用户名: 密码: 验证码:
电阻点焊电极热流耦合分析与对流换热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻点焊电极主要承载着导电、散热、施压三大功能。在电阻点焊过程中,电极的温度上升的很快,在高温高压作用下,电极很快就会磨损失效。电极磨损失效的快慢不仅会影响焊接质量的可靠性和健壮性,而且将直接影响到轿车装配焊接工艺的费用和生产效率。电极对流换热作用是电极散热的重要手段,电极冷却不佳,将直接导致电极过早磨损,增加生产成本,进而极大影响焊接装配的生产效率和生产质量。现有的点焊电极研究主要集中在电极材料的改进和替换方面,很少考虑电极的对流换热作用对电极磨损的影响,部分实验研究表明冷却流体流速,水冷管管径和水冷管高度是影响电极对流换热作用的主要因素。然而现有的研究中缺乏对电极对流换热性能的综合认识和评价的数学模型,无法最大限度的发挥冷却水的换热能力。为此,本文综合考虑电极对流换热的影响因素,开展基于热流场耦合的电阻点焊电极对流换热特性建模与优化研究,旨在提高电极对流换热性能和效果,延缓电极磨损失效的速度,降低轿车生产成本。
     针对电阻点焊电极对流换热的问题,首先详细的分析电极对流换热的过程和特性,明确电极换热流体流态和电极散热机理;采用有限元仿真和热流场耦合算法,分析确定电极对流换热的主要影响因素;引入电极对流换热性能评价指标-冷却率和排热率的概念,建立面向冷却率的电极对流换热性能评价的响应面模型;在此基础上,展开电极对流换热结构的改进设计,研究基于遗传算法的多目标并行优化的求解方法和结论;最后通过实际工艺条件下电阻点焊对流换热案例分析和优化试验,验证本课题研究方法和结论的有效性。本文的主要研究工作如下:
     1)电阻点焊电极对流换热问题分析
     在对电阻点焊工艺及电极水冷却系统结构构成介绍的基础上,将电极对流换热分为流和热两个过程来展开对问题的分析。着重分析明确电极冷却流体的流态和特性,剖析电阻点焊工艺的各个阶段电极冷却流体热交换的情况;基于对电阻点焊过程中热接触、热源和热阻的描述,分析电极传热、散热的途径和过程,重点研究电极热输入的机理和组成,建立电极热平衡方程。针对电极对流换热问题,引入冷却率和排热率的概念,建立电极对流换热特性和效果的评价指标,并对影响电极对流换热性能的具体因素进行了分析和归纳,为后续进行建模优化和实际案例分析的工作奠定基础。
     2)电极对流换热过程仿真
     在分析了电极对流换热性能影响因素的基础上,通过对电极热流场的直接耦合计算,实现电极对流换热过程的一次性求解。借助于编制Gambit和Fluent的自动求解程序,建立有限元分析环境下电极对流换热过程的数值仿真模型,并通过大量的计算,研究电极的冷却流体特性和对流换热特性,着重探讨各类影响因素与电极对流换热效果之间的关系,为后续进行实验建模的工作提供重要的依据和手段。
     3)电极对流换热性能评价建模
     在前述分析的基础上,确立以冷却流体流速,水冷管管径和水冷管高度为设计参数,以电极对流换热性能评价指标为设计目标,建立8二因子水平实验点,6轴点实验点和1中心实验点的实验设计方案。根据实验回归分析的响应面法和中心组合实验设计法的基本规则,建立面向冷却率的电极对流换热性能评价的响应面模型,并引入方差分析和F检验,验证模型的显著性。通过对响应面模型的曲面图和等高线图分析,明确电极对流换热性能与设计参数之间的变化规律。
     4)电极对流换热结构改进和参数优化
     电极水冷管末端形式和水冷却腔结构形式影响冷却流体的流场分布,导致冷却壁面处边界层的厚薄不同,进而影响到电极与流体之间的热交换效率。应用已建立的电极热流场耦合仿真模型和分析方法,研究电极结构形式对电极对流换热效果的影响关系,确定电极对流换热结构的改进设计方案。根据电极对流换热问题的实际需求,建立以电极冷却率,生产率和冷却能耗等为指标的多目标综合优化模型,借助遗传算法并行搜索和概率搜索的优异特点,实现不同权重下最优匹配变量的并行全局搜索,求得问题最优解。
     5)电阻点焊电极对流换热案例分析及实验验证
     在实际的电阻点焊工艺条件下,输入到电极的热量是瞬时变化的。根据电极热输入机理和组成的分析结论,采用理论公式计算的方法获取电极热电接触参数,并在已有点焊分析模型的基础上,确定和分析电阻点焊电极瞬时热量输入的大小和规律。应用本文提出的电极热流场耦合的分析方法,研究实际点焊工艺条件下电极温度特性和对流换热性能,分析结构改进和优化设计方案对实际电极对流换热的影响和作用。通过分析电极对流换热效果对电极表面状态的影响,确立电极对流换热实验目标,并根据实验测量数据验证电极对流换热结构改进和参数优化的结论。
     本文在充分吸收和借鉴前人研究成果的基础上,对电阻点焊电极热流耦合方法和对流换热特性进行了深入的研究和探讨,并具体应用于点焊电极的冷却优化实例。本文的工作不但对电极的磨损失效研究有重要的意义,而且对电焊机的设计和电阻焊的实际应用也提供了重要的指导依据。
Spot welding electrode takes three functions of conducting current, dissipating heat and applying pressure. During the process of spot welding, the temperature of electrode rises rapidly. Under high-temperature and pressure, spot welding electrode will quickly be wear and broken down. This failure process of electrode will not only reduce the reliability and robusty of weld quality, but also directly influences the cost and production efficiency of automobile welding and assembly. Heat convection is the main process of heat dissipation in electrode. Bad cooling condition on electrode will cause the premature wear and the increase of production cost. Furthermore, the production efficiency and quality of welding assembly will be influenced greatly. The existing researches of spot welding electrode are all focused on improving and replacing of electrode material without thinking about the result of heat convection in electrode. Also, there is absent of mathematic model on performance evaluation to electrode heat convection. It is incapable to make full use of the heat exchange potency of electrode cooling. Therefore, study on modeling and optimizing of heat convection for spot welding electrode based on heat and flow coupling analysis are performed detailedly and systematically. The aim is to improving the performance and effection of heat convection, reducing the speed of electrode wear and decreasing the production cost.
     Aiming at the problem of electrode heat convection, analysis about the process and characteristic of electrode heat convection are executed in details firstly. The flow pattern of cooling water is calculated out and the mechanism of heat dissipating is determined. By using finite element method and heat and flow coupling method, the relationship between the influencing factors and the heat convection performance is confirmed. According to the concept of cooling rate and heat removal rate which are the evaluating indicators for electrode heat convection, response surface model is built to evaluate the performance of electrode heat convection. Based on the above, improving design of electrode structure is implemented for better performance of heat convection and GA is utilized to study the multiple-object optimal method and result for electrode heat convection. Finally, the validity of the method and the conclusions is done by the case and experiment analysis of heat convection for spot welding electrode under actual technological conditions. To fulfill the above research objectives, the following five aspects of efforts are performed:
     1. Heat convection analysis of spot welding electrode
     Based on the introduction of spot welding process and the composition of cooling system, the problem of electrode heat convection is separated into two procedures of heat and flow for analysis. Flow pattern and performance of cooling water are determined and the heat exchange of cooling water in each phase of spot welding is dissected. Based on the description of heat source and heat contact, the path and process of heat conducting, dissipating is analyzed and the emphasis is on the mechanism and composition of electrode heat inputting. In succession, heat balance equation is established for electrode. For convenience, the conceptions of heat cooling rate and heat removal rate are lead in to evaluate the performance and effection of electrode heat convection. At last, analysis on the influence factors of electrode heat convection is done as a base for the continued works.
     2. Simulation of the process of electrode heat convection
     According to the analysis of influencing factors, one-time solution for the simulation of electrode heat convection is implemented by using direct coupling calculation of heat and flow fields. Based on the code Gambit and Fluent and its parametric language, numeric simulation mode for electrode heat convection in FE analysis environment is established. By numerous calculations, analysis of the characteristic of cooling flow and heat convection is done and the emphasis is on the relationship between the influencing factors and heat convection effect. This is the tool for the coming testing and modeling.
     3. Performance evaluating and modeling on electrode heat convection
     Based on the front analysis and the reference research, flow velocity, pipe diameter and pipe height are selected to be defined as the design parameters and performance evaluating indicators of electrode heat convection are defined as the design object. At the same time, test design scheme with 8 two level factors test points, 6 axial test points and 1 center test point is carried out. According to the basic rules of response surface method and center utilized design method, response surface model for performance evaluating of electrode heat convection is built. Leading in the variance analysis and F test, validation of model significance is done. By analysis on the surface drawing and contour drawing of response surface model, the relationship between the design parameters and the performance of heat convection is distinct.
     4. Structure improving and parameters optimizing of electrode heat convection
     The type of pipe end and cooling cavity structure can influence the distribution of flow velocity which causes different thickness of boundary layer near cooling wall. Furthermore, the heat exchange efficiency between the flow and the electrode can be affected. By using the coupling analysis method of heat and flow fields, study on the relationship between the structure type and the heat convection is made to determine the improving scheme of electrode structure for heat convection. According to the actual request, the multiple-object optimal model is built with the cooling rate, the production efficiency and the energy consumption as the indexes. In the help of GA with the good features of parallel search and probability search, the parallel global searches for optimal match variables under different weighs are implemented. The optimized solutions are gained.
     5. Case analysis of spot welding electrode and experiment validation
     The heat inputted into the electrode is changed with the time in practice. According to the mechanism and composition of heat inputting, the heat and electric contact parameters are gained by theory calculation and based on the exist spot welding model, the magnitude and rule of heat inputting are distinct. Applied the coupling method of heat and flow fields, study on the performance of electrode temperature and heat convection under actual spot welding conditions are carried out. Also, the schemes of structure improvement and optimal design are analyzed under the spot welding technical process. According to the analysis of the relationship between electrode wear and electrode heat convection, the experiment scheme is determined and the validation of the structure improvement and parameters optimization scheme by test data is accomplished.
     In this study, by absorbing and referring the exist achievements, the coupling method of heat and flow fields and the performance of heat convection for spot welding electrode are researched and analyzed. Furthermore, the study results are applied to the actual electrode cooling case. The works are not only benefit to the life research of electrode, but also to the design and application of welding machine practically.
引文
[1] 林忠钦, 胡敏等. 轿车车体装配偏差研究方法综述. 机械设计与研究. 1999(3). p82-84.
    [2] 胡敏. 车体多柔性件焊接装配过程优化. 上海交通大学博士学位论文. 2001
    [3] 胡仕新. 美国汽车车体装配与焊接研究现状. 中国机械工程. 1997, 8(1). p24-26
    [4] Ceglarek D., Shi J. and Zhou Z. Variation reduction for assembly: methodologies and case studies analysis. Technical Report of the “2mm” Program. University of Michigan. Ann Arbor, 1994
    [5] Wu, S. K. A methodology for optimal door fir in automobile body manufacturing. PhD Dissertation, The university of Michigan, Ann Arbor, 1991
    [6] D. Ceglarek, J. Shi and S. M. Wu, A Knowledge-based diagnostic approach for the launch of the auto-body assembly process, Journal of Engineering for Industry, 1994,116(12). p491-499
    [7] Hu S. J., Stream of variation theory for automotive body assembly, Annals of the CIRP, 1997, 46(1). p1-6
    [8] D. Ceglarek and J. J Shi, Dimensional variation reduction for automotive body assembly, American Society of Mechanical Engineers, Manufacturing Review, 1995, 8(2). p139-154
    [9] D. Ceglarek, K. Jaroslaw, Knowledge-based diagnosis for automotive body assembly: methodology and implementation, PhD. Dissertation, University of Michigan, Ann Arbor, 1994
    [10] S. Charles Liu, Hsin-Wel Lee and S. Jack Hu, Variation simulation for deformable sheet metal assemblies using mechanistic models, Transactions of NAMRI/SAE,1995, 23(5), p235-240
    [11] S. Charles Liu, S. Jack Hu, Variation simulation for deformable sheet metal assemblies using finite element methods, Journal of Manufacturing Science and Engineering, 1997, 119(8). p368-374
    [12] A. V. Dennison, D, J, Toncich and S, Masood, Control and process-based optimization of spot-welding in manufacturing systems, international Journal of Advanced Manufacturing Technology, 1997, 13(1). p256-263
    [13] 连军. 车身装配偏差传递的 DEDS 建模研究. 上海交通大学博士学位论文. 2003
    [14] Auhl, J.R. and Patrick, E.P., Afresh look at resistance spot welding of AL automotive components, SAE Paper 94160, 1994.
    [15] Gould, J.E. and Peterson, W.A., Resistance welding research evaluations of coated steels, Part 4: Preliminary electrode life reslts, EWI report J7043-87-4, Edison Welding Institute, Columbus, OH, Jnly, 1987.
    [16] Nippon Steel Report, Weldability of coated materials, 1990.
    [17] EWI. A literature review of RSW electrode wear. EWI report submitted to: USCAR Southfield, MI. March 28, 2002.
    [18] Grigorev M. M, Manuilov V. F, Petrov A. P, Electrode materials for spot welding components [J]. Welding international, 1997, 11(11): p909
    [19] 刘尧铭, 点焊电极材料及结构设计, 汽车设计 1990 年第 5 期
    [20] American National Standard: ANSI/AWS/SAE/D8.9-97, Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials [S].
    [21] K.L. Chatterjee and W. Waddell, Electrode wears during spot welding of coated steels, [J], Welding & Metal Fabrication, March 1996.
    [22] R. Holliday, J.D. Parker and N.T. Williams, Electrode deformation when spot welding coated steels, Welding in the world, 1995.Vol.35, No.3, p160~164.
    [23] Rivett, R.M., Spot welding electrode life tests on aluminum sheet-effect of electrode design and material [R].The welding institute, 77/1978
    [24] Matsumoto, Jiro; Mochizuki, HiroyukiR, Report Spot welding of aluminum alloy: Electrode life of various electrodes, Optics Letters, 1994, v 19, n 2, Jan 15, p 1
    [25] Masaki Kumagai, Hiromichi Sano, Effect of Cu-Ag-O Electrode on resistance spot welding of Aluminum alloy sheets, 1995 JSAE Autumn Convention
    [26] 董仕节.点焊电极用 TiB2 增强铜基复合材料的研究[D].西安:西安交通大学博士学位论文,1999
    [27] Fresz, B, Groza, J. Stefensen, S.Copper, electrodes for resistance spot welding of aluminum, 4th International Conference COPPER 99-COBRE 99, 1999, p 411-415
    [28] 董仕节, Y. Zhou, 电极表面处理和电极材料对微型点焊时电极粘附的影响, 热加工工艺, 2002 年第 6 期
    [29] Dorn, Lutz, Baker, Shawqi, Extending the electrode life in the spot welding of aluminum alloys by using composite electrodes, Welding Research Abroad, v 48, n 5, May, 2002, p 39-43
    [30] F. Lu and P. Dong, Model for estimating electrode face diameter during resistance spot welding, Science and Technology of Welding and Joining, 1999, Vol4, No.5, p285-289.
    [31] 李宝清, 廉金瑞, 单平. 不同电极条件下铝合金电阻点焊质量的研究. 汽车技术. 2001.12.
    [32] Howe, Peter, Resistance spot weldability and electrode wear mechanisms of ZnNi EG(R) sheet steel, SAE (Society of Automotive Engineers) Transactions, 1991, v 100, n Sect 5, 910192, p177-198.
    [33] Chuko, Wayne, Gould, Jerry E, Metallurgical analysis of electrode life behavior on 5754 coated aluminum alloy sheet, TMS Annual Meeting, 2001, p139-154.
    [34] 吴志生,单平,廉金瑞,胡绳荪,陈辉. 用电流波形控制法提高镀锌钢板点焊电极的寿命, 焊接, 2002 年 11 期
    [35] Dilthey, Ulrich; Marek, Udo, System for automated evaluation of resistance spot weldability - part 1: construction and function of the test unit, Schweissen und Schneiden/Welding & Cutting, 1996,v 48, n 1, Jan, pE11-E13
    [36] 李志远, 钱乙余, 张九海. 先进连接方法[M]. 北京:机械工业出版社, 2000.
    [37] Irving, Bob, Extending resistance welding electrode life, Welding Journal (Miami, Fla), 2001, V80, n 11, November, p58-61.
    [38] 吴志生,廉金瑞,单平,胡绳荪, 点焊镀锌钢板的深冷电极工作寿命试验研究,兵器材料科学与工程, 2003 年, 第 26 卷,第 2 期,
    [39] De, A. Dorn L. Gupta O.P., Analysis and optimizations of electrode life for conventional and compound tip electrodes during resistance spot welding of electrogalvanised steels Science and Technology of Welding & Joining, January 2000, vol. 5, no. 1 pp. 49-57(9)
    [40] B.H. Chang, Y. Zhou, Numerical study on the effect of electrode force in small-scale resistance spot welding, Journal of Materials Processing Technology 139 (2003) 635–641
    [41] G.R. Archer, Calculation for Temperature Response in Spot Welds, Welding Journal, 1960,39(8), p327-330.
    [42] J.A. Greenwood, Temperature in Spot Welding, British Welding Journal, 1961, 9, 316s-322s.
    [43] Warren Rice, E.J. Funk, An Analytical Investigation of the Temperature Distribution During Resistance Welding, Welding Journal, 1967, 46(4), p175-186.
    [44] J.E. Gould, An Examination of Nugget Development Spot Welding, Using Both Experimental and Analytical Techniques, Welding Journal, 1987, 66(1). p1-10.
    [45] Z. Han, J. Orozco, J.E. Indacoches, Resistance Spot Welding: A Heat Transfer Study, Welding Journal, 1989 68(2), p363-370.
    [46] Nied, H.A., the finite element modeling of the resistance spot welding process, Welding Journal (Miami), 1984, 63, p123-132.
    [47] 曹彪, 姜以宏等, 点焊过程热膨胀变形分析, 焊接学报, 1995, 16(2), p94-99.
    [48] 曹彪, 姜以宏等, 点焊熔核形成过程有限元模型, 机械工程学报, 1995, 31(2), p99-104.
    [49] 林忠钦, 胡敏等, 轿车白车身点焊装配过程有限元分析, 焊接学报, 2001, 22(1), p36-40.
    [50] 龙昕, 汪建华等, 电阻点焊温度场分布的数值模拟, 上海交通大学, 2001, 35(3), p416-419.
    [51] P.S. Wei, S.C. Wang and M.S. Lin, Transport Phenomena During Resistance Spot Welding, Transactions of the ASME, Journal of Heat Transfer, 1996 118(3), p762-773.
    [52] Jamil A. Khan, Lijun Xu, Yuh-Jin Chao, and Kirkland Broach, Numerical Simulation of Resistance Spot Welding Process, Numerical Heat Transfer, Part A, 2000, 37, p425-446.
    [53] 李永兵, 林忠钦, 陈关龙, 感应磁场作用下点焊熔核长大过程数值模拟分析, 2004 年全国博士生学术论坛, 中国.哈尔滨, 2004.8, p14-16.
    [54] K.S. Yeung, and P.H. Thornton.1999. Transient thermal analysis of spot welding electrodes. Welding Journal (Miami, Fla). 78(1), p1-6.
    [55] S. S. Babu, M. L. Santella and W. A. Peterson, Modeling resistance spot welding electrode life. Welding Journal, 1969, 45(3), p165-170.
    [56] Wei Li, Modeling and On-line Estimation of Electrode Wear in Resistance Spot Welding. Journal of Manufacturing Science and Engineering, 2005, 127(11): p709-717
    [57] Lavery, R.C. and Williams, N.T., “Resistance Spot Welding Electrode Wear on Galvannealed Steels,” Metal Construction and British Welding Journal (Feb. 1969).
    [58] Hensel, F.R., Larson, E.I., and Holt, E.F., “Thermal Gradients in Spot Welding Electrodes,” Welding Journal, (Dec.1941) pp.850-856.
    [59] Recommended Practice for Spot-Welding Zinc-Coated Steel Sheets, Welding in the World, Vol. 10, No.3/4, prepared by IIW Working Group “Welding of Coated Sheets (1972)
    [60] Karagoulis, K.J., “Process Control in Manufacturing,” Paper B5, Proceedings, Sheet Metal Welding Conference 5, AWS-Detroit Section, Detroit, MI (Oct, 1992)
    [61] Hirsch, R., “Influence of Water Temperature and Flow on Electrode Life,” Paper E3, Proceedings, Sheet Metal Welding Conference 7, AWS-Detroit Section, Troy, MI (Oct 1996)
    [62] Kim, E. and Eagar, T.W., “Transient Thermal Behavior in Resistance Spot Welding,” Paper 2, Proceedings, Sheet Metal Welding Conference 2, AWS-Detroit Section, Southfield, MI (Oct. 1998)
    [63] Hensel, F.R., Larson, E.I., and Hole, E.F., Thermal Gradients in Spot Welding Electrodes, Welding Journal, pp.850-856. (Dec.1941)
    [64] Light, D.P., J.H. King, New amplex spot welding electrode cap, Chrysler Inter Company, June 7, 1985.
    [65] E.W. Kim and T.W. Eager. Measurement of transient temperature response during resistance spot welding. Supplement to the Welding Journal, August 1989: p303-312
    [66] Simmons, W.P., Spot welding electrode life, Welding Journal, p.915-920. (Nov. 1967)
    [67] Dong, P. and Kimchi, M., “Thermomechanical Analysis of Electrode Wear Mechanisms,” Paper E5, Proceedings, Sheet Metal Welding Conference 7, AWS-Detroit Section, Troy, MI (Oct.1996).
    [68] Robert, C.M., Daniel, L.S., Weld electrode cooling study, SPIE Conference on Thermosense XXI, Orlando. Florida, April, 1999. SPIE Vol.3700.
    [69] 朱正行, 严向明, 王敏. 电阻焊技术, 机械工业出版社, 北京, 2000.
    [70] 中华人民共和国国家标准:电阻焊机的安全要求. GB15578-1995. 1995.
    [71] 卓宁, 孙家庆. 工程对流换热. 机械工业出版社. 北京, 2000.
    [72] Browne, D.J., Chandler, H.W., Evans, J.T., and Wen, J. 1995. Computer simulation of resistance spot welding in aluminum: Part I. Welding Journal 74(10): p399-344.
    [73] Browne, D., Newton, C., and Keay, B. 1996. Aluminum and steel resistance spot welding: Modeling the differences. Advanced Technologies & Processes, IBEC 95, pp.144-151.
    [74] 李永兵. 感应磁场作用下电阻点焊熔核长大过程研究. 上海交通大学博士学位论文. 2005.
    [75] 扎伊尔(德), 焊接热效应, 机械工业出版社, 1996, p1-50.
    [76] Chapman, A. J. 1987. Fundamentals of Heat Transfer. Macmillan, N.Y.
    [77] 中国机械工程学会焊接学会. 电阻焊(III)专业委员会, 电阻焊理论与实践, 机械工业出版社, 北京, 1994.
    [78] W. Li, Modeling and on-line estimation of electrode wear in resistance spot welding, Journal of Manufacturing Science and Engineering, November 2005, Vol.127, p709~717.
    [79] Vogler, M.M. and Sheppard, S.D., Electrical contact resistance under high loads and elevated temperatures, Welding Journal, 1993, Vol.72, pp.231~238
    [80] Tsai C L, Dai W L, Dickinson D W.Analysis and development of a real-time control methodology in resistance spot welding [J].Welding Research Supplement, 1991, 70(12): p339-351.
    [81] Browne D J, Chandler H W, Evans J T. Computer simulation of resistance spot welding in aluminum: Part I [J]. Welding Journal, 1995, 74(10): p339-344.
    [82] Browne D J, Newton C, Keay B. Aluminum and steel resistance spot welding: Modeling the differences [C]. Advanced Technologies & Processes. IBEC 96, 1996, p50-57.
    [83] Ikeda, R., Yasuda, K., Hashiguchi,K., Okita, T., and Yahaba, T. 1995, Effect of electrode configuration on electrode life in resistance spot welding of galvannealed steel and aluminum alloy for car body sheet. Advanced Technologies & Processes, IBEC ’95, pp144-151.
    [84] Henry, Hu. Fang, Chen. Effect of cooling water flow rates on local temperatures and heat transfer of casting dies. Journal of Materials Processing Technology. 2004.
    [85] Luo, A.H., Chen, G.L., Process Analysis on a Special Projection Welding with Coupled FEM, Materials Science Forum, Vol.471-472(2004), pp.795-800
    [86] 罗爱辉, 陈关龙, 来新民, 朱文峰. 轿车车门铰链焊接变形分析 I:基于复合有限元法的凸焊工艺过程模拟. 焊接学报. Vol.26,No.4(2005)pp.37-40.
    [87] Li, Y.B., Lin, Z.Q., Chen, G.L., et Study on moving GTA weld pool in an externally applied longitudinal magnetic field with experimental and finite element methods, Modeling and Simulation in Materials Science and Engineering, 2002, 10(6),p 781-798.
    [88] I.S. Kim, A. Basu,. A mathematical model of heat transfer and fluid flow in the gas metal arc welding process. Materials Processing Technology. 1998, 77. p17-24.
    [89] Song, M.K., Kovacevic, R., Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools and Manufacture, 2003, 43(6), p605-615.
    [90] Schmidt, H., Hattel, J. and Wert, J., An analytical model for the heat generation in friction stir welding. Modeling and Simulation in Materials Science and Engineering, 2004, 12(1): p143-157.
    [91] 戴有为. 对流传热分析. 兵器工业出版社. 北京.1989.2
    [92] Fluent Inc. Fluent 6.1 Help Manuel. Jan, 29, 2003.
    [93] B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbelence. Academic Press, London, England, 1972.
    [94] B. E. Launder and D. B. Spalding. The numerical Computation of Turbelent Flows. Computer Methods in Applied Mechanics and Engineering, 3: 1974, p269-289
    [95] 李勇. 介绍计算流体力学通用软件-Fluent. 水动力学研究与进展. 2001,16 (2): 254-258
    [96] C. Lipson, N.J. Sheth, Statistical Design and Analysis of Engineering Experiments, McGraw-Hill Book Company, 1973.
    [97] 白新桂. 数据分析与试验优化设计. 北京: 清华大学出版社. 1986.
    [98] 陈兆能. 实验分析与设计. 上海: 上海交通大学出版社. 1991.
    [99] 田胜元, 萧曰嵘. 实验设计与数据处理. 北京: 中国建筑工业出版社. 1988.
    [100] 陈国良. 遗传算法及其应用. 北京, 人民邮电出版社.1996. p1-50.
    [101] Holland J H. Adaption in Natural and Artificial Systems. University of Michigan Press, 1975. p37-40.
    [102] Goldberg D. Genetic algorithms in search, optimization and machine learning. Reading, Addison-Wesley Publishing Company, INC. 1989. p1-95.
    [103] Michalewicz, Z. Genetic algorithms +data structures=evolution programs. 3rd ed. Berlin: Springer, 1996.p15-40.
    [104] Polifke, W., Geng, W., Dobbeling, K. Optimization of rate coefficient for simplified reaction mechanisms with genetic algorithms. Combustion and Flame, 1998, 113: p119-135.
    [105] Davis, L. D. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. 1991, p1-90.
    [106] 玄光男, 程润伟. 遗传算法与工程设计. 北京, 科学出版社. 2000. p1-67.
    [107] Chen, R.S., Lu, K.Y., Yu, S.C.A Hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence. 2002, 15(5): p447-457.
    [108] Goldberg, D.E., Deb, K. A comparative analysis of selection schemes used in Genetic Algorithms. In: Foundations of Genetic Algorithms, Rawlins G J (ed.), San Marco, CA: Morgan Kufmann, 1991: p69-93.
    [109] Baker, J.E. Adaptive selection methods for genetic algorithms. In proceedings of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates 1985. p101-111.
    [110] Thornton P.H, Krause A R, Davies R G. Spot weld brazing of aluminum alloys [C]. Proc. Int. Symp. Met. Adv. Light Metals Industries, CIM, Vancouver, B.C., 1995, p217-228.
    [111] Holm, R., electric contact theory and application, 4th edition, New York, chapter1, 1967,p21-25.
    [112] Robsenow, Warren M., Hartnett, J.P., (James P.), Cho, Young I. Handbook of heat transfer 3rd, McGraw-Hill, New York, 1998, 3. p1-3
    [113] B.B. Mikic, Thermal contact conductance: theoretical consideration, International journal of heat and mass transfer, Vo.17, 1974, p205-214。
    [114] 张旭强,陈关龙,张延松等. 电阻点焊的伺服焊枪技术特性分析. 焊接学报. 2005. 26(6). p60-64。
    [115] 张旭强. 热镀锌高强钢电阻点焊的电极磨损机理与评价研究. 上海交通大学博士学位论文. 2007.11
    [116] 张旭强,罗爱辉,张延松,陈关龙. 点焊热镀锌双相钢(DP600)的电极磨损规律研究. 焊接学报. 2006.12(4):p24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700