同素异性体. 炭素技术. 2001, 1:23-28
    3. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley. C-60 - Buckminsterfullerene. Nature. 1985, 318 (6042): 162-163
    4. S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354 (6348): 56-58
    5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306 (5296): 666-669
    6. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim. Two-dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102 (30): 10451-10453
    7. N. Hamada, S. Sawada, A. Oshiyama. New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters. 1992, 68 (10): 1579-1581
    8. J. W. Mintmire, B. I. Dunlap, C. T. White. Are Fullerene Tubules Metallic. Physical Review Letters. 1992, 68 (5): 631-634
    9. T. W. Ebbesen, P. M. Ajayan. Large-Scale Synthesis of Carbon Nanotubes. Nature. 1992, 358 (6383): 220-222
    10. S. Iijima, T. Ichihashi. Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature. 1993, 363 (6430): 603-605
    11. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers. Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls. Nature. 1993, 363 (6430): 605-607
    12. M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of Carbon Nanotubes. Carbon. 1995, 33 (7): 883-891
    13. E. T. Thostenson, Z. F. Ren, T. W. Chou. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Composites Science and Technology. 2001, 61 (13): 1899-1912
    14. P. Avouris, Z. H. Chen, V. Perebeinos. Carbon-based Electronics. Nature Nanotechnology.2007, 2 (10): 605-615
    15. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund. Science of Fullerences & Carbon Nanotubes, San Diego Academic Press. 1996: 100-105
    16. R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properites of Carbon Nanotubes. Imperial College Press: London. 1998: 198-201.
    17. M. P. Anantram, F. Leonard. Physics of Carbon Nanotube Electronic Devices. Reports on Progress in Physics. 2006, 69 (3): 507-561
    18. J. Cao, Q. Wang, H. J. Dai. Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching. Physical Review Letters. 2003, 90 (15): 157601-1-4
    19. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine. Bending and Buckling of Carbon Nanotubes under Large Strain. Nature. 1997, 389 (6651): 582-584
    20. C. T. White, D. H. Robertson, J. W. Mintmire. Helical and Rotational Symmetries of Nanoscale Graphitic Tubules. Physical Review B. 1993, 47 (9): 5485-5488
    21. H. J. Dai, E. W. Wong, C. M. Lieber. Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science. 1996, 272 (5261): 523-526
    22. W. A. Deheer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphreybaker, L. Forro, D. Ugarte. Aligned Carbon Nanotube Films - Production and Optical and Electronic-Properties. Science. 1995, 268 (5212): 845-847
    23. Y. H. Huang, M. Okada, K. Tanaka, T. Yamabe. Estimation of Superconducting Transition Temperature in Metallic Carbon Nanotubes. Physical Review B. 1996, 53 (9): 5129-5132
    24. S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker. Individual Single-wall Carbon Nanotubes as Quantum Wires. Nature. 1997, 386 (6624): 474-477
    25. J. Appenzeller, R. Martel, P. Avouris, H. Stahl, B. Lengeler. Optimized Contact Configuration for the Study of Transport Phenomena in Ropes of Single-wall Carbon Nanotubes. Applied Physics Letters. 2001, 78 (21): 3313-3315
    26. P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley. Nanotube Nanodevice. Science. 1997, 278 (5335): 100-103
    27. S. Berber, Y. K. Kwon, D. Tomanek. Unusually High Thermal Conductivity of Carbon Nanotubes. Physical Review Letters. 2000, 84 (20): 4613-4616
    28. J. W. Che, T. Cagin, W. A. Goddard. Thermal Conductivity of Carbon Nanotubes. Nanotechnology. 2000, 11 (2): 65-69
    29. 成会明. 纳米碳纳米管:制备、结构、物性及应用. 化学工业出版社. 2002:120~125
    30. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley. Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science. 1995, 269 (5230): 1550-1553
    31. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben. Storage of Hydrogen in Single-walled Carbon Nanotubes. Nature. 1997, 386 (6623): 377-379
    32. P. J. F. Harris. Carbon Nanotubes and Related Structures-new materials for the Twenty-First Century. Cambridge University Press, 1999:100-102
    33. K. Tanaka, T. Yamabe, K. Fukui. The science and Technology of Carbon Nanotubes. Elsevier Science. 1999:25-27
    34. D. Tomanek, E. R. J. Science and Application of Nanotubes. Kluwer Academic/Plenum Publishers. 2000:56-58
    35. M. S. Dresselhaus. Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer. 2001:98-100
    36. 张光寅,蓝国祥,王玉芳. 晶格振动光谱学. 高等教育出版社. 2001:50-55
    37. 程光煦. 拉曼、布里渊散射——原理及应用. 科学出版社. 2001:115-120
    38. M. S. Dresselhaus, P. C. Eklund. Phonons in carbon nanotubes. Advances in Physics. 2000, 49 (6): 705-814
    39. P. C. Eklund, J. M. Holden, R. A. Jishi. Vibrational-Modes of Carbon Nanotubes - Spectroscopy and Theory. Carbon. 1995, 33 (7): 959-972
    40. R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus. Symmetry Properties of Chiral Carbon Nanotubes. Physical Review B. 1993, 47 (24): 16671-16674
    41. Y. F. Wang, X. W. Cao, G. X. Lan. Research Developments of Raman Scattering of Carbon Nanotubes. Spectroscopy and Spectral Analysis. 2000, 20 (2): 180-184
    42. 王玉芳,蓝国祥. 碳纳米管的结构、对称性及晶格动力学. 光散射学报. 1999, 11(1):36-45
    43. Y. Xiao, X. H. Yan, J. X. Cao, H. W. Ding. Phonon Spectrum of Single-walled Carbon Nanotubes. Acta Physica Sinica. 2003, 52 (7): 1720-1725
    44. 曹觉先. 单壁纳米碳管的热电性能. 湘潭大学博士论文. 2003: 67-72
    45. J. X. Cao, X. H. Yan, Y. Xiao, Y. Tang, J. W. Ding. Exact Study of Lattice Dynamics of Single-walled Carbon Nanotubes. Physical Review B. 2003, 67 (4): 045413-1-6
    46. J. Yu, R. K. Kalia, P. Vashishta. Phonons in Graphitic Tubules - a Tight-Binding Molecular-Dynamics Study. Journal of Chemical Physics. 1995, 103 (15): 6697-6705
    47. D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejon. Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes. Physical Review B. 1999, 59 (19): 12678-12688
    48. A. Charlier, E. McRae, M. F. Charlier, A. Spire, S. Forster. Lattice Dynamics Study of Zigzag and Armchair Carbon Nanotubes. Physical Review B. 1998, 57 (11): 6689-6696
    49. M. Damnjanovic, I. Milosevic, T. Vukovic, R. Sredanovic. Full Symmetry, Optical Activity, and Potentials of Single-wall and Multiwall Nanotubes. Physical Review B. 1999, 60 (4): 2728-2739
    50. C. Thomsen, S. Reich. Raman Scattering in Carbon Nanotubes. Light Scattering in Solids Ix. 2007, 108: 115-235
    51. O. E. Alon. Number of Raman- and Infrared-active Vibrations in Single-walled Carbon Nanotubes. Physical Review B. 2001, 63 (20): 201403-1-3
    52. O. E. Alon. From Spatial Symmetry to Vibrational Spectroscopy of Single-walled Nanotubes. Journal of Physics-Condensed Matter. 2003, 15 (34): S2489-S2500
    53. M. S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon-Fibers Based on C-60 and Their Symmetry. Physical Review B. 1992, 45 (11): 6234-6242
    54. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, G. Dresselhaus. Phonon Modes in Carbon Nanotubules. Chemical Physics Letters. 1993, 209 (1-2): 77-82
    55. H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi. Raman Studies of Carbon Nanotubes. Chemical Physics Letters. 1993, 202 (6): 509-512
    56. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, M. Delamesiere, S. Draper, H. Zandbergen. Resonance Raman and Infrared-Spectroscopy of Carbon Nanotubues. Chemical Physics Letters. 1994, 221 (1-2): 53-58
    57. W. S. Bacsa, D. Ugarte, A. Chatelain, W. A. Deheer. High-Resolution Electron-Microscopy and Inelastic Light-Scattering of Purified Multishelled Carbon Nanotubes. Physical Review B. 1994, 50 (20): 15473-15476
    58. P. V. Huong, R. Cavagnat, P. M. Ajayan, O. Stephan. Temperature-Dependent Vibrational-Spectra of Carbon Nanotubes. Physical Review B. 1995, 51 (15): 10048-10051
    59. W. Z. Li, H. Zhang, C. Y. Wang, Y. Zhang, L. W. Xu, K. Zhu, S. S. Xie. Raman Characterization of Aligned Carbon Nanotubes Produced by Thermal Decomposition of Hydrocarbon Vapor. Applied Physics Letters. 1997, 70 (20): 2684-2686
    60. P. H. Tan, S. L. Zhang, K. T. Yue, F. M. Huang, Z. J. Shi, X. H. Zhou, Z. N. Gu. Comparative Raman Study of Carbon Nanotubes Prepared by dc arc Discharge and Catalytic Methods. Journal of Raman Spectroscopy. 1997, 28 (5): 369-372
    61. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus. Diameter-selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science. 1997, 275 (5297): 187-191
    62. 谭平恒. 碳纳米管及其相关材料的拉曼光谱学研究. 中国科学院半导体研究所博士论文. 2001: 112-115
    63. 安德里亚.卡罗.费拉里,约翰.罗伯逊. 碳材料的拉曼光谱——从纳米管到金刚石. 2007: 126-127
    64. A. Jorio, M. A. Pimenta, A. G. Souza, G. G. Samsonidze, A. K. Swan, M. S. Unlu, B. B. Goldberg, R. Saito, G. Dresselhaus, M. S. Dresselhaus. Resonance Raman Spectra of Carbon Nanotubes by Cross-polarized Light. Physical Review Letters. 2003, 90 (10): 107403-1-4
    65. B. I. Yakobson, C. J. Brabec, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letters. 1996, 76 (14): 2511-2514
    66. D. Y. Sun, D. J. Shu, M. Ji, F. Liu, M. Wang, X. G. Gong. Pressure-induced Hard-to-soft Transition of A Single Carbon Nanotube. Physical Review B. 2004, 70 (16): 165417-1-5
    67. J. Zang, A. Treibergs, Y. Han, F. Liu. Geometric Constant Defining Shape Transitions of Carbon Nanotubes under Pressure. Physical Review Letters. 2004, 92 (10): 105501-1-4
    68. J. A. Elliott, J. K. W. Sandler, A. H. Windle, R. J. Young, M. S. P. Shaffer. Collapse of Single-wall Carbon Nanotubes Is Diameter Dependent. Physical Review Letters. 2004, 92 (9):095501-1-4
    69. M. J. Peters, L. E. McNeil, J. P. Lu, D. Kahn. Structural Phase Transition in Carbon Nanotube Bundles under Pressure. Physical Review B. 2000, 61 (9): 5939-5944
    70. X. H. Zhang, D. Y. Sun, Z. F. Liu, X. G. Gong. Structure and Phase Transitions of Single-wall Carbon Nanotube Bundles under Hydrostatic Pressure. Physical Review B. 2004, 70 (3): 035422-1-5
    71. P. Tangney, R. B. Capaz, C. D. Spataru, M. L. Cohen, S. G. Louie. Structural Transformations of Carbon Nanotubes under Hydrostatic Pressure. Nano Letters. 2005, 5 (11): 2268-2273
    72. S. Reich, C. Thomsen, P. Ordejon. Elastic Properties and Pressure-induced Phase Transitions of Single-walled Carbon Nanotubes. Physica Status Solidi B-Basic Research. 2003, 235 (2): 354-359
    73. M. H. F. Sluiter, V. Kumar, Y. Kawazoe. Symmetry-driven Phase Transformations in Single-wall Carbon-nanotube Bundles under Hydrostatic Pressure. Physical Review B. 2002, 65 (16): 161402
    74. J. Tang, L. C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima. Compressibility and Polygonization of Single-walled Carbon Nanotubes under Hydrostatic Pressure. Physical Review Letters. 2000, 85 (9): 1887-1889
    75. S. M. Sharma, S. Karmakar, S. K. Sikka, P. V. Teredesai, A. K. Sood, A. Govindaraj, C. N. R. Rao. Pressure-induced Phase Transformation and Structural Resilience of Single-wall Carbon Nanotube Bundles. Physical Review B. 2001, 63 (20): 205417-1-5
    76. S. Rols, I. N. Goncharenko, R. Almairac, J. L. Sauvajol, I. Mirebeau. Polygonization of Single-wall Carbon Nanotube Bundles under High Pressure. Physical Review B. 2001, 64 (15): 153401-1-4
    77. S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, Y. Achiba. Pressure Dependence of the Optical Absorption Spectra of Single-walled Carbon Nanotube Films. Physical Review B. 2000, 62 (3): 1643-1646
    78. T. Ozaki, Y. Iwasa, T. Mitani. Stiffness of Single-walled Carbon Nanotubes under Large Strain. Physical Review Letters. 2000, 84 (8): 1712-1715
    79. A. Sears, R. C. Batra. Macroscopic Properties of Carbon Nanotubes from Molecular Mechanics Simulations. Physical Review B. 2004, 69 (23): 235406-1-10
    80. Y. Wang, X. X. Wang, X. G. Ni, H. A. Wu. Simulation of the Elastic Response and the Buckling Modes of Single-walled Carbon Nanotubes. Computational Materials Science. 2005, 32 (2): 141-146
    81. D. S. Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon. Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes. Physical Review B. 1999, 59:12678-12688
    82. G. Van Lier, C. Van Alsenoy, V. Van Doren, P. Geerlings. Ab Initio Study of the Elastic Properties of Single-walled Carbon Nanotubes and Graphene. Chemical Physics Letters. 2000, 326 (1-2): 181-185
    83. A. Pullen, G. L. Zhao, B. Bagayoko, L. Yang. Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes under Uniaxial Strain. Physical Review B. 2005, 71 (20): 205410-1-5
    84. T. Xiao, X. J. Xu, K. Liao. Characterization of Nonlinear Elasticity and Elastic Instability in Single-walled Carbon Nanotubes. Journal of Applied Physics. 2004, 95 (12): 8145-8148
    85. X. Guo, A. Y. T. Leung, H. Jiang, X. Q. He, Y. Huang. Critical Strain of Carbon Nanotubes: An Atomic-Scale Finite Element Study. Journal of Applied Mechanics. 2007, 74 (2): 347-351
    86. T. W. Tombler, C. W. Zhou, L. Alexseyev, J. Kong, H. J. Dai, L. Lei, C. S. Jayanthi, M. J. Tang, S. Y. Wu. Reversible Electromechanical Characteristics of Carbon Nanotubes under Local-probe Manipulation. Nature. 2000, 405 (6788): 769-772
    87. J. Cao, Q. Wang, and H. J. Dai. Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching. Physical Review Letters. 2003, 90:157601-1-4
    88. P. Dharap, Z. L. Li, S. Nagarajaiah, E. V. Barrera. Nanotube Film Based on Single-wall Carbon Nanotubes for Strain Sensing. Nanotechnology. 2004, 15 (3): 379-382
    89. M. Grujicic, G. Cao, W. N. Roy. A Computational Analysis of the Carbon-nanotube-based Resonant-circuit Sensors. Applied Surface Science. 2004, 229 (1-4): 316-323
    90. Q. Zhao, J. R. Wood, H. D. Wagner. Stress Fields around Defects and Fibers in A Polymer Using Carbon Nanotubes As Sensors. Applied Physics Letters. 2001, 78 (12): 1748-1750
    91. Y. Zhang, W. Yang and J. X. Cao. Structural and Electronic Properties of Carbon Nanotubes under Hydrostatic Pressure. Chinese Physics. Accepted
    92. J. Q. Lu, J. Wu, W. H. Duan, F. Liu, B. F. Zhu, B. L. Gu. Metal-to-semiconductor Transitionin Squashed Armchair Carbon Nanotubes. Physical Review Letters. 2003, 90 (15): 156601-1-4
    93. J. A. Wu, J. Zang, B. Larade, H. Guo, X. G. Gong, F. Liu. Computational Design of Carbon Nanotube Electromechanical Pressure Sensors. Physical Review B. 2004, 69 (15): 153406-1-4
    94. B. Mahar, C. Laslau, R. Yip, Y. Sun. Development of Carbon Nanotube-based Sensors - A Review. IEEE Sensors Journal. 2007, 7 (1-2): 266-284
    95. C. Hierold, A. Jungen, C. Stampfer, T. Helbling. Nano Electromechanical Sensors Based on Carbon Nanotubes. Sensors and Actuators A-Physical. 2007, 136 (1): 51-61
    96. S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, M. M. Kappes. Raman Study of Individually Dispersed Single-walled Carbon Nanotubes under Pressure. Physical Review B. 2006, 73 (9): 094109-1-12
    97. U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, P. C. Eklund. Probing the Single-wall Carbon Nanotube Bundle: Raman Scattering under High Pressure. Physical Review B. 1999, 59 (16): 10928-10934
    98. U. D. Venkateswaran, E. A. Brandsen, U. Schlecht, A. M. Rao, E. Richter, I. Loa, K. Syassen, P. C. Eklund. High Pressure Studies of the Raman-active Phonons in Carbon Nanotubes. Physica Status Solidi B-Basic Research. 2001, 223 (1): 225-236
    99. P. V. Teredesai, A. K. Sood, D. V. S. Muthu, R. Sen, A. Govindaraj, C. N. R. Rao. Pressure-induced Reversible Transformation in Single-wall Carbon Nanotube Bundles Dtudied by Raman Dpectroscopy. Chemical Physics Letters. 2000, 319 (3-4): 296-302
    100. M. J. Peters, L. E. McNeil, J. P. Lu, D. Kahn. Structural Phase Transition in Carbon Nanotube Bundles under Pressure. Physical Review B. 2000, 61 (9): 5939-5944
    101. I. Loa. Raman Spectroscopy on Carbon Nanotubes at High Pressure. Journal of Raman Spectroscopy. 2003, 34 (7-8): 611-627
    102. U. D. Venkateswaran, D. L. Masica, G. U. Sumanasekera, C. A. Furtado, U. J. Kim, P. C. Eklund. Diameter Dependent Wall Deformations during the Compression of A Carbon Nanotube Bundle. Physical Review B. 2003, 68 (24): 241406-1-4
    103. O. E. Alon. Number of Raman- and Infrared-active Vibrations in Single-walled Carbon Nanotubes. Physical Review B. 2001, 63 (20): 201403-1-3
    104. J. C. Decius, R. M. Hexter. Molecular Vibrations in Crystals. McGrow-Hill, New York, 1977: 326-327
    105. J. Kurti, G. Kresse, H. Kuzmany. First-principles Calculations of the Radial Breathing Mode of Single-wall Carbon Nanotubes. Physical Review B. 1998, 58 (14): R8869-R8872
    106. A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. San Miguel, J. L. Sauvajol, G. Montagnac, H. Cardon, P. Petit. Resonant Raman Spectroscopy of Single-wall Carbon Nanotubes under Pressure. Physical Review B. 2005, 72 (3): 035409-1-6
    107. S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham. Measuring the Uniaxial Strain of Individual Single-wall Carbon Nanotubes: Resonance Raman Spectra of Atomic-force-microscope Modified Single-wall Nanotubes. Physical Review Letters. 2004, 93 (16): 167401-1-4
    108. S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, M. Tinkham. Resonant Raman Spectroscopy of Individual Metallic and Semiconducting Single-wall Carbon Nanotubes under Uniaxial Strain. Physical Review B. 2005, 72 (3): 035425-1-8
    109. R. Kumar, S. B. Cronin. Raman Scattering of Carbon Nanotube Bundles under Axial Strain and Strain-induced Debundling. Physical Review B. 2007, 75 (15): 155421-1-4
    110. X. J. Duan, H. B. Son, B. Gao, J. Zhang, T. J. Wu, G. G. Samsonidze, M. S. Dresselhaus, Z. F. Liu, J. Kong. Resonant Raman Spectroscopy of Individual Strained Single-wall Carbon Nanotubes. Nano Letters. 2007, 7 (7): 2116-2121
    111. S. W. Lee, G. H. Jeong, E. E. B. Campbell. In Situ Raman Measurements of Suspended Individual Single-walled Carbon Nanotubes under Strain. Nano Letters. 2007, 7 (9): 2590-2595
    112. G. Wu, J. Zhou, J. M. Dong. Raman Modes of the Deformed Single-wall Carbon Nanotubes. Physical Review B. 2005, 72 (11): 115411-1-10
    113. G. X. Cao, X. Chen, J. W. Kysar. Numerical Analysis of the Radial Breathing Mode of Armchair and Zigzag Single-walled Carbon Nanotubes under Deformation. Journal of Applied Physics. 2006, 100 (12): 124305-1-10
    114. D. Kahn, J. P. Lu. Vibrational Modes of Carbon Nanotubes and Nanoropes. Physical Review B. 1999, 60 (9): 6535-6540
    115. G. Wu, X. P. Yang, J. M. Dong. Radial Breathinglike Mode of the Collapsed Single-walledCarbon Nanotube Bundle under Hydrostatic Pressure. Applied Physics Letters. 2006, 88 (22): 223114-1-3
    116. Y. Y. Zhang, H. Son, J. Zhang, J. Kong, Z. F. Liu. Laser-heating Effect on Raman Spectra of Individual Suspended Single-walled Carbon Nanotubes. Journal of Physical Chemistry C. 2007, 111 (5): 1988-1992
    117. K. Okazaki, Y. Nakato, K. Murakoshi. Characteristics of Raman Features of Isolated Single-walled Carbon Nanotubes under Electrochemical Potential Control. Surface Science. 2004, 566: 436-442
    118. Y. Y. Zhang, J. Zhang, H. B. Son, J. Kong, Z. F. Liu. Substrate-induced Raman Frequency Variation for Single-walled Carbon Nanotubes. Journal of the American Chemical Society. 2005, 127 (49): 17156-17157
    119. G. H. Gao, T. Cagin, W. A. Goddard. Energetics, Structure, Mechanical and Vibrational Properties of Single-walled Carbon Nanotubes. Nanotechnology. 1998, 9 (3): 184-191
    120. B. J. Alder and T. E. Wainwright. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27(3): 1208
    121. W. Dierter. Computer Simulation Methods in Theoretical Physics. New York Springer-Verlag, Berlin Herdelberg. 1986:150-152
    122. M. Allen, D. Tildesley. Computer Simulation of Liquids. Claredon Press, Oxfrod. 1987:160-162
    123. R. L. Andrew. Molecular Modeling: Principles and Applications. 分子模拟的原理和应用. 世界图书出版公司, 2001: 502-503.
    124. M. Field. A Practical Instroduction to the Simulation of Molecular Systems. Cambridge University Press, Cambridge. 1999:36-38
    125. Furio Ercolessi, A Molecular Dynamics Primer, International School for Advanced Studies, Trieste, Italy, Spring College in Computational Physics. 1997:20-25
    126. D. C. Rapaport. The Art of Molecular Dynamics Simulation, Second Edition. Cambridge University Press. 2004:200-204
    127. J. Tersoff. New Empirical-Model for the Structural-Properties of Silicon. Physical Review Letters. 1986, 56 (6): 632-635
    128. J. Tersoff. New Empirical-Approach for the Structure and Energy of Covalent Systems.Physical Review B. 1988, 37 (12): 6991-7000
    129. J. Tersoff. Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Physical Review Letters. 1988, 61 (25): 2879-2882
    130. D. W. Brenner. Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films. Physical Review B. 1990, 42 (15): 9458-9471
    131. H. C. Andersen. Molecular-Dynamics Simulations at Constant Pressure and-or Temperature. Journal of Chemical Physics. 1980, 72 (4): 2384-2393
    132. M. Parrinello, A. Rahman. Polymorphic Transitions in Single-Crystals - A New Molecular Dynamics Method. Journal of Applied Physics. 1981, 52 (12): 7182-7190
    133. D. Y. Sun, X. G. Gong. A New Constant-pressure Molecular Dynamics Method for Finite Systems. Journal of Physics-Condensed Matter. 2002, 14 (26): L487-L493
    134. V. N. Popov, V. E. Van Doren, M. Balkanski. Elastic Properties of Single-walled Carbon Nanotubes. Physical Review B. 2000, 61 (4): 3078-3084
    135. A. Charlier, E. McRae, M. F. Charlier, A. Spire, S. Forster. Lattice Dynamics Study of Zigzag and Armchair Carbon Nanotubes. Physical Review B. 1998, 57 (11): 6689-6696
    136. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus. Raman Intensity of Single-wall Carbon Nanotubes. Physical Review B. 1998, 57 (7): 4145-4153
    137. T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima. Bond Softening in Monolayer Graphite Formed on Transition-Metal Carbide Surfaces. Physical Review B. 1990, 42 (18): 11469-11478
    138. C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, Y. Sumiyoshi. Surface Phonon-Dispersion Curves of Graphite (0001) over the Entire Energy Region. Solid State Communications. 1988, 65 (12): 1601-1604
    139. S. A. Chesnokov, V. A. Nalimova, A. G. Rinzler, R. E. Smalley, J. E. Fischer. Mechanical Energy Storage in Carbon Nanotube Springs. Physical Review Letters. 1999, 82 (2): 343-346
    140. J. Tang, L. C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima. Compressibility and Polygonization of Single-walled Carbon Nanotubes under Hydrostatic Pressure. Physical Review Letters. 2000, 85 (9): 1887-1889
    141. N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl. Fully Collapsed Carbon Nanotubes. Nature. 1995, 377 (6545): 135-138
    142. L. A. Girifalco, M. Hodak, R. S. Lee. Carbon Nanotubes, Buckyballs, Ropes, and A Universal Graphitic Potential. Physical Review B. 2000, 62 (19): 13104-13110
    143. S. Timoshenko and J. Gore. Theory of Elastic Statility. McGrawHill, New York. 1988
    144. L. D. Landau and E. M. Lifshitz. Elasticity Statility. Pergamon, Oxford. 1996
    145. C. Y. Wang, Y. Y. Zhang, C. M. Wang, V. B. C. Tan. Buckling of Carbon Nanotubes: A Literature Survey. Journal of Nanoscience and Nanotechnology. 2007, 7(12):4221-4767
    146. C. L. Zhang and H. S. Shen. Temperature-dependent Elastic Properties of Single-walled Carbon Nanotubes: Prediction from Molecular Dynamics Simulation. Appllied Physics Letters. 2006, 89:081904-1-3
    147. Y. Jin, F. G.Yuan. Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology. 2003, 63:1507-1515
    148. H. S. Shen, Q. S. Li. Thermomechanical Postbuckling of Shear Deformable Laminated Cylindrical Shells with Local Geometric Imperfections. International Journal of Solids and Structures. 2002, 39: 4525-4542.
    149. J. P. Lu. Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters. 1997, 79 (7):1297-1300
    150. H. Hernandez, C. Goze, P. Bernier, and A. Rubio. Elastic Properties of C and BxCyNz Composite Nanotubes. Physical Review Letters. 1998, 80:4502-4505
    151. D. Srivastava, M. Menon, and K. Cho. Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression. Physical Review Letters. 1999, 83:2973-2976
    152. X, Zhou, J. J. Zhou, Z. C. Ou-Yang. Strain Energy and Young’s Modulus of Single-wall Carbon Nanotubes Calculated from Electronic Energy-band Theory. Physical Review B. 2000, 62(20):13692-13696
    153. K. N. Kudin, G. E. Scuseria. C2F, BN, and C Nanoshell Elasticity from Ab Initio Computations. Physical Review B. 2001, 64:235406-1-10
    154. Z. C. Tu. Single-walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes with the Effective Young’s Moduli Dependent on Layer Number. Physical Review B. 2002, 65:233407-1-4
    155. Y. Jin, F. G. Yuan. Simulation of Elastic Properties of Single-walled Carbon Nanotubes. Composites Science and Technology. 2003, 63:1507-1515
    156. A. Pantano, D. M. Parks, M. C. Boyce. Mechanics of Deformation of Single- and Multi-wall Carbon Nanotubes. Journal of the Mechanics and Physics of Solids. 2004, 52:789-821
    157. K. M. Liew, C. H, Wong. Nanomechanics of Single and Multiwalled Carbon Nanotubes. Physical Review B. 2004, 69:115429-1-8
    158. T. Natsuki, K. Tantrakarn, M. E. Endo. Effects of Carbon Nanotube Structures on Mechanical Properties. Appllied Physics A-Materials Science & Processing. 2004, 79:117-124
    159. T. Natsuki, K. Tantrakarn, M. Endo. Prediction of Elastic Properties for Single-walled Carbon Nanotubes. Carbon. 2004, 42:39-45
    160. H. W. Zhang, J. B. Wang, X. Guo. Predicting the Elastic Properties of Single-walled Carbon Nanotubes. Journal of the Mechanics and Physics of Solids. 2005, 53:1929-1950
    161. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M. S. Dresselhaus. Raman Intensity of Single-wall Carbon Nanotubes. Physical Review B. 1998, 57 (7): 4145-4153
    162. J. C. Decius, R. M. Hexter. Molecular Vibrations in Crystals. McGrow-Hill, New York.1977:326-327
    163. V. N. Popov, L. Henrard, P. Lambin. Electron-phonon and Electron-photon Interactions and Resonant Raman Scattering from the Radial-breathing Mode of Single-walled Carbon Nanotubes. Physical Review B. 2005, 72 (3): 035436-1-10
    164. O. Gulseren, T. Yildirim, S. Ciraci, C. Kilic. Reversible Band-gap Engineering in Carbon Nanotubes by Radial Deformation. Physical Review B. 2002, 65 (15): 075404-1-6
    165. J. Q. Lu, J. Wu, W. H. Duan, F. Liu, B. F. Zhu, B. L. Gu. Metal-to-semiconductor Transition in Squashed Armchair Carbon Nanotubes. Physical Review Letters. 2003, 90 (15): 156601-1-4
    166. J. A. Wu, J. Zang, B. Larade, H. Guo, X. G. Gong, F. Liu. Computational Design of Carbon Nanotube Electromechanical Pressure Sensors. Physical Review B. 2004, 69 (15): 153406-1-4
    167. F. Albert Cotton. Chemical Applications of Group Theory. Interscience Publishers. 1963:52-55
    168. J. C. Decius, R. M. Hexter. Molecular Vibrations in Crystals. McGrow-Hill, New York.1977:326-327
    169. C. Thomsen, S. Reich. Raman scattering in carbon nanotubes. Topics Appllied Physics 2007,108: 115-232
    170. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai. Nanotube Molecular Wires as Chemical Sensors. Science. 2000, 287 (5453): 622-625
    171. M. Damnjanovic, E. Dobardzic, I. Milosevic. Chirality Dependence of the Radial Breathing Mode: A Simple Model. Journal of Physics-Condensed Matter. 2004, 16 (49): L505-L508
    172. S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, F. Mauri. Optical Phonons in Carbon Nanotubes: Kohn Anomalies, Peierls Distortions, and Dynamic Effects. Physical Review B. 2007, 75 (3): 035427-1-22
    173. O. Gulseren, T. Yildirim, S. Ciraci, C. Kilic. Reversible Band-gap Engineering in Carbon Nanotubes by Radial Deformation. Physical Review B. 2002, 65 (15): 075404-1-6
    174. M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus. Raman Modes of Metallic Carbon Nanotubes. Physical Review B. 1998, 58 (24): R16016-16019
    175. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp. Origin of the Breit-Wigner-Fano Lineshape of the Tangential G-band Feature of Metallic Carbon Nanotubes. Physical Review B. 2001, 63 (15): 155414-1-8
    176. C. Y. Jiang, K. Kempa, J. L. Zhao, U. Schlecht, U. Kolb, T. Basche, M. Burghard, A. Mews. Strong Enhancement of the Breit-Wigner-Fano Raman Line in Carbon Nanotube Bundles Caused by Plasmon Band Formation. Physical Review B. 2002, 66 (16): 161404-1-4
    177. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza, R. Saito. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon. 2002, 40 (12): 2043-2061
    178. A. Merlen, P. Toulemonde, N. Bendiab, A. Aouizerat, J. L. Sauvajol, G. Montagnac, H. Cardon, P. Petit, A. San Miguel. Raman Spectroscopy of Open-ended Single Wall Carbon Nanotubes under Pressure: Effect of the Pressure Transmitting Medium. Physica Status Solidi B-Basic Solid State Physics. 2006, 243 (3): 690-699
    179. M. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan. Temperature Dependence of Radial Breathing Mode Raman Frequency of Sngle-walled Carbon Nanotubes. Physical Review B. 2002, 66:235424-1-9
    180. Z. zhou, X. Dou, L. Ci, L. Song, D. Liu, Y. Gao, J. Wang, L. Liu, W. Zhou and S. Xie. Temperature Dependence of the Raman Spectra of Individual Carbon Nanotubes. Journal ofPhysical Chemistry B. 2006, 110:1206-1209
    181. Y. Zhang, L. Xie, J. Zhang, Z. Wu, and Z. Liu. Temperature Coefficients of Raman Frequency of Individual Single-walled Carbon Nanotubes. Journal of Physical Chemistry C. 2007, 111:14031-14034
    182. H. Zeng, C. Yang, J. Dai, and X. Cui. Light-induced Incandescence of Single-walled Carbon Nanotubes. Journal of Physical Chemistry C. 2008, 112:4172-4175
    183. T. Ozaki, Y. Iwasa, T. Mitani. Stiffness of Single-walled Carbon Nanotubes under Large Strain. Physical Review Letters. 2000, 84(8):1712-1715
    184. C. L. Zhang and H. S. Shen. Buckling and Postbuckling of Single-walled Carbon Nanotubes under Combined Axial Compression and Torsion in Thermal Environments. Physical Review B. 2007, 75:045408-1-7
    185. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker. Carbon Nanotubes Single-electron Transistors at Room Temperature. Science, 2001, 293:76-79
    186. J. X. Cao, X. H. Yan, Y. Xiao and J. W. Ding. Thermal Conductivity of Zigzag Single-walled Carbon Nanotubes: Role of the Umklapp Process. Physical Review B. 2004, 69:073407-1-4
    187. F. Simon, R. Pfeiffer, and H. Kuzmany. Temperature Dependence of the Optical Excitation Lifetime and Band Gap in Chirality Assigned Semiconducting Single-wall Carbon Nanotubes. Physical Review B. 2006, 74:121411-121414
    188. S. B. Cronin, Y. Lin, A. Walsh, Physical Review B. Temperature Dependence of the Optical Transition Energies of Carbon Nanotubes: the Role of Electron-phonon Coupling and Thermal Expansion. Physical Review Letters. 2006, 96:127403-1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700