用户名: 密码: 验证码:
永久散射体雷达差分干涉理论及在上海地面沉降监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达差分干涉技术是新近发展起来的用于监测大范围地表形变的新技术,它具有精度高、视域广等特点,可与基于点观测的GPS和水准测量形成优势互补,为形变监测和地球物理研究提供一种有效的空间对地观测新途径。但是,合成孔径雷达差分干涉技术的应用受到失相关和大气延迟两大因素的制约。近年发展起来的基于永久散射体的雷达差分干涉技术是目前克服失相关和大气延迟的最有效方法。然而,该方法在一些关键数据处理方面(永久散射体探测、建网、模型解算)还存在问题。为此,本文对永久散射体雷达差分干涉技术理论进行系统研究,对其中的关键算法做重点研究,探索解决该方法存在问题的新途径,以提高永久散射体雷达差分干涉技术探测地表形变的精度和可靠性。
     本文首先从干涉相位分解的角度出发,分析了地形、形变、大气延迟和失相关噪声对干涉相位的贡献,阐明了合成孔径雷达差分干涉探测地表形变的原理,为PS-DInSAR差分相位建模奠定了基础。
     SAR影像精确配准是PS-DInSAR的基础和关键步骤之一,论文通过对三种SAR影像配准算法(相干系数法、相位差影像平均波动函数法、最大频谱法)的比较研究,得出相干系数法的配准质量最好。在PS-DInSAR中,可采用相干系数法,并借助Doris软件实现多幅时序SAR影像的配准。
     为提高PS识别的准确性与可靠性,本文提出了探测PS的新方法—振幅信息双阈值法。该方法既考虑了永久散射体散射的稳定性,又考虑了其回波信号的高信噪比特性。通过与其它方法的对比和对上海城市地区26幅ERS-1/2卫星SAR影像的PS探测实验,证实了振幅信息双阈值法探测的PS有效而且更加可靠。
     在PS邻域差分相位建模中,首次提出采用PS三维建网方法确定PS的邻域关系。并且,在根据PS三维网络求解得到PS邻域差分值之后,采用间接平差法解决了PS三维网的几何矛盾,获得了各PS点的线性形变速率和高程误差,并实现了各PS点差分干涉相位的解缠。同时引入稳健估计方法抑制在平差过程中可能存在的粗差的影响。对上海陆家嘴地面沉降的研究证实,PS三维建网方法获得的结果精度优于基于像平面坐标的PS二维建网方法获得的结果精度。
     在PS邻域差分相位模型参数估计中,提出了解空间搜索法。在依据先验知识确定解空间的大小、位置和搜索策略后,可较快地获得参数的最佳估计值。同时对主影像和从影像大气相位的估计方法作了改进,在原有估计方法中增加了低通滤波处理步骤,这样可消除大气相位中可能存在的失相关噪声的影响。对上海陆家嘴地面沉降的研究证实了解空间搜索法能有效、可靠地估计PS邻域差分相位模型参数,改进的大气相位估计方法能有效削弱大气相位中的失相关噪声。
     最后,应用基于Matlab环境编写的一套PS-DInSAR处理程序,成功探测了上海陆家嘴地区在1992~2002年间的地面沉降,获得陆家嘴地区在10年内的最大形变量为183.2mm,最小为78.4mm,总体平均形变速率为13.72mm/a,与实测结果具有很高的一致性。这表明利用PS-DInSAR技术探测地表形变是可行的,本次研究结果以及相应的算法和处理程序是有效而可靠的。此外,对形变和大气相位的时空相关性做了统计分析,得出形变在时间上和小于4km的空间范围内具有很强的相关性;大气延迟在小于2km的空间范围内具有强相关性,而在时间上却不具有相关性。
Differential synthetic aperture radar interferometry(DInSAR) is a newly developed technique for monitoring large-scale ground deformation with some prominent advantages such as high accuracy and pantoscopic view. It therefore can greatly complement many conventional point-based geodetic techniques such as GPS and leveling. This provides a viable space-geodetic approach for ground deformation detection and geophysical studies. However, decorrelations and atmospheric delays impede the applications of DInSAR. The newly-proposed idea, called DInSAR based on permanent scatters (PS-DInSAR), is at present regarded as the most efficient approach in overcoming both decorrelations and atmospheric delays. Nevertheless some problems still exist in the key processing procedures of PS-DInSAR such as PS detection, network construction and model estimation. Thereby, this thesis focuses on investigating basic principles of PS-DInSAR and critical algorithms as well as exploring new approaches so as to improve both accuracy and reliability in PS-DInSAR.
     The influence of terrain, deformation, atmospheric delays and decorrelations onto interferometric phases is first discussed by analyzing the components of interferometric phases. The principle of DInSAR for deformation detection has been described based on the analysis of phase components. This investigation laid a foundation for modeling differential phases in PS-DInSAR.
     The accurate co-registration of SAR images is one of key procedures in data processing of PS-DInSAR. The conclusion that the performance of correlation-coefficient method (CCM) ranks first has been drawn by comparing the three accurate co-registration algorithms such as CCM, method based on the average fluctuation function of phase-difference image (MAF), as well as maximum-spectrum method (MSM). CCM is therefore chosen as the approach for co-registering time-series SAR images in PS-DInSAR and Doris software can be utilized for this purpose.
     To improve accuracy and reliability in identifying PSs, a new PS detection algorithm, called a dual-threshold method based on amplitude information, has been proposed. It considers both PS's temporal stableness of radar backscattering and its high signal noise ratio (SNR) of radar echoes. This method has been proven effective and more reliable by comparing with other approaches by means of the experiments with 26 ERS-1/2 SAR images of Shanghai.
     For modeling of PS neighborhood differential phases, it is the first time that the method of creating three-dimensional (3D) PS network is proposed to more precisely determine the neighborhood of PSs. After deriving differential values along arcs in the network, a parametric adjustment method is used to eliminate geometric inconsistency of the 3D network, and thus estimating the terrain error and linear deformation velocity, as well as unwrapping differential phases of PSs. A robust estimation method is also adopted to avoid contamination of possible gross errors during the network adjustment. The investigation on detecting ground subsidence over Lujiazui of Shanghai shows that the results derived from 3D PS network are more accurate than those derived with 2D PS, network created with image planar coordinate system.
     A new algorithm, called solution-space search (SSS), has been proposed to estimate the parameters in the model of PS neighborhood differential phases. After determining solution-space size, location and search strategy according to some apriori information, the SSS method can be used to compute the optimal parameters rapidly. Besides, the atmospheric phase estimation algorithms for main and slave images have been improved by adding the low pass filtering procedure to raw processing steps. The experiments on detecting ground subsidence over Lujiazui in Shanghai have proven that the SSS method can effectively and reliably estimate the parameters in the model of PS neighborhood differential phases, and the improved algorithms of estimating atmospheric phases are able to mitigate the imapcts of decorrelation noises.
     Finally, the ground subsidence from 1992 to 2002 over Lujazui area of Shanghai has been successfully detected using a set of PS-DInSAR computer programs which is developed in the Matlab environment. It is found that the maximum and minimum subsidence over this area within 10 years is 183.2mm and 78.4mm, repectively, and the averaged displacement velocity is 13.72mm/a. The results are in good agreement with the ground-based measurements. This indicates that the ground deformations can be efficiently detected and tracked with PS- DInSAR, the algorithms and computer programs developed in this thesis are viable and reliable. Moreover, the statistical analysis on temporal and spatial correlation in terms of deformation and atmospheric phase has been conducted. It can be concluded that the deformations exhibit strong temporal correlation as well as strong spatial correlation within 4km, and the atmospheric delays show strong spatial correlation within 2km without temporal correlation.
引文
[1] Graham L.C. Synthetic interferometer radar for topographic mapping[A]. Proceedings of the IEEE. 1974, 62(6):763-768
    [2] Zebker H.A., Goldstein R.M. Topographic mapping from interferometric synthetic aperture radar observations[J]. J. Geophys. Res. 1986, 91(B5): 4993-4999
    [3] Goldstein R.M., Zebker H.A., Werner C.L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Sci. 1988, 23(4):713-720
    [4] 刘国祥.合成孔径雷达遥感新技术—InSAR介绍[J].四川测绘.2004,27(2):92-95
    [5] 丁晓利,陈永奇,李志林,等.合成孔径雷达干涉技术及其在地表形变监测中的应用[J].紫金山天文台台刊.2000,19(2):158-167
    [6] 单新建,宋晓宇,柳稼航,等.星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价[J].科学通报.2001,46(24):2074-2079
    [7] Zebker H.A., Rosen P.A. Hensley S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps[J]. Journal of Geophysical Research. 1997, 103(B4):7547-7563
    [8] Hanssen R.F., Weckwerth T.M., Zebker H.A., et al. High-Resolution Water Vapor Mapping from Interferometric Radar Measurements[J]. Science. 1999,283:1297-1299
    [9] Askne J.I.H., Dammert P.B.G., Ulander L.M.H., et al. C-band repeat-pass interferometric SAR observations of the forest[J]. IEEE Trans. Geosci. Remote Sensing. 1997, 35:25-35
    [10] Hagberg J.O., Ulander L.M.H., Askne J. Repeat-pass SAR interferometry over forested terrain[J]. IEEE Trans. Geosci. Remote Sensing. 1995, 33:331-340
    [11] Treuhaft R.N., Madsen S.N., Moghaddam M., et al. Vegetation characteristics and underlying topography from interferometric radar[J]. Radio Sci. 1997, 31:1449-1485
    [12] Zebker H.A., Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Trans. Geosci. Remote Sensing. 1992, 30:950-959
    [13] Wegmuller U., Werner C.L. SAR interferometric signatures of forest[J]. IEEE Trans. Geosci. Remote Sensing. 1995, 33:1153-1161
    [14] Wegmuller U., Werner C.L. Retrieval of vegetation parameters with SAR interferometry[J]. IEEE Trans. Geosci. Remote Sensing. 1997, 35:18-24
    [15] Strozzi T., Dammert P.B.G., Wegmuller U. Landuse Mapping with ERS SAR Interferometry[J]. IEEE Trans. Geosci. Remote Sensing. 2000, 38(2):766-775
    [16] 廖静娟,郭华东,邵芸,等.干旱—半干旱地区地表特征探测的成像雷达干涉测量方法与模型[J].遥感学报.2002,6(6):430-435
    [17] 廖静娟,邵芸,郭华东,等.成像雷达干涉测量数据相关性与干旱—半干旱地区地表类型特征的关系[J].地球科学进展.2002,17(5):648-652
    [18] Gabriel A.K., Goldstein R.M., Zebker H.A. Mapping small elevation changes over large areas—differential radar interferometry[J]. J. Geophys. Res. 1989, 94:9183-9191
    [19] Massonnet D., Rossi M., Carmona C., et al. The displacement field of the landers eartl quake mapped by rader interferometry[J]. Nature. 1993, 364:138-142
    [20] Massonnet D, Thatcher W., Vadon H. Detection of postseismic fault zone collapse fcllowing the landers earthquake[J]. Nature. 1996, 382(6592):612-616
    [21] Zebker H.A., Roser P.A., Goldstein R.M., et al. On the derivation of coseismic displacement fields using differential radar interferometry-the Landers earthquake[J]. J.Geophys. Res. 1994, 99:19617-19634
    [22] Peltzer G., Rosen P. Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry[J]. Science. 1995,268:1333-1336
    [23] Burgmann R., Rosen P.A., Fielding E.J. Synthetic aperture radar interferometry to measure earth's surface topography and its deformation[J]. Annu. Rev. Earth Planet. Sci. 2000, 28:169-209
    [24] 王超,刘智,张红,单新建.张北.尚义地震同震形变场雷达差分干涉测量.科学通报.2000,45(23):2250-2255
    [25] 刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场.科学通报.2001,46(14):1224-1228
    [26] 张红,王超,单新建,等.基于SAR差分干涉测量的张北-尚义地震源参数反演.科学通报.2001,46(21):1837-1841
    [27] 单新建,马瑾,王长林,等.利用差分干涉雷达测量技术(D-InSAR)提取同震形变场.地震学报.2002,24(4):413-420
    [28] 廖明生,林珲.雷达干涉测量—原理与信号处理基础[M].测绘出版社.2002:3-100
    [29] 陈基炜.应用遥感卫星雷达干涉测量进行城市地面沉降研究.测绘通报.2001,8:13-15
    [30] Peltzer G., Hudnut K., Fiegl K. Analysis of coseismic surface displacement gradients using radar interferometry: new insights into the landers earthquake[J]. J. Geophys. Res. 1994, 99:21971-21981
    [31] Hernandez B., Cotton F., Campillo M., et al. A comparison between short term (Coseismic) and long term (one year ) slip from the landers earthquake:measurements from strong motion and SAR interferometry[J]. Geophys. Res. Lett. 1997, 24:1579-1582
    [32] Price E.J., Sandwell D.T. Small2scale deformations associated with the 1992 landers, california, earthquake mapped by synthetic aperture radar interferometry phase gradients[J]. J. Geophys. Res. 1998,103:27001-27016
    [33] Massonnet D., Feigl K. Satellite radar interferometric map of the coseismic deformation field of the M=6.1 Eureka Valley, CA earthquake of May 17, 1993[J]. Geophys. Res. Lett. 1995, 22:1541-1544
    [34] Massonnet D., Feigl K., Vadon H., et al. Coseismic deformation field of the M=6.7 Northridge, California earthquake of January 17, 1994 recorded by 2 radar satellites using interferometry[J]. Geophys. Res. Lett. 1996, 23(9):969-972
    [35] Meyer B., Armijo R., Massonnet D., et al. The 1995 Grevena (northern Greece) earthquake——Fault model constrained with tectonic observations and SAR interferometry[J]. Geophys. Res. Lett. 1996, 23(19):2677-2680
    [36] Peltzer G., Crampe F., King G., et al. Evidence of nonlinear elasticity of the crust from the Mw7.6 Mani (Tibet) earthquake[J]. Science. 1999, 286:272-276
    [37] 单新建,叶洪.干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用[J].地震学报.1998,20(16):647-655
    [38] 张红,王超,刘智.获取张北地震同震形变场的差分干涉测量技术[J].中国图象图形学报.2000,5(6):497-500
    [39] 单新建,马瑾,王长林,等.利用星载D-INSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学 (D辑).2002,32(10):838-845
    [40] 张景发,刘钊.InSAR技术在西藏玛尼强震区的应用[J].清华大学学报(自然科学版).2002,42(6):847-850
    [41] 伍吉仓,许厚泽,丁晓利,等.台湾集集大地震断层非均匀滑动分布的反演[J].测绘学报(增刊).2002,31:34-38
    [42] 荆燕,王建军,张景发,等.D-InSAR技术在地震同震形变研究中的应用[J[.测绘科学.2004,29(2):64-69
    [43] 张艳梅,程晓,李斐.基于SRTM DEM的二路重轨DINSAR地震形变探测—以2001年昆仑山口西MS8.1大地震震中为例[J].地震.2005,25(4):105-111
    [44] Stramondo S., Moro M., Doumaz F., et al. The 26 December 2003, Bam,Iran earthquake:surface displacement from Envisat ASAR interferometry[J]. International Journal of Remote Sensing. 2005, 26(5):1027-1034
    [45] Xia Ye. Bam earthquake:Surface deformation measurement using radar interferometry[J]. ACTA seismologica Sinica. 2005, 27(4): 423-430
    [46] 夏耶.巴姆地震地表形变的差分雷达干涉测量[J].地震学报.2005,27(4):423-430
    [47] Luo Xiaojun, Huang Dingfa, Liu Guoxiang. Extracting co-seismic deformation of Bam earthquake with differential SAR interferometry[J]. New Zealand Surveyor. 2006, 296:20-23
    [48] 陈基炜.新技术在城市地面沉降研究中的应用—遥感卫星雷达干涉测量(InSAR)[J].上海地质.2001,2:45-50
    [49] 王超,张红,刘智,等.苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测[J].自然科学进展.2002,12(6):621-625
    [50] 王超,张红,刘智,等.基于D-InSAR的1993-1995年苏州市地面沉降监[J]地球物理学报.2002,45:244-253
    [51] 姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J].矿山测量.2003,1:5-7
    [52] 吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究.东北大学学报.2005,26(8):778-781
    [53] Ding X.L., Liu G.X., Li Z.W., et al. Ground Subsidence Monitoring in Hong Kong with Satellite SAR Interferometry[J]. Photogrammetric Engineering & Remote Sensing. 2004, 1151-1156
    [54] 张拴宏,纪占胜.合成孔径雷达干涉测量(InSAR)在地面形变监测中的应用[J].中国地质灾害与防治学报.2004,15(1):112-118
    [55] Massonnet D., Briole P., Arnaud A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J], Nature. 1995, 375:567-570
    [56] Rosen P. A., Hensley S., Zebker H. A., et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry[J]. J. Geophys. Res. 1996, 268:1333-1336
    [57] Amelung F., Jonsson S., Zebker.H Widespread uplift and 'trapdoor' falulting on Galaoagis volcanoes observed with radar interferometry[J]. Nature. 2000, 407:993-997
    [58] Pritchard M.E., Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the centeral Andes[J]. Nature, 2002, 418:167-172
    [59] Zebker H. A., Rosen P. A., Hensley S., et al. Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements[J]. Geology. 1996, 24:495-498
    [60] Wicks J.C., Thatcher W., Dzurisin D. Migration of Fluids Beneath Yellowstone Caldera Inferred from Satellite Radar Interferometry[J]. Science. 1998, 282:458-462
    [61] Mattar K. E., Gray A. L., Kooij M. Farris-Manning, Airborne interferometric SAR results from mountainous and glacial terrain[A]. Proc. IGARSS, Pasadena, CA, 1994, 4:2388-2390
    [62] Joughin I. R. Estimation of ice sheet topography and motion using interferometric synthetic aperture radar[D]. Ph.D.dissertation. Univ.Washington, 1995
    [63] Goldstein R. M., Engelhardt H., Kamb B.,et al. Satellite radar interferometry for monitoring ice sheet motion:Application to an antarctic ice stream[J]. Science. 1993, 262:1525-1530
    [64] Rignot E., Jezek K.C., Sohn H.G. Ice flow dynamics of the Greenland ice sheet from SAR interferometry[J]. Geophys. Res. Lett. 1995, 22(5):575-578
    [65] Mohr J.J., Reeh N., Madsen S. N. Three-dimensional glacial flow and surface elevation measured with radar interf[J]. Erometry. Nature, 1998, 391(6664):273-276
    [66] Hartl P., Thiel K. H., Wu X.,et al. Application of SAR interferometry with ERS-1 in the Antarctic[J]. Earth Observation Quarterly. 1994, 43:1-4
    [67] Alsdorf D.E., Smith L.C. Interferometric SAR observations of ice topography and velocity changes related to the 1996, Gjalp subglacial eruption, Iceland[J]. Int.J Remote Sensing. 1999, 20(15-16):3031-3050
    [68] Dammert P.B.G., Lepparanta M., Askne J. SAR interferometry over Baltic Sea ice[J]. Int. J. Remote Sensing, 1998, 19(16): 3019-3037
    [69] Rosen P.A., Hensley S. Synthtic Aperture Radar Interferometry[J]. Proceedings of the IEEE.2000, 88(3):333-382
    [70] 袁孝康.星载合成孔径雷达导论[M].国防工业出版社,2003:1-100
    [71] 周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].第二版第三次印刷.测绘出版社,2004:1-200
    [72] 刘国祥,刘文熙,黄丁发.InSAR技术及其应用中的若干问题[J].测绘通报.2000,8:10-12
    [73] Goldstein R., Atmospheric limitations to repeat-track radar interferometry [J]. Geophys. Res. Lett. 1995, 22(18):2517-2520
    [74] Tarayre H., Atmospheric propagation heterogeneities revealed by ERS-1 interferometry[J]. Geophys. Res. Lett.1996, 23(9):989-992
    [75] 王超,张红,刘智.星载合成孔径雷达干涉测量[M].科学出版社,2002:32-147
    [76] 罗小军,黄丁发,刘国祥.InSAR相位分解及其在生成DEM和研究地震形变场中的应用[J].西北地震学报.2006,28(3):204-209
    [77] Li Z.W, Ding X.L, Chen Y.Q, et al. Assessment of Atmospheric Effects on Repeat-Pass InSAR Measurements in Southern China[J]. Journal of Geospatial Engineering. 2005, 7(1):1-10
    [78] 游新兆,王琪,乔学军,等.大气折射对InSAR影响的定量分析[J].大地测量与地球动力学.2003,23(2):81-87
    [79] Ferretti A., Claudio P., Rocca A. Nonlinera subsidence rate estimation using permanent scatters in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote sensing. 2000, 38(5):2202-2212
    [80] Ferretti A., Claudio P., Rocca A. Permanent scatters in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote sensing. 2001, 39(1):8-20
    [81] 徐希孺.遥感物理[M].北京大学出版社,2005:15-200
    [82] 刘国祥.SAR成像原理与图像特征[J].四川测绘.2004,27(3):141-143
    [83] Prati C., Rocca F. Interferometric techniques and applications. ESA Study Contract Rep. Contract N.3-74939/92/HE-I, Ispra,Italy, 1994
    [84] Small D. Generate of Digital Elevation Models through Spaceborne SAR Interferometry[D]. Ph.D.thesis. 1997:17-22
    [85] 刘国祥,丁晓利,李志林,等.使用InSAR建立DEM的试验研究[J].测绘学报.2001,30(4):337-343
    [86] 舒宁.雷达影像干涉测量原理[M].武汉大学出版社,2003:1-100
    [87] Webley P.W., Bingley R.M., Dodson A.H.,et al. Atmospheric water vapour correction to InSAR surface motion measurements on mountains:Results from a dense GPS network on Mount Etna[J].Physics and Chemistry of the Earth. 2002, 27:363-370
    [88] Janssen V., Ge L.L., Rizos C. Tropospheric corrections to SAR interferometry from GPS observations[J]. GPS Solutions. 2004, 8:140-151
    [89] 金双根,朱文耀.GPS观测数据提高InSAR干涉测量精度的分析[J].遥感 信息. 2001, 4:8-11
    
    [90] Li Z.W., Ding X.L., Liu G.X. Modeling atmospheric effects on InSAR with Meteorological and continuous GPS observations:algorithms and some test results[J]. Journal of Atmospheric and Solar Terrestrial Physics. 2004, 66:907-917
    
    [91] Ferretti A., Prati C., Rocca F. Analysis of Permanent Scatterers in SAR interferometry[A]. Proceedings. IGARSS, 2000. 2:761-763
    [92] Mora O., Mallorqui J.J., Duro J.,et al. Long-term subsidence monitoring of urban areas using differential interferometric SAR techniques[A]. IGARSS, 2001. 3:1104-1106
    
    [93] Ketelaar G., van Leijen F., Marinkovic P., et al. Initial point selection and validation in PS-InSAR using integrated amplitude calibration[A]. Proceedings. IGARSS, 2005. 5490-5493
    [94] Colesanti C., Ferretti A., Prati C, et al. Comparing GPS, optical leveling and permanent scatterers[A]. IGARSS, 2001. 6:2622-2624
    [95] Colesanti C., Ferretti A., Noveli F., et al. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique[J]. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(7):1685-1701
    
    [96] Colesanti C., Ferretti A., Locatelli R.,et al. Permanent Scatterers:precision assessment and multi-platform analysis[A]. Proceedings. IGARSS, 2003. 2:1193-1195
    [97] Colesanti C., Locatelli R., Novali F. Ground deformation monitoring exploiting SAR permanent scatterers [A]. IGARSS, 2002. 2:1219-1221
    [98] Colesanti C., Ferretti A., Prati C., et al. ERS-ENVISAT permanent scatterers interferometry[A]. Proceedings. IGARSS, 2003. 2:1130-1132
    [99] Perissin D., Prati C., Rocca F., et al. ERS-ENVISAT Permanent Scatterers[A]. Proceedings. IGARSS, 2004. 2:985-988
    
    [100] Bovenga F., Stramaglia S., Nutricato R., et al. Discrimination of different sources of signals in permanent scatterers technique by means of independent component analysis[A]. Proceedings. IGARSS, 2003. 2103-2105 [101] Kampes B.M., Hanssen R.F. Ambiguity resolution for permanent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing. 2004, 42(11):2446-2453
    [102] Leijen F.J., Ketelaar V.B.H., Marinkovic P.S., et al. Persistent Scatterer Interferometry:Precision, Reliablity and Integration[DB/OL]. http://www.ipi.uni-hannover.de/html/publikationen/2005/workshop/
    [103] Huanyin Yue, Hanssen R., van Leijen F., et al. Land subsidence monitoring in city area by time series interferometric SAR data[A]. Proceedings. IGARSS, 2005. 4590-4592
    [104] Allievi J., Ambrosi C., Ceriani M., et al. Monitoring slow mass movements with the Permanent Scatterers technique[A]. Proceedings. IGARSS, 2003. 1:215-217
    [105] Dehls J.F., Basilico M., Colesanti C. Ground deformation monitoring in the Ranafjord area of Norway by means of the permanent scatterers technique[A]. IGARSS, 2002. 1:203-207
    [106] Chul H., Jung, Min K.D. Observing coal mining subsidence from JERS-1 permanent scatterer analysis[A]. IGARSS, 2005. 7:4578-4581
    [107] Colesanti C., Mouelic S.L., Bennani M., et al. Detection of mining related ground instabilities using the Permanent Scatterers technique—A case study in the east of France[J]. International Jounal of Remote Sensing. 2005,26(1):201-207
    [108] Ferretti A., Ferrucci F., Prati C., et al. SAR analysis of building collapse by means of the permanent scatterers technique[A]. IGARSS, 2000. 7:3219-3221
    [109] Ketelaar V.B.H., Hanssen R.F. Separation of different deformation regimes using PS-InSAR data[A]. Proceedings of FRNGE, Frascati,Italy, 2003. 1-5
    [110] Colesanti C., Ferretti A., Locatelli R., et al. Multi-platform permanent scatterers analysis: first results[A]. 2nd GRSS/ISPRS, 2003. 52-56
    [111] Colesanti C., Ferretti A., Prati C., et al. Full exploitation of the ERS archive: multi data set permanent scatterers analysis[A]. IGARSS, 2005. 2:1234-1236
    [112] 李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版).2004,29(8):664-668
    [113] 唐伶俐,张景发,王新鸿,等.极具应用潜力的PS技术[J].遥感技术与应用[J].2005,20(3):319-323
    [114] 傅文学,田庆久,郭小方,等.PS技术及其在地表形变监测中的应用现状与发展[J].地球科学进展.2006,21(11):1193-1198
    [115] 陈强,刘国祥,李永树,等.干涉雷达永久散射体自动探测—算法与实验结果[J].测绘学报.2006,35(2):112-117
    [116] 陈强,刘国祥,李永树.干涉雷达永久散射体识别方法的对比分析[J].遥感信息.2006,4:20-23
    [117] 刘国祥,陈强,丁晓利.基于雷达干涉永久散射体网络探测地表形变的算法与实验结果[J].测绘学报.2007,36(1):13-18
    [118] 汤益先,张红,王超.基于永久散射体雷达干涉测量的苏州地区沉降研究[J].自然科学进展.2006,18(6):1015-1020
    [119] Kampes B. Delft Object-oriented Radar Interferometric Software User's manual and technical documentation[S]. http://www.geo.tudelft.nl/fmr/research/insar/sw/doris/Usersmanual/index.html. 1999
    [120] Gabriel A. K, Goldstein R.M. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. International Journal of Remote Sensing, 1988, 9(8):857-872
    [121] Lin Q., Vesecky J.F., Zebker H.A. Registration of interferometric SAR images[A]. IGARSS 1992.2:1579-1581
    [122] Lin Q.,Vesecky J.F., Zebker H.A. New approaches in interferometric SAP, data processing[J]. IEEE Transactions on Geoscience and Remote Sensing. 1992, 30(3):560-567
    [123] Zhang Hong, Wang Chao, Tang Yixian, et al. A new image registration method for multi-frequency airborne high-resolution SAR images. Proceedings.IGARSS 2003.1:167-169
    [124] 刘国祥,丁晓利,李志林,等.星载SAR复数图像的配准[J].测绘学报. 2001,30(1):60-66
    [125] 汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报.2003,32(4):320-324
    [126] 曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报.2004,33(2):127-131
    [127] 罗小军,刘国祥,黄丁发,等.几种卫星合成孔径雷达影像配准算法的比较研究[J].测绘科学.2006,31(1):19-21
    [128] Hanssen R. Radar interferometry:Data interpretation and error analysis[M]. Kluwer Academic Publishers, 2001:9-75
    [129] 刘国祥,丁晓利,陈永奇,等.极具潜力的空间对地观测新技术—合成孔径雷达干涉测量[J].地球科学进展.2000,15(6):734-740
    [130] Prati C., Rocco E, Guarnieri A M, et al. Report on ERS-1 SAR interferometric techniques and applications[A]. Dipartimento di Eletronica, Politecnico di Milano. 1994.
    [131] Prati C., Rocco F., Guarnieri A M, et al. ERS-1 SAR Interferometric Techniques and Applications. Tutorial for Microwaves Sensors, Calibration and Data Processing[A]. ISPRS,Common. I Symposium,Olmo Como Italy.1994
    [132] 杨清友,王超.干涉雷达复图像配准与干涉纹图的增强[J].遥感学报.1999,3(2):122-126
    [133] Scheiber R., Moreira A. Coregistration of interferometric SAR images using spectral diversity[J]. IEEE Transactions on Geoscience and Remote Sensing. 2000, 38(5):2179-2191
    [134] Fornaro G., Franceschetti G. Image registration in interferometric SAR processing[A]. Radar, Sonar and Navigation, IEEE Proceedings. 1995, 142(6):313-320
    [135] Fornaro G., Franceschetti G., Marzouk E.S. A new approach for image registration in interferometric processing[A]. IEEE International Geoscience and Remote Sensing Symposium. 1994, 4:1983-1985
    [136] Moreira A., Scheiber R. A new method for accurate co-registration of interferometric SAR images[A]. IEEE International Geoscience and Remote Sensing Symposium Proceedings. 1998, 2:1091-1093
    [137] Abdelfattaha R., Nicolasa J.M., Tupin F. Interferometric SAR image coregistration based on the Fourier-Mellin invariant descriptor[A]. IEEE International Geoscience and Remote Sensing Symposium. 2002, 3:1334-1336
    [138] Liu Zhi, Wang Chao, Zhang Hong. A new registration of interferometric SAR: Least-Square Registration[A]. The 22nd Asian Conference on Remote Sensing. 2001.
    [139] Zhang Hong, Wang Chao, Tang Yixian, Liu Zhi. A new image registration method for multi-frequency airborne high-resolution SAR images[A]. IEEE International Geoscience and Remote Sensing Symposium. 2003, 1:167-169
    [140] Yonghuai Liu. Robust geometric registration of overlapping range images[A]. Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE. 2003, 3:2494-2499
    [141] Le Moigne J. Towards a parallel registration of multiple resolution remote sensing data[A]. Geoscience and Remote Sensing Symposium, 1995. IGARSS '95. 1995, 1011-1013
    [142] Touzi R., Lopes A., Bruniquel J., et al. Coherence estimation for SAR imaginary[J]. Geoscience and Remote Sensing, IEEE Transactions. 1999, 37(1):135-149
    [143] Gens R., Van Genderen J.L. SAR interferometry-Issues, techniques. Applications[J]. Int.J. Remote Sens. 1996,17:1803-1835
    [144] Kun Tao, Yang Ruliang. Quantitative assessment of interferometric SAR images registration accuracy[A]. IEEE International Geoscience and Remote Sensing Symposium. 2002, 5:2699-270
    [145] 陶鵾,杨汝良.利用残余点衡量干涉复影像配准质量[J].测绘学报,2003,32(1):63-66
    [146] 戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].清华大学出版社.2004:81-83
    [147] Bovenga E, Refice A., Nutricato R. Automated calibration of multi-temporal ERS SAR data[A]. Proc. of IGARSS,Toronto Canada, 2002.3655-3657
    [148] Laur H., Bally P., Meadows P., et al. Derivation of the backscattering coefficient sigma-nought in ESA ERS SAR PRI Products[DB/OL]. http://earth.esa.int/pub/SAR, 2005-12-19/2007-1-17
    [149] 陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].西南交通大学博士论文.2006:64-74
    [150] 罗小军,黄丁发,刘国祥.时序差分雷达干涉中永久散射体的自动探测[J].西南交通大学学报.2007,42(4):414-418
    [151] 周乐韬,黄丁发,李成钢,等.球面Delaunay三角网更新算法及其在GPS网络中的应用研究[J].测绘科学.2007
    [152] Kleijer, F.. Troposphere Modeling and Filtering for Precise GPS Leveling[M]. ISBN 90-804147-3-5. Optima Grafische Communicatie, the Netherlands. 2004:1-248
    [153] 严学新,龚士良,曾正强,等.上海城区建筑与地面沉降关系分析[J].水文地质与工程地质.2002,6:21-25
    [154] http://www2.jpl.nasa.gov/srtm/.2007/04/07
    [155] Colesanti C., Ferretti A., Prati C., et al. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique[J].Engineering Geology.2003, 68:3-14
    [156] Williams S., Bock Y., Pang P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products[J]. 1998, 103(B11):27051-27067
    [157] Kenneth.R.Castleman.数字图像处理[M].朱志刚,林学阎,石定机,译.电子工业出版社,1999:216-237
    [158] 徐守时.信号与系统:理论、方法和应用[M].中国科学技术大学出版社,2003:15-300
    [159] 何振亚.多维数字信号处理[M].国防工业出版社,1995:34-350
    [160] 沈城.上海沉降2米多—长三角联合治理塌陷[EB/OL].http://stock.163.com/economy2003/editor_2003/040813/040813_224152. html, 2004/08/13
    [161] 武汉测绘科技大学测量平差教研室.测量平差基础[M].第三版第九次印刷.测绘出版社,2003:183-202
    [162] 黄维彬.近代平差理论及其应用[M].解放军出版社,1992:422-456
    [163] Gordon W. D., Bamler R. Multiresolution Phase Unwrapping for SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote sensing, 1999, 37(1): 163-175
    [164] Curtis W. Chen, Howard A. Zebker. Network Approaches to Two-dimensional Phase Unwrapping: Intractability and Two New Algorithms[J]. Journal of Optical Society of America, 2000, 17(3): 401-414
    [165] 刘峰.应用Kriging算法实现气象资料空间内插[J].气象科技.2004,32(2):110-115
    [166] 张超,赵春江,李存军,等.应用Kriging插值方法插补干涉雷达DEM奇异值斑块[J].遥感信息.2005,1:4-7
    [167] 肖斌,赵鹏大,侯景儒.时空域中的指示克立格理论研究[J].地质与勘探.1999,35(4):25-28
    [168] 林衷辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报.2002,57(1):47-56
    [169] 段天友,朱广生.克立格方法在建立平均速度场数据库中的应用[J].江汉石油学院学报.1999,21(4):41-44
    [170] 门福录.上海粘土层流变性质及地面沉降问题初步研究(一)[J].自然灾害学报.1999,8(3):117-126
    [171] 门福录.上海粘土层流变性质及地面沉降问题初步研究(二)[J].自然灾害学报.1999,8(4):123-132
    [172] 叶淑君,薛禹群,张云,等.上海区域地面沉降模型中土层变形特征研究[J].岩土工程学报.2005,27(2):140-147
    [173] 刘清玉,姚荷孙.近年来上海市区的地面沉降特征研究[J].福建教育学院学报.2005,4:106-109
    [174] 孙文盛.长江三角洲地区地面沉降防治工作调研报告.中国地质调查局地面沉降研究中心.2002全国地面沉降学术研讨会论文集,上海,2002
    [175] 张阿根.上海城市可持续发展与地面沉降防治管理[J].中国地质灾害与防治学报.2005,16(1):1-4
    [176] 张维然.上海市地面沉降特征及对社会经济发展的危害[J].同济大学学报.2002,30(9):1129-1134
    [177] 杨新安,程军,王红霞.上海地面沉降及其防治研究[J].上海铁道大学学报.2000,21(8):71-75
    [178] 龚士良.上海城市建设对地面沉降的影响[J].中国地质灾害与防治学报.1998,9(2):108-111
    [179] 李勤奋,王寒梅.上海地面沉降研究[J].高校地质学报.2006,12(2):169-178
    [180] 薛禹群,张云,叶淑君,等.我国地面沉降若干问题研究[J].高校地质学报.2006,12(2):153-160
    [181] 张维然,段正梁,曾正强,等.1921-2000年上海市地面沉降灾害经济损失评估[J].同济大学学报.2003,31(9):743-748
    [182] 宋淑丽,朱文耀,丁金才,等.上海GPS综合应用网的初步监测结果及其应用展望[J].自然杂志.2003,26(2):118-121
    [183] 陈基炜.合成孔径雷达干涉测量技术(InSAR)及其对城市遥感的意义[J].上海地质.2001,87:52-55
    [184] 罗小军,刘国祥,黄丁发.利用三通差分干涉测量探测城市地面形变的实验研究[J].大地测量与地球动力学.2007.采用/待刊

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700