用户名: 密码: 验证码:
He II传输参数特性与HeII获取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合CGSE(Cryogenic Ground Support Equipment,低温地面支持设备)系统中有关He II的产生与输送方面的工程应用要求,针对He I和He II的物性、低温液与He II的获取模型、传输温升模型进行了理论研究和数值模拟,并采用试验对部分理论分析结论进行了验证,主要理论研究和试验工作如下:
     一、He II粘度的不确定现象与分析。对目前已经出现的关于测试He II粘度的试验进行全面分类和系统研究,指出He II表观粘度测量结果的不确定性,即对测试条件的依赖性。唯一可以从理论角度出发对此现象进行的定性解释就是,He II内部出现了超流体紊流和涡旋粘度,目前还没有达到可以定量说明的水平。因此,尝试利用现有的关于He II的低温物理学理论和相关背景知识对几种实验技术之间表现出来的差异进行了分析。同时给出针对不同测试和应用条件表现出来的具体粘度数值,为CGSE系统真实工程应用条件下的粘度选用提供依据。在此基础上提出在一定条件下便于工程应用的简单估算He II粘度的数学方程。
     二、利用分子动力学(MD)方法对LJ(Lennard-Jones)流体和量子流体的粘度研究。首次尝试采用外加无量纲力场的方法,使流体形成稳定的速度分布,进而分析其粘度。无论是模拟的过程还是其结果都能够提供一些很有价值的结论:如果要模拟较低的流体温度,需要采用较大的外加力场才可以形成比较明显的速度梯度。5000个分子的系统模拟得到的状态点全部落入研究流体的超临界区域。与超临界相比,超临界氩粘度的模拟结果更接近于NIST(National Institute of Standards and Technology)提供的数据。对于18000个分子的系统,在给定的初始模拟温度条件下,能否形成稳定的速度分布对外加力场的数值大小更加敏感。对待不同的初始输入条件,需要选取与之相应的外加力场,才能够形成稳定的速度分布。而18000个分子系统的模拟结果同样存在与5000级分子系统相同的问题,这是因为具有量子效应,而在LJ流体模型中,并未考虑这种量子效应。
     在目前带有量子效应修正的分子动力学研究领域,还较少涉及传输参数的模拟。本文通过FH(Feynman-Hibbs)势函数实现了LJ流体的量子效应修正。计算发现,随着计算温度的降低,量子效应的修正增强。采用量子效应修正后,对系统的温度场影响很大,必须在很小的外加力场作用下,才能使计算结果尽量收敛于输入值,这些做法使模拟时间大大增长,由原来的20小时可以计算一个状态点突然增加到7天甚至更长,不仅占用大量的计算机资源,也大大限制了计算的状态点数量。结果发现,采用外加力场和量子效应相结合的方式,可以实现液甚至He II粘度的分子动力学模拟,使其可能不再依赖于复杂的实验技术。
     三、理论研究He II获取方案、减压降温法获得不同温度液和He II的液体获得率。针对直接节流、预冷与节流相结合、抽真以及抽真与节流过程相结合这4种方案进行了比较详细的对比分析和计算。在综合比较各方面因素而选定了抽真方案后,根据减压降温法的基本原理,提出了用于预测液体获得率的双守恒模型,全面考虑了过程中液和蒸发气的焓变和温度变化,并与前人提出的其他分析模型进行了对比。在双守恒模型的基础上,对AMS-02中CGSE系统如何实现He II获取的三杜瓦,即主杜瓦、传输杜瓦与磁体杜瓦联动运行方案进行了分析讨论和计算,在已知部分设备信息的条件下,对磁体杜瓦的抽真时间、1.8 K He II得率、补注时间进行判断和估算。
     四、试验系统的建立。建立用于模拟CGSE系统主要设备和功能的试验系统,解决系统中可能出现的一些关键问题,如测试设备的信号线引出问题,发生系统阻塞事故后的系统复温吹扫问题等。与自控技术人员联合开发带有扩展功能的数据采集系统和数据实时采集记录软件。对系统中的低温设备进行性能测试,包括液杜瓦的静态蒸发率测试、低温管路接头和主要低温管路的漏热量测试,为真实系统的调试和运行提供可靠的工程技术数据和经验。试验内容主要有:
     (1)采用减压降温法,使用饱和液获得工程用低温液(2.2 K~4.2 K之间的饱和液)和He II,与本文提出的双守恒模型对比分析其液体获得率,验证本文提出的预测液体获得率的双守恒模型的准确性和可靠性,为探索减压降温法获得He II并确定其液体率,获得一定的理论基础与工程经验;
     (2)液输送管路绝热性能试验,确定四层绝热结构液管路的绝热性能,为其工程应用提供定量的分析数据;采用内部充注液氮,利用质量流量计测量其蒸发率的方法对CGSE系统中的两根高真多层绝热低温输送管路PL3与PL14以及带有冷蒸汽屏的PL2进行了低温性能测试。
     五、理论分析并计算He II强制流动特性。应用He II状态方程直接确定其Joule-Thomson系数。根据状态方程法的计算结果拟合得到适合于工程应用的经验方程。在此基础上对强制流动He II输送系统Joule-Thomson(JT)效应进行研究。采用考虑到系统压力梯度影响的较为复杂的模型方程对He II强制流动系统的温度分布进行求解,并与没有考虑JT效应的简化微分方程的求解结果进行比较。发现,将由于单纯的JT效应引起的温升与简化方程的结果进行叠加之后,结果与考虑压力梯度的复杂方程的结果十分相似,从而简化复杂工程的求解。
     本文针对He II传输参数特性、低温液传输管路性能和He II获得三方面内容,从理论分析和试验研究两方面展开,得出了一些有意义的结论,为液和He II的大型工程应用提供了一定的理论准备和技术基础。
The key technologies of the CGSE system are of the filling and transferring of He I, and the achieving of 1.8 K He II by vacuum pumping. It is necessary to set up a simulating experimental system because the practical CGSE system is so complicated and large. The experimental system will simulate the flow process of He I in real operating condition and obtain He II. So that we can gain the key physical and technical parameters, information and the operation experience for the real engineering system. In the paper, both the theoretical studies and numerical simulations are carried out to analyze the physical characteristics of He I and He II, to obtain He II by vacuum-pumping method, and to study the temperature rise model of He II forced flow. The major works are summarized as follows:
     1.Study on the dependence of the viscosities of He II on the experimental techniques: Based on the summary of experimental data of the viscosities, it is found that the viscosities of He II have different values under different experimental technologies. The key work of this chapter is of finding the detail values of the viscosities of He II in terms of operating conditions to propose a simple equation to calculate them at practical operating conditions.
     2.Study on the viscosities of LJ fluid and helium by molecular dynamics. The LJ potential function is adopted to simulate the viscosities of supercritical argon and supercritical helium. The results show that the values of supercritical argon are close to that provided by NIST (National Institute of Standards and Technology) in comparison of the simulation results of supercritical helium. The reason is that helium is a quantum fluid and has quantum effect that has not been considered in the LJ potential function. Therefore, the quantum effect must be considered in order to obtain the accurate values for quantum fluid. In this chapter, the FH(Feynman-Hibbs)potential function has been used to solve the problem. It is found that the quantum effect becomes stronger with the decreasing of the temperatures and the calculation time becomes much longer.
     3.Study on the schemes of obtaining He II. The mass and energy conservation model are used to analyze the liquid ratio of He II at different temperatures by vacuum pumping method. There are four methods to obtain He II, i.e. direct throttling process, throttling process with pre-cooling, vacuum pumping and vacuum-pumping with throttling process. Limited by the charging time and the assembly space, the He II should be quickly produced by a compact system with high working reliabilities. Therefore, selection of a scheme for producing He II is also a crucial work to the construction of the CGSE system. Based on the thermodynamic analyses of the processes in those four methods, the scheme of vacuum-pumping has been selected and the pumping speed has been also determined for choosing the vacuum pump.
     4.Set up the experimental system. Based on the characteristics and the performance of the CGSE system a simulating experimental system has been set up in order to test its major equipments and functions. Several essential technical problems are solved during the construction process, including how to leading-out the signal wires from the device, how to warm up and purge the system after the accident of system block. Data acquisition system and software are also developed. Test of the static evaporative rate of LHe Dewar, the heat leak of the coupling and the cryogenic pipe in the experimental system. Experimental studies on the liquid ratio of producing different temperatures of He I and He II, on the transferring performance of He I, and on the heat leak of the special four layer cryogenic pipeline. There are two aims for the experimental studies on the producing and transferring low temperature helium (lower than 4.2 K):
     (1) Producing the low temperature helium by vacuum-pumping method. Comparing the results of liquid ratio with the theory model. Obtaining engineering information and experience of producing He II and determining the liquid ratio;
     (2) Determining the performance of heat-insulating properties of the special four layer structure pipeline and supply the analysis data for the engineering design and application. The performance test of cryogenic transfer pipeline PL3 and PL14 in the CGSE system are also carried out by mass flowmeter in order to supply the analysis data for the operation of the real system;
     5.Theoretical analyses and calculations are carried out for the forced flow characteristics of He II. The results explain that the limit heat leak permitted by per meter line will be decreased with the length of the transfer lines increase. So more restrict requirement on the thermal insulation structure will be presented to the longer lines. Larger limit heat leak will be permitted when the transfer differential pressure increases. The temperature rise of He II transfer system due to the negative Joule-Thomson (JT) effect is one of the major problems in the system design for the He II forced flow system. The equation considering the pressure gradient effect is adopted to analyze the temperature distribution along the transfer pipeline for the He II forced flow system. Results are compared with those obtained by the simplified equation. The results calculated by the simplified equation are modified by the negative JT effect therefore the total temperature rises along the pipeline are obtained. The results show that the total temperature rises along the pipeline are similar to the values calculated by the complicated equation. So the simplified equation can also give good results of temperature rise when the negative JT effect of He II is known.
     The transfer properties of He II, obtaining of He II and the performance of the cryogenic pipes are experimentally and theoretically researched. The results are reasonable and helpful, especially for the engineering application of He I and He II.
引文
1. Michael D.,Alexander K.,Origin of the matter-antimatter asymmetry,Reviews of Modern Physics,2004,76(1),1-30
    2. Eades J.,Hartmann F.J.,Forty years of antiprotons,Reviews of Modern Physics,1999,71(1),373-419
    3. Alfven H.,Antimatter and the development of the metagalaxy,Reviews of Modern Physics,1965,37(4),652-665
    4. Richard B.,John C.,Seishi M.,etc.,Reviews of Modern Physics,Microwave cavity searches for dark-matter axions,Reviews of Modern Physics,2003,75(3),777-817
    5. Michael S.T.,J. Anthony T.,Cosmology at the millennium,Reviews of Modern Physics,1999,71(2),S145-S164
    6. Dirac P.A.M.,Theory of electrons and positrons,Nobel lecture,1933,12
    7. David L.,Morgan Jr.,Vernon W.H.,Atom-antiatom interaction,Physical Review A,1973,7(6),1811-1825
    8. Kolos W.,Morgan Jr. D.L.,Schrader D.M.,etc.,Hydrogen-antihydrigen interaction,1975,11(6),1792-1796
    9. 沈葹,反物质何处觅,物理百年研究启示录,世界科学,1999,9,2-5
    10. Baur G.,Boero G.,Brauksiepe S.,Production of antihydrogen,Physics Letters B,1996,368(3),251-258
    11. R. Landua,Antihydrogen at CERN,Physics Reports,2004,403–404,323–336
    12. 朱爱民,阿尔法磁谱仪与反物质研究,物理,1998,27(11),699-701
    13. Barbara G.L.,Antihydrogen makes a fleeting debut,Physics today,1996,3,17-18
    14. Bertulani C.A.,Baur G.,Antihydrogen production and accuracy of the equivalent photon approximation,Physical Review D,1998,58(3),034005-1-034005-9
    15. 宋涛,王武,夏平畴,AMS 永磁磁体磁矩的分析与计算,电工电能新技术,1999,4,53-56
    16. 杜玉梅,夏平畴,王武,AMS 磁体中各磁棒受力的计算,电工电能新技术,2000,3,12-15
    17. 赵德玺,董增仁,孙广生,AMS 磁体组装用工艺胀胎,电工电能新技术,1998,1,57-60
    18. Blau B.,Harrison S.M.,Hofer H.,etc.,The superconducting magnet system of the alpha magnetic spectrometer AMS-02,Nuclear Instruments and Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2004,518(1-2),139-142
    19. Harrison S.M.,Ettlinger E.,Kaiser G.,etc.,The alpha magnetic spectrometer(AMS),Nuclear Instruments and Methods in Physics Research A,1998,409(1-3),458-463
    20. AMS Collaboration,Search for anti-helium in cosmic rays,Physics Letters B,1999,461(4),387-396
    21. Alpat B.,The Alpha Magnetic Spectrometer(AMS)experiment on the International Space Station,Nuclear Instruments and Methods in Physics Research A,2001,461(1-3),272-274
    22. AMS Collaboration,The Alpha Magnetic Spectrometer(AMS),Nuclear Instruments and Methods in Physics Research A,2002,478(1-2),119-122
    23. Gu A.Z.,Grechko A.,Harrison S.,etc,Development of the Cryogenic Ground Support Equipment (CGSE) for the Superconducting Magnet of the Alpha Magnetic Spectrometer (AMS-02),Z.Liang,L.Liangzhen,C.Guobang,ICEC 20,Elsevier Press,2004,63-66
    24. http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Rodney_Guritz%20Folder/he.htm
    25. J.Wilks,The Properties of Liquid and solid helium,Clarendon Press,Oxford,1967,22
    26. 郑金宝,超流及其应用[M],华中理工大学出版社,1992
    27. http://ffden-2.phys.uaf.edu/212_fall2003.web.dir/Rodney_Guritz%20Folder/properties.htm
    28. 厉彦忠,吴裕远,吴业正,超流-4 热物性的计算关联式,低温与超导,1996,24(1),34-39
    29. W.Van Sciver,W.Steven,Helium Cryogenics,International cryogenics monograph series,Plenum Press,New York,1986
    30. Z.Sh.Nadirashvili , J.S.Taskadze , Dependence of Helium II Viscosity Properties on Oscillation Frequency,Journal of Low Temperature Physics,1979,37,169-177
    31. B.Welber,Damping of a Torsionally Oscillating Cylinder in liquid Helium at Various Temperatures and Densities,Physical Review,1960,119,1866-1822
    32. B.Welber,S.L.Quimby,Measurement of the product of Viscosity and density of Liquid Helium with a torsional Crystal,Physical Review,1957,107,645-646
    33. J.T.Tough,W.D.Mccormick,J.G.Dash,Viscosity of He II,Physical Review,1963,132,2373-2378
    34. Z.Sh.Nadirashvili , J.S.Taskadze , Dependence of Helium II Viscosity Properties on Oscillation Frequency,Journal of Low Temperature Physics,1979,37,169-177
    35. Rice O.K.,On the Statistical Mechanics of Liquids,and the gas of hard elastic spheres, Journal of Chemical Physics,1944,12(1),1-18
    36. Frenkel,Smit 著,汪文川等,分子模拟-从算法到应用,北京,化学工业出版社,2004,3
    37. 孙小伟,高温高压下 ZnO 和 GaN 材料热力学特性的分子动力学研究,[学位论文],西北师范大学,2005
    38. 崔守鑫,胡海泉,肖效光等,分子动力学模拟基本原理和主要技术,聊城大学学报(自然科学版),2005,18(1),30-34
    39. Allen and M.P,Tildesley D.J.,Computer Simulation of Liquids,Oxford Science, Oxford, 1987
    40. 樊康旗,贾建援,经典分子动力学模拟的主要技术,微纳电子技术,2005,3,133-138
    41. 王文,刘志刚,陈钟颀,流体粘度的计算机模拟,计算物理,1998,15(6),687-691
    42. 赵恒华,蔡光起,冯宝富,分子动力学仿真在精密加工领域的应用,精密制造与自动化,2003,4,36-39
    43. Metropolis N.,Rosenbluth A.W.,Rosenbluth M.N.,etc.,Equation of state calculations by fast computing machines,The Journal of Chemical Physics,1953,21(6),1087-1092
    44. Alder B.J.,Wainwright T.E.,Phase transition for a hard-sphere systems,The Journal of Chemical Physics,1957,27(5),1208-1209
    45. 文玉华,朱如曾,周富信等,分子动力学模拟的主要技术,力学进展,2003,33(1),65-73
    46. Gibson J.B.,Goland A.N.,Milgram M.,etc.,Dynamics of radiation damage,Physical Review,1960,120(4),1229-1253
    47. Rahman A.,Correlations in the motion of atoms in liquid argon,Physical Review,1964,136(2A),A405-A411
    48. 潘原生,王继海,改进的 Morse 势和冲击压缩,爆炸与冲击,1997,17(4),303-310
    49. Andersen H.C.,Molecular dynamics at constant pressure and/or temperature,Journal of Chemical Physics,1980,72(4),2384-2393
    50. Nose S.,A unified formulation of the constant temperature molecular dynamics method, Journal of Chemical Physics,1984,81(1),511-519
    51. Nose S.,A molecular dynamics method for simulation in the canonical ensemble,Molecular Physics,1984,52(3),255-268
    52. Hoover W.G.,Canonical dynamics: Equilibrium phase-space distribution,Physical Review A,1985,31(3),1695-1697
    53. Hoover W.G.,Constant pressure equations of motion,Physical Review A,1986,34(3),2499-2500
    54. Car R.,Parrinello M.,Unified approach for molecular dynamics and density functional theory,Physical Review Letter,1985,55(22-25),2471-2474
    55. 陈强,曹红红,黄海波,分子动力学中势函数研究,天津理工大学学报,2004,20(2),
    101-105
    56. Rahman A.,Stillinger F.H.,Molecular dynamics study of liquid water,Journal of Chemical Physics,1971,55(7),3336-3359
    57. 林武,液体相平衡的计算机分子模拟,[学位论文],北京化工大学,2004
    58. Alder B.J.,Wainwright T.E.,Studies in molecular dynamics. I. General Method,Journal of Chemical Physics,1959,31(2),459-466
    59. 陆世豪,赵小明,刘志刚,流体分子间势能函数改进的新方法,热科学与技术,2003,2(3),195-198
    60. Alder B J.,Wainwright T E.,Phase Transition in elastic disks,Physical Review,1962,127(2),359-361
    61. 蔡文生,林翼,邵学广,团簇研究中的原子间势函数,化学进展,2005,17(4),588-596
    62. 马庆敏,碱金属之间相互作用势及其应用,[学位论文],河北师范大学,2001,3
    63. Rapaport D.C.,The Art of Molecular Dynamics Simulation,Second Edition,London,Cambridge University Press,2004,12
    64. 朱正和,俞华根,分子结构与分子势能函数,北京,科学出版社,1997,6,19
    65. Guillaume G.,Christian B.,Antoine B.,etc.,Molecular dynamics comparative study of Lennard-Jones -6 and exponential -6 potentials:Application to real simple fluids (viscosityand pressure),Physical Review E,2006,73(6),061201-1-061201-8
    66. 刘国跃,双原子分子势能函数的研究进展,绵阳师范学院学报,2005,24(5),46-51
    67. 李思殿,晶体中原子间的相互作用-势能函数模型的进展及评述,运城高专学报,1992,4,4-10
    68. 石小燕,曾丹苓,蔡治勇,不同 Lennard-Jones 模型参数对分子动力学模拟的影响,热科学与技术,2005,4(3),195-198
    69. 孙小伟,褚衍东,刘子江等,高温高压下闪锌矿相 GaN 结构和热力学特性的分子动力学研究,物理学报,2005,54(12),5830-5836
    70. 王福恒,王文中,杨向东,高温下 H2O-Ar、H2O-CO2 混合气体中 H2O 分子谱线的半宽度,原子与分子物理学报,1994,11(1),48-52
    71. 王福恒,王文中,杨向东,H2O-CO2、H2O-Ar 混合气体中 H2O 分子谱线的压力展宽系数,原子与分子物理学报,1995,10(3),2844-2849
    72. Jing F.,A generalized soft-sphere model for Monte Carlo simulation,Physics of Fluids,2002,14(2),4399-4405
    73. LU Z.Y.,OUYANG W.,SUN Z.Y.,etc.,Computer simulations on the gas-liquid phase diagram of Stockmayer fluids,Chinese Science Bulletin,2005,50(15),1595-1597
    74. 金文正,汪文川,HCFC-R22 的等效 Stockmayer 势能模型及汽液平衡分子模拟,化学学报,2000,58(1),60-64
    75. 刘启能,微扰论计算 Morse 势的能级,大学物理。2001,20(12),8-11
    76. 陈刚,一维 Morse 势的 Dirac 方程的束缚态,原子与分子物理学报,2001,18(4),470-472
    77. 杨国春,陈世浩,用莫尔斯势对双原子分子振动光谱的理论研究,东北师大学报自然科学版,2004,36(1),50-54
    78. YU F.M.,GUO K.X.,Wang G.H.,etc.,Optical Rectif ication in Morse Quantum Well,Acta Sinica Quantum Optica(量子光学学报英文版),2002,8(3),113-117
    79. YU F.M.,GUO K.X.,XIE H.J.,etc.,Intersubband Optical Absorption in Morse Quantum Well,Chinese Journal of Lumine Scence,2003,24(3),247-252
    80. 刘新芽,Morse 势体系的能谱和波函数,江西大学学报自然科学版,1987,11(3),73-75
    81. 宣圣柱,张万舟,SWKB 近似方法求解 Morse 势和 Scarf II 势能级,阜阳师范学院学报(自然科学版),2005,22(3),23-26
    82. 刘文剑,邓从豪,双原子分子在改进的 Morse 势下的振动—转动问题,山东大学学报(自然科学版),1993,28(3),336-341
    83. 苏文辉,刘春林,刘承蕙,锌及 β 黄铜的原子间相互作用势函数与高压状态方程,吉林大学自然科学学报,1980,1,69-79
    84. 赵伊君,张志杰,金属弹性常数,状态方程和理论强度的物理力学计算,力学学报,1992,5,470-478
    85. Girifalco L.A.,Weizer V.G.,Application of the Morse potential function to cubic matals,Physical Review,1959,114(3),687-690
    86. Lincoln R.C.,Koliwad K.M.,Ghate P.B.,Mmorse-potential evaluation of second and third-order elastic constants of some cubic metals,Physical Rreview,1967,157(3),463-466
    87. 龙期威,龙康,葛苏,Morse 势函数和钼单晶等的临界切应力的温度依赖性,原子与分子物理学报,1997,14(3),393-399
    88. 何绍奎,杨向东,李德华,离子晶体和金属晶体的 Born-Mayer 势参数研究,四川师范大学学报(自然科学版),2003,26(1),65-66
    89. 何绍奎,离子晶体和金属晶体的 Born-Mayer 势参数研究及氩的分子动力学模拟,[学位论文],四川大学,2003,6
    90. 张超,碳纳米材料吸附储氢性能研究,[学位论文],上海交通大学,2004,6
    91. 刘国跃,孙卫国,冯灏,双原子分子离子 XY+势能函数的变分,中国科学 G 辑,2003,33(5),439-447
    92. 鲁光辉,孙卫国,冯灏,氢化物双原子分子势能曲线的能量自洽法研究,物理学报,2004,53(6),1753-1758
    93. 刘国跃,孙卫国,冯灏,尹辉,用 ECM 方法研究 N2 分子部分激发态的势能函数,原子与分子物理学报,2004,21(2),255-259
    94. 冯灏,双原子分子势能函数和振动激发散射的理论研究,[学位论文],四川大学,2001,3
    95. 刘国跃,孙卫国,冯灏,部分卤素双原子分子激发态的势函数,物理化学学报,2003,19(4),293-296
    96. Murray S.D.,Baskes M.I.,Embedded-atom method:Derivation and application to impurities, surface, and other defects in metals,Physical Review B,1984,29(12),6443-6453
    97. Foiles S.M.,Murray S.D.,Baskes M.I.,Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,Physical Review B,1986,23(12),7983-7991
    98. Baskes M.I.,Modified Embedded-atom potentials for cubic materials and impurities,Physical Review B,1992,46(5),2727-2742
    99. 李峰,白朔,郑宏等,Tersoff-Brenner 势函数在纳米碳管研究中的应用,新型炭材料,2001,16(2),73-78
    100. 保文星,朱长纯,崔万照,碳纳米管分子动力学模拟的经验势函数研究,西安交通大学学报,2005,39(2),200-204
    101. 曲庆文,贾庆轩,马浩,柴山,流体粘度的微观表达,机械科学与技术,2000,19(2),187-188
    102. 周谟仁主编,流体力学泵与风机,中国建筑工业出版社,北京,1994 年 11 月第三版
    103. Monnery,Viscosity:a critical review of practical predictive and correlative methods,Canadian Journal of Chemical Engineering,1995,73(1),3-40
    104. Gaurav A.,Edward J.M.,Hsueh-Chia C.,Efficient viscosity estimation from molecular dynamics simulation via momentum impulse relaxation,Journal of Chemical Physics,2000,113(6),2079-2087
    105. 张晖,张秉坚,梁世强等,微孔中简单流体粘度的分子动力学模拟及关联模型,物理化学学报,2003,19(4),352-355
    106. 宣益民,李强,姚正平,纳米流体的格子 Boltzmann 模拟,中国科学 E 辑,2004,34(3),280-287
    107. 宣益民,李强,纳米流体强化传热研究,工程热物理学报,2000,21(4),466-470
    108. 谢华清,奚同庚,王锦昌,纳米流体介质导热机理初探,物理学报,2005,52(6),1444-1449
    109. 李强,宣益民,纳米流体强化导热系数机理初步分析,热能动力工程,2002,17(102),568-574
    110. 李强,宣益民,姜军,徐济万,航天用纳米流体流动与传热特性的实验研究,宇航学报,2005,26(4),391-394
    111. 郝素菊,蒋武锋,张玉柱,纳米流体-种强化换热工质,冶金能源,2006,25(3),36-38
    112. 范庆梅,卢文强,纳米流体热导率和粘度的分子动力学模拟计算,工程热物理学报,2004,25(2),268-270
    113. Fan X.J.,Thien N.P.,Yong N.T.,etc.,Molecular dynamics simulation of a liquid in a complex nano channel flow,Physics of Fluids,2002,14(3),1146-1152
    114. FABRI′CIO DA C. S.,Luiz A.F.C.,Frederico W.T.,etc.,Shear Viscosity Calculated by Perturbation Theory and Molecular Dynamics for Dense Fluids,International Journal of Quantum Chemistry,2003,95(2),79-87
    115. Guillaume G.,Christian B.,Antoine B.,etc,Molecular dynamics comparative study of Lennard-Jones α -6 and exponential α -6 potentials:Application to real simple fluids (viscosity and pressure),Physical Review E 73,2006,73(6),061201-1-061201-9
    116. 张敏,王如竹,间低温技术的新进展,低温工程,2000,114(2),1-6
    117. 刘立强,低温技术在大型超导磁体中的应用,低温工程,2002,129(5),45-48
    118. 张闯,粒子加速器的回顾与展望,核科学与工程,2001,21(1),39-41
    119. 李家才,高能加速器中的低温超导技术,现代物理知识,1998,1,26
    120. 何景棠,高能加速器近期的几个大工程,现代物理知识,2001,13(6),23-25
    121. 张闯,科研上国际合作的典型-欧洲核子研究中心简介,科学中国人,1996,12,26-28
    122. Van Sciver S.W.,Helium Cryogenics,Plenum Press,New York,1986,p98
    123. F.L.London,P.R.Zilsel,Heat transfer in liquid Helium II by internal convection,Physical Review,1948,74(9),1148-1156
    124. Steven W. Van Sciver,Helium Cryogenics,New York,Plenum Press,1986,p105
    125. 蒋建生,戴闻,超流研究的历史回顾,大学物理,2003,22(3),30-34
    126. Kramer H.P.,Heat transfer to forced flow helium II,Proceedings of the Twelfth International Cryogenic Engineering Conference(ICEC 12),1988,299-304
    127. Murakami M.,Isothermal Flow of He II through wide Capillary Tubes,Proceedings of the International Cryogenic Engineering Conference,1980,88-92
    128. Atkins K.R.,The flow of liquid helium II through wide capillaries,Proceedings of the Physical Society A,1951,64(9),833-844
    129. Ataas F.A.,Taconis K.W.,Alphen W.M.,Experiments on laminar and turbulent flow of He II in wide capillaries,Physica,1961,27(10),893-923
    130. Bhagat S.M.,’Eddy’ viscosity in liquid helium II,Proceedings of the Physical Society A,1960,75(2),303-305
    131. Murakami M.,Isothermal Flow of He II through wide Capillary Tubes,Proceedings of the International Cryogenic Engineering Conference,1980,88-92
    1. A.C.Hollis-Hallett,Experiments with oscillating disk systems in liquid helium II,Proceedings of the Royal Society of London . Series A,Mathematical and Physical Sciences,1951,A210,404-426
    2. W.Van Sciver,W.Steven,Helium Cryogenics,International cryogenics monograph series,Plenum Press,New York,1986
    3. J.G.Dash,R.D.Taylor,Hydrodynamics of Oscillating in Viscous Fluids:Density and Viscosity of Normal Fluid in pure He4 from 1.2 K to the Lamda Point,Physical Review,1957,105,7-24
    4. C.B.Benson,A.C.Hollis Hallett,Viscosity Measurements in Liquid Helium II,Canada Journal of Physics,1960,38,1376-1389
    5. A.D.B.Woods,A.C.Hollis Hallett,The Viscosity of Liquid Helium II Between 0.79 K and The Lamda Point,Canada Journal of Physics,1963,41,596-609
    6. B.N.Eselson , O.S.Nosovitskaya , L.A.Pogorelov , V.I.Sobolev , Shear Viscosity and parameters of Kinetic Processes in Superfluid helium,Physica,1981,107B,41-42
    7. D.F.Brewer,D.O.Edwards,The heat conductivity and viscosity of liquid helium II,Proceedings of the Royal Society of London . Series A,Mathematical and Physical Sciences,1959,A251,247-264
    8. F.A.Staas,K.W.Taconis,W.M.van Alphen,Experiments on Laminar and Turbulent Flow of He II in Wide Capillaries,Physica,1961,27,892-923
    9. S.M.Bhagat,‘Eddy’ viscosity in liquid helium II,Proc. Phys. So(cproceeding of the Physical Society),1960,75, 303-305
    10. J.T.Tough,Classical and Quantum-Mechanical turbulence in He II heat flow,Physical Review,1966,144(1),186-195
    11. R.K.Childers,J.T.Tough,Eddy viscosity of turbulent superfluid He4,Physical Review Letters,1975,25(8),527-529
    12. A. D. B. Woods,A. C. Hollis Hallett,The ‘critical velocity’ found with the rotating cylinder viscometer in liquid helium II,Proceedings of the Fifth International Conference on Low Temperature Physics and Chemistry,The University of Wisconsin Press,1958,16-18
    13. J.T.Tough,Turbulence in a rotating superfluid,Physical Review Letters,1980,44(8),540-543
    14. Y.S.Touloukian,S.C.Saxena,P.Hestermans,Thermophysical properties of matter,Volume
    11,Thermophysical properties Research Center(TPRC),Purdue University,1974
    15. 张克武,刘奎学,张宇英,分子热力学理论模型——氩模型与液体粘度的理论计算,化学工程师,2002,6,26-32
    16. ZHANG Kewu ,ZHANG Yuying,The Extended Application of ZTEGV, X.A Theoretical Equation of Liquids Viscosity and One Theorem,应用基础与工程科学学报,2001,1,8-16
    17. K.R.Atkins,Thermal Conductivity of Liquid Helium II in very Narrow Channels,The Physical Review,second series,1957,108(4),911-913
    18. V.Arp,Heat transport through Helium II,Cryogenics,1970,10,96-105
    19. R.Srinivasan,A.Hofmann,Investigations on cooling with forced flow of He II,Cryogenics,Part 2,1985,25,652-657
    20. Vincent D. Arp,Robert D. McCarty,Daniel G. Friend,Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa,National Institute of Standards and Technical Note,U.S. Government Printing Office,Washington,1998
    21. S.C.Soloski,T.H.K.Frederking,Dimensional analysis and equation for axial heat flow of Gorter-Mellink convection (He II),International Journal of Heat and Mass Transfer,1980,23,437-441
    22. A.Hussain,S.Biswas,K.Athre,A new viscosity-temperature relationship for liquid lubricants,Wear,1992,156,1-18
    1. Van Sciver W.,Steven W.,Helium Cryogenics,International cryogenics monograph series,New York,Plenum Press, 1986
    2. Fan X.J.,Thien N.P.,Yong N.T.,etc.,Molecular dynamics simulation of a liquid in a complex nano channel flow,Physics of Fluids,2002,14(3),1146-1152
    3. Fan X.J.,Nhan P.T.,Yong N.T.,etc.,Microchannel flow of a macromolecular suspension,Physics of Fluids,2003,15(1),11-21
    4. Travis K. P.,Todd B. D.,Evans D.J.,Departure from Navier–Stokes hydrodynamics in confined liquids,Physical Review E,1997,55(4),4288 -4295
    5. K. P. Travis and K. E. Gubbins, Poiseuille flow of Lennard-Jones fluid in narrow slit pores, Journal of Chemical Physics, 2000, 112(4), 1984-1994
    6. Tchouara N. , Benyettoua M. , Ould Kadour F. , Quantum computation of the thermodynamics,structural and transport properties of Lennard–Jones liquid systems:The Feynman–Hibbs approach,Journal of Molecular Liquids,2005,122(1-3),69-73
    7. Tchouar N.,Ould-Kaddour F.,Levesque D.,Computation of the properties of liquid neon,methane,and gas helium at low temperature by the Feynman-Hibbs approach,Journal of Chemical Physics,2004,121(5),7326-7331
    8. 王如竹,汪荣顺编著,低温系统,上海,上海交通大学出版社,2000,12
    1. R.M.Carandang,T.H.K.Frederking,1.8 K liquid helium production and transfer:Simplified thermodynamic functions including the modified Claudet et al. He I-He II cycle,AICHE Symposium Series,1986,82(251),63-65
    2. 陈国邦等著,新型低温技术,上海交通大学出版社,2003,4,71
    3. 郑金宝,超流及其应用,华中理工大学出版社,1992,93
    4. Stephen M. Harrison,Loss of vacuum experiments on a superfluid helium vessel,IEEE Transactions on Applied Superconductivity,2002,12(1),1343-1346
    5. Steven W. Van Sciver,Helium Cryogenics,The International Cryogenics Monograph Series,Plenum Press,New York and London,1986
    6. A.Mironer,Cooling of helium by vapor removal,Cryogenics,1986,26,46-47
    1. 车向凯,谢崇远,王学理,高等数学,高等教育出版社,北京,2005
    2. 徐烈,朱卫东,汤晓英 编著,低温绝热与贮运技术,机械工业出版社,1999
    1. S.W.Van Sciver , Forced flow He II cooling for superconducting magnets-design consideration,Cryogenics,1998,38,503-512
    2. T.Okamura,H.Tatsumoto,K.Hata,K.Hama,Y.Shirai,M.Shiotsu,Critical heat flux in forced flow of pressurized He II,Proceedings of the Nineteenth International Cryogenic Engineering Conference(ICEC 19),2002,791-794
    3. S.Fuzier, B.Baudouy,S.W.Van Sciver,Steady-State pressure drop and heat transfer in He II forced flow at high Reynolds number,Cryogenics,2001,41,453-458
    4. M.Ohtsuka,Helium II Heat Transfer in a Channel,Proceedings of the International Cryogenic Engineering Conference,1988,n12,July,305-308
    5. H.A.Snyder,A.J.Mord,Flow of superfluid helium in tubes with heated walls,Advances in Cryogenics Engineering,1992,37(part A),81-88
    6. 孙恒,徐烈,李兆慈,赵兰萍,张存泉,低温液体输送过程中的参数计算和分析,低温与超导,2000,28(4),39-44
    7. S.W.Van Sciver,Helium Cryogenic,Plenum Press,New York and London,1986,143
    8. S.W.Van Sciver,Heat transport in forced flow He II:Analytic solution,Advanced in Cryogenic Engineering,1984,29,315-322
    9. W.W.Johnson,M.C.Jones,Measurements of axial heat transport in helium II with forced convection,Advances in Cryogenic Engineering,1978,23,363-370
    10. A.Kashani,S.W.Van Sciver,Steady state forced convection,Advances in Cryogenic Engineering,1986,31,489-498
    11. A.Kashani,S.W.Van Sciver,Numerical solution of forced convection seat transfer in He II,Numerical Heat Transfer:An International Journal of Computation and Methodology,Part A: Applications,1989,16(2),213-228
    12. L Dresner,A.Kashani,S.W.Van Sciver,Studies of heat transport to forced flow He II,Cryogenics,1986,26(2),111-113
    13. Li Yanzhong,Wu Yuyuan,Wu Yezheng,Correlations for calculating thermal properties of superfluid helium,Cryogenics and Superconductivity,1996,24(1),34-39
    14. Thermodynamic,transport,superfluid,and lamda line properties of helium for temperature from 0.8 K to 1500 K with pressure to 20000 bars including liquid-vapor mixture,Cryodata,HEPAK
    15. S.W.Van Sciver, Heat transfer in superfluid helium II, Proceedings of the International Cryogenic Engineering Conference, 1980, 228-237
    16. S.W.Van Sciver,Transient heat transport in He II,Cryogenics,1979,19(7),385-392
    17. Paul Emmanuel Dimotakis,Investigation of supercritical heat flow in helium II,doctor thesis,1972,4
    18. Rousset B.,Claudet G.,Gauthier A.,Seyfert P.,Martinez A.,Lebrun P.,Marquet M.,Vanweelderen R.,Pressure drop and transient heat transport in forced flow single phase helium II at high Reynolds number,Cryogenics,1994,34 Suppl.,ICEC,317
    19. Walstrom P.L.,Weisend II J.G.,Maddocks J.R,Van Sciver S.W.,Turbulent flow pressure drop in various He II transfer system components,Cryogenics,1988,28,101-109
    20. 王如竹,汪荣顺编著,低温系统,上海交通大学出版社,2000
    21. B.J.Huang,Joule-Thomson effect in liquid He II,Cryogenics,1986,26,475-477
    22. Jaime Wisniak,Hanan Avraham,On the Joule-Thomson effective inversion curve,Thermochimica Acta,1996,286,33-40
    23. Paul J. Gans,Joule-Thomson Expansion Physical Chemistry I,V25.0651,1-6
    24. 谢太浩,计算焦耳-汤姆逊系数的 LKP 方法,天然气工业,1991,11(2),49-55
    25. William C. Reynolds,Thermodynamic properties in SI,Department of Mechanical Engineering,Stanford University,122-137
    26. P.L.Walstrom,Joule-Thomson effect and internal convection heat transfer in turbulent He II flow,Cryogenics,1988,28,151-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700