用户名: 密码: 验证码:
生物医学图像处理中的有界变差函数空间与水平集方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决青光眼等致盲性眼病计算机辅助诊断中视乳头医学图像噪声污染大、光照不均匀、对比度非常小、部分视乳头被血管遮挡、不同病人个体间差异大等因素导致的视乳头图像自动分割和度量难题,本文基于特殊有界变差函数空间(SBV: the class of Special functions of Bounded Variation)理论、Mumford-Shah变分方法和水平集方法(level set methods),提出了多层Mumford-Shah(向量值)图像处理模型、形状窄带水平集统计分布先验知识表达模型和集成形状先验知识的统计多层Mumford-Shah(向量值)图像处理模型。通过彩色视乳头、大脑和心脏医学图像处理和InSAR图像相位解缠等实验,展示了这些模型和方法的有效性和应用前景。
     本文的创造性成果及其理论与实际意义如下:
     1)针对能够同时进行图像分割、去噪与重建的Mumford-Shah图像分割泛涵最小值求解非常困难这一问题,分别提出了多层Mumford-Shah标量和向量值图像分割、去噪与重建模型和求解该多层模型最小值的水平集逐层迭代算法。该多层模型是Mumford-Shah最小分割问题的多层实现模型。大脑、心脏和视乳头医学图像处理实验结果表明,该方法不仅能够同时进行具有T型图像边缘或更复杂拓扑结构图像边缘的图像分割、去噪与重建,而且比Tsai A.等人提出的多层求解轮廓和Chan T.等人提出的多相水平集方法更简单高效。
     2)采用窄带水平集方法,提出了目标形状窄带水平集统计分布模型和训练形状图像集配准泛函模型。因为我们注意到目标形状的自然变化通常仅发生在其边界(轮廓)的邻近,采用窄带水平集方法不仅可以描述目标形状的形变模式,而且可大大降低目标形状水平集表达、训练形状配准和水平集曲面分布统计分析的计算复杂度。同时,因为该模型采用符号距离水平集函数描述目标形状边界(轮廓),所以建模时不需要目标形状标志点及其对应关系。青光眼病人视盘形变统计建模实验结果表明,该模型是一种非常有效的目标形状统计建模方法。
     3)在最大后验概率(MAP: maximum a posteriori)准则下提出了一个集成形状先验知识的图像分割变分模型,即集成形状窄带水平集分布统计模型的统计多层Mumford-Shah向量值图像分割模型。该模型采用窄带水平集分布模型表达形状先验知识,并在最大目标形状参数后验概率准则下,将目标形状先验知识集成到多层Mumford-Shah向量值图像分割模型中,使该模型具有更坚实的理论基础和更大的灵活性。直接在形状水平集空间内通过目标形状水平集曲面的演化实现分割图像,使水平集曲面演化过程既依赖于当前图像特征向量(如R、G、B值),也依赖于目标形状的局部形变先验知识。早期青光眼病人彩色视乳头图像中视盘的分割实验结果表明该模型可有效地分割被血管部分遮挡的视乳头图像。
     4)基于多层Mumford-Shah向量值图像分割、去噪与重建模型和光滑样条曲线拟合技术,提出了一种用于计算机辅助青光眼诊断的视乳头图像视杯和视盘重建、分割与度量的新方法。首先,采用多层模型分割和重建视杯和视盘;然后,基于重建的视乳头图像,结合青光眼视乳头图像杯、盘的先验知识,提取视杯和视盘特征矩形和边缘特征点;最后,采用光滑样条曲线拟合技术,重建被血管遮挡的视杯和视盘部分边缘,并计算杯盘比等病理特征参数值。不同青光眼病人的视乳头图像杯盘重建、分割与度量实验结果表明,该方法能克服噪声污染、血管遮挡、光照不均匀、对比度小、个体间差异大等视网膜图像分割中固有的困难,并能有效重建、分割与度量中、晚期青光眼彩色视乳头图像中的视杯和视盘。
     5)提出了一种新的InSAR相位解缠算法,它基于InSAR干涉图的相位导数方差质量图和多层Mumford-Shah图像模型,先采用水平集逐层迭代算法对相位导数方差质量图进行逐层分割以确定具有不同质量特性的InSAR干涉图子连通区域,再在此基础上采用改进的Itoh解缠法从高质量区域向低质量区域对InSAR干涉图像像元进行相位解缠。真实的和模拟的InSAR干涉图实验结果表明该算法比现有的如枝切法等InSAR干涉图相位解缠方法更有效。
To solve the key problems of the segmentation and measurement of optic nerve head medical images , which are of poor quality, very low contrast, obscure due to blood vessels, and distinct inter-differences of individuals, for the computer aided diagnostics of glaucoma, Diabetic Retinopathy, and Age-related Macular Degeneration diseases, several novel models and methods are proposed based on level set methods and Mumford–Shah functional defined in the class of Special functions of Bounded Variation(SBV), which are the hierarchical Mumford–Shah functional model(HMSM or HMSMv) for the simultaneous segmentation, denoise and reconstruction of the given scalar or vector-valued image, the narrow band level set based statistical shape distribution model (NLDM) for the representation of the prior knowledge of“legal”variation in the shape of a class of object, the statistical shape prior-based hierarchical Mumford–Shah model by incorporating prior knowledge(SHMSMv) for the recognition of the object in an image which is similar to the training shapes. Several experimental results for the segmentation and measurement of the color medical images of the optic nerve head, the segmentation and reconstruction of a pathology image of the human brain and a color Doppler ultrasound image of the heart, and the phase unwrapping of a SAR interferogram are supplied, demonstrating the effectiveness of our proposed solutions and indicating their potential.
     To summarize, the original contributions and applications of our work are the following:
     1)A novel hierarchical Mumford–Shah functional model is addressed to simultaneously segment, denoise and reconstruct the data within a given scalar or vector-valued image(HMSM or HMSMv), and to handle important image features such as triple points and other multiple junctions, which can be seen as a hierarchical case of the Mumford–Shah minimal partition problem. At the same time, a new iterative tier-by-tier algorithm based on techniques of level set is proposed to minimize the functional, which is more effective and more simply than existing algorithms such as the hierarchical approach proposed by Tsai A et al. and the multiphase level set methods proposed by Chan T et al.
     2)A novel narrow band level set based statistical shape distribution model is proposed, namely NLDM, which is to modeling the pattern of“legal”variation in the shape of an object from a given class of training images which are of complex and variable structures and provide noisy and possibly incomplete evidence, such as medical images. At the same time, a new alignment model based on narrow band level set is proposed also, which is a modified version of the gradient-based approach from a variational perspective proposed by A. Tsai et al. and align more efficiently all the training shapes to eliminate variations in pose. Modeling the shape of the optic nerve head in color fundus medical images demonstrates its efficacy.
     3)A novel NLDM-based statistical hierarchical Mumford–Shah model(SHMSMv) by incorporating prior knowledge is proposed to segment medical images. First, a statistical shape model based on NLDM is established to represent the prior knowledge of the expected shapes of structures from a given class of training images. Then, the statistical shape model is integrated with a level set-based hierarchical Mumford–Shah modelm by maximum a posteriori(MAP). This novel model can segment vector-valued images whose boundaries are not necessarily defined by gradient, and specially recognise the object in an image which is similar to the training shapes. We demonstrate this technique by applying it to the segmentation of the optic disk in color optic nerve head images of early glaucoma patients.
     4)A HMSMv-based method was proposed to reconstruct, segment and measure the optic cup and disk in a color image of optic nerve heads for the computer aided diagnostics of glaucoma diseases. First, a hierarchical Mumford–Shah model was employed to reconstruct the optic cup and disk. Then, the optic cup and disk characteristic rectangles and edge points were extracted based on the color reconstruct image of an optic nerve head by incorporating the prior knowledge of the optic cup and disk shapes. Finally, smoothing spline curve fitting was resorted to reconstruct the edges of the optic cup and disk obscured by blood vessels, and the measurements of the optic cup and disk were estimated. The tests with the color optic nerve head images of different glaucoma patients showed that this method is able to handle this kind of images, which are of poor quality, very low contrast, obscure due to blood vessels, and distinct inter-differences of individuals and to effectively segment, reconstruct and measure the optic cup and disk in a color of optic nerve head images of glaucoma patients.
     5)A novel HMSM-based algorithm was proposed in this paper for InSAR phase unwrapping. To determine the connected components in an InSAR whose quality are distinct, the quality image defined by the variance of the derivative of the phase of an InSAR was first segmented based on the hierarchical Mumford--Shah functional model by an iterative tier-by-tier level set algorithm. Then, SAR interferogram was unwrapped independently in these components by improved Itoh unwrapping algorithm ,first in the best quality component, then the better quality one, and finally the worst quality one, and so on. The phase unwrapping results on real and simulated SAR interferograms show that the algorithm is more effective than some existing algorithms such as the branch-cut algorithm.
引文
[1]Mumford D, Shah J. Boundary detection by minimizing functionals. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition. San Francisco,CA,1985:22-26
    [2]Mumford D, Shah J. Optimal approximation by piecewise smooth functionsand associated variational problems.Communications on Pure and AppliedMathematics, 1989,42(4):577-685
    [3]Ambrosio L. A compactness theorem for a special class of functions ofbounded variation.Bollettino dell'Unione Matematica Italiana, 3(B):857-881,1989
    [4]Ambrosio L. Existence theory for a new class of variational problems. Arch.Rational Mech.Anal, 111(2) : 291-322, 1990
    [5]Ambrosio L, Fusco N, Pallara D. Functions of bounded variation and freediscontinuity problems. Oxford: Oxford Science Publications, 1999, 1-456
    [6]De Giorgi E, Carriero M, and Leaci A. Existence theorem for a minimumproblem with free discountinuity set. Archives for Rational Mechanics andAnalysis,108(2): 195-218, 1989.
    [7]Ambrosio L. Variational Problems in SBV and Image Segmentation. ActaApplicandac mathematicae, 17(1): 1-40,1989
    [8]Dal Maso E, Morel J M, and Solimini S. A variational method in imagesegmentation: existence and approximation results.Acta Matematica, 168(1):89-151, 1992.
    [9]Morel J M and Solimini S. Variational Methods in Image Segmentation.Boston, MA, USA: Birkhauser, 1995, 1-245
    [10]Morel J M and Solimini S. Segmentation of images by variational methods: aconstructive approach. Revista Matemtica de la Universidad Complutense deMadrid,l(l):169.182, 1988
    [11]Ambrosio L and Tortorelli V. Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence.Communication Pure Applied Mathematics., XLIII: 999-1036, 1990.
    [12]Alberti G, Bouchitte G, Dal Maso G. The calibration method for theMumford-Shah functional and free-discontinuity problems. Calculus ofVariations, http://cvgmt.sns.it/papers/ , 2003
    [13]Osher S, Sethian J A.. Fronts Propagating with Curvature DependentSpeed:Algorithms Based on Hamilton-Jacobi Formulations. Journal ofComputational Physics, 1988,79(l):12-49
    [14]Sethian J A. Level Set Methods and Fast Marching Methods. New York:Cambridge University Press,1999,165-349
    [15]Osher S, Fedkiw R P, Level Set Methods and Dynamic Implicit Surfaces. NewYork: Springer-Verlag New York ,Inc, 2002, 95-258
    [16]Caselles V, Catte F, Coll T, and Dibos F. A geometric model for activecontours in image processing, Numerische Mathematik, 1993, 66(1): 1-31
    [17]Malladi R, Sethian J, and Vemuri B. A topology independent shape modelingscheme. In: SPIE Proceedings of Geometric Methods in Computer Vision II.Washington, USA : SPIE-The International Society for Optical Engineering,1993,2031:246-256
    [18]Osher S, Paragios N. Geometric Level Set Methods in Imageing',Vision,andGraphics, New York: Springer-Verlag New York ,Inc, 2003, 175-194
    [19]Crandall M G and Lions P L.Viscosity Solutions of Hamilton-Jacobi Equations.Transactions of American Mathematical Society, 1983,277(1): 1-42
    [20]Osher S. Riemann Solvers, the Entropy Condition, and DifferenceApproximations. SIAM(Society for Industruial and Applied Mathematics)Journal in Numerical Analysis, 1984,21(2): 217-235
    [21]Crandall M G and Lions P L. Two approximations of solutions ofHamilton-Jacobi equations, Mathematics of Computation, 1984,43(167): 1-19
    [22]Bardi and Osher S. The Nonconvex Multi-Dimensional Riemann Problem forHamilton-Jacobi Equations. SIAM Journal on Mathematical Analysis,1991,22(2): 344-351
    [23]Osher S and Shu C W. High-Order Essentially Nonoscillatory Schemes forHamilton-Jacobi Equations. SIAM Journal in Numerical Analysis, 1991,28(4):907-922
    [24]Harten A, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. , 1983,49 (3): 357-393
    [25]Harten A, Engquist B, Osher S, and Chakravarthy S. Uniformly High OrderAccurate Essentially Non-Oscillatory Schemes III. Journal of ComputationalPhysics, 1987,71(2): 231-303
    [26]Shu C W and Osher S. Efficient Implementation of EssentiallyNon-Oscillatory Shock Capturing Schemes. Journal of Computational Physics,1988,77(2): 439-471
    [27]Shu C W and Osher S. efficient Implementation of EssentiallyNon-Oscillatory Shock Capturing Schemes II.Journal of ComputationalPhysics, 1989,83(1): 32-78
    [28]Liu X D, Osher S, and Chan T. Weighted Essentially Non-Oscillatory Schemes.Journal of Computational Physics, 1994,115(1): 200-212
    [29]Jiang G S and C.W. Shu C W. Efficient Implementation of Weighted ENOSchemes. Journal of Computational Physics, 1996,126(1): 202-228
    [30]Serna S, Marquina A. Power ENO methods: a fifth-order accurate WeightedPower ENO method. Journal of Computational Physics ,2004,194(2): 632-658
    [31]Adalsteinsson D and Sethian J. A Fast Level Set Method for PropagatingInterfaces. Journal of Computational Physics, 1995,118(2):269-277
    [32]Peng D, Merriman B, Osher S, Zhao H K, and Kang M. A PDE-Based FastLocal Level Set Method. Journal of Computational Physics,1999,155(2):410-438
    [33]Tsai R. Rapid and Accurate Computation of the Distance Function UsingGrids.Journal of Computational Physics, 2002,178(1): 175.195
    [34]Adalsteinsson D and Sethian J. The Fast Construction of Extension Velocitiesin Level Set Methods.Journal of Computational Physics, 1999,148(l):2-22
    [35]Sussman M, Smereka P, and Osher S. A Level Set Method for ComputingSolutions to Incomprenissible Two-Phase Flow. Journal of ComputationalPhysics, 1994,114(1):146-159
    [36]Zhao H K, Chan T, Merriman B, and Osher S. A variational Level SetApproach to Multiphase Motion. Journal of Computational Physics,1996,127(1):179-195
    [37]Deschamps T, Malladi R, and Ravve I. Fast Evolution of Image Manifolds andApplication to Filtering and Segmentation in 3D Medical Images. IEEETRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2004,10(5): 525-535
    [38]Mitchell I M. A Toolbox of Level Set Methods.http://www.cs.ubc.ca/_mitchell. 2004
    [39]Kass M, Witkin A, and Terzopoulos D. Snakes: Active Contour Models.International Journal of Computer Vision, 1988,1(4):321.332
    [40]Cohen L. On active contour models and balloons. CVGIP: ImageUnderstanding, 1991,53(2):211 -218
    [41]Mclnerney T and Terzopoulos D. Topology Adaptive Deformable Surfaces forMedical Image Volume Segmentation. IEEE Transactions on Medical Imaging,1999,18(10):840.850
    [42]Mclnerney T and Terzopoulos D. T-snakes: Topology Adaptive Snakes.Medical Image Analysis, 2000,4(l):73-91, 2000.
    [43]Malladi R, Sethian J, and Vemuri B. Shape modeling with front propagation:A level set approach. IEEE Trans. Pattern Anal. Machine Intell.,1995, 17(2):158-175
    [44]Caselles V, Kimmel R, Sapiro G, and Sbert C. Minimal surfaces based objectsegmentation. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1997, 19(4): 394-398
    [45]Caselles V, Morel J M, Sapiro G, and Tannenbaum A. Introduction to thespecial issue on PDEs and geometry-driven diffusion in image processing andanalysis. IEEE Transactions on Image Processing, 1998,7(3):269-274
    [46]Xu C and Prince J. Snakes, Shapes, and Gradient Vector Flow. -IEEETransactions on Image Processing, 1998,7(3): 359-369
    [47]Caselles V, Coll B, and Morel J M. Topographic Maps and Local ContrastChanges in Natural Images. International Journal of Computer Vision, 1999,33(1): 5-27
    [48]Paragios N, Mellina-Gottardo O, and Ramesh V. Gradient Vector Flow FastGeometric Active Contours. IEEE TRANSACTIONS ON PATTERNANALYSIS AND MACHINE INTELLIGENCE, 2004,26(3): 402-407
    [49]Caselles V, Kimmel R, and Sapiro G. Geodesic Active Contours. InternationalJournal of Computer Vision, 1997, 22(1): 61-79
    [50]Yezzi A, Kichenassamy S, Kumar A, et al. A Geometric Snake Model forSegmentation of Medical Imagery, IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997,16(2): 199-209
    [51]Siddiqi K, Lauziere Y B, Tannenbaum A, and Zucker S. Area and LengthMinimizing Flow for Shape Segmentation. IEEE Transactions on ImageProcessing, 1998, 7(3):433-443
    [52]Paragios N and Deriche R. Geodesic Active Contours and Level Sets for theDetection and Tracking of Moving Objects. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2000, 22(3): 266-280
    [53]Paragios N and Deriche R. Geodesic Active Regions Level Set Methods forSupervised Texture Segmentation.International Journal of Computer Vision,2002,46(3): 223-247
    [54]Paragios N and Deriche R. Geodesic Active Regions: A New Framework toDeal with Frame Partition Problems in Computer Vision. Journal of VisualCommunication and Image Representation, 2002,13(1-2): 249-268
    [55]Chan T and Vese L, Active contours without edges. IEEE Trans.ImageProcessing, 2001,10(2):266-277
    [56]Chan T, Sandberg B Y, Vese L. Active Contours without Edges forVector-Valued Images. Journal of Visual Communication and ImageRepresentation, 2000,11(2): 130-141
    [57]Vese V and Chan T. A Multiphase Level Set Framework for ImageSegmentation Using the Mumford and Shah Model. International. Journal ofComputer Vision, 2002, 50(3):271-293
    [58]Tsai A, Yezzi A, Willsky A. Curve Evolution Implementation of theMumford-Shah Functional for Image Segmentation,Denoising, Interpolation,and Magnification. IEEE Trans.Image Processing, 2001,10(8): 1169-1186
    [59]Yezzi A, Tsai A, and Willsky A. A Fully Global Approach to ImageSegmentation via Coupled Curve Evolution Equations. Journal of VisualCommunication and Image Representation, 13(1-2): 195-216, 2002.
    [60]Gao S and Bui T D. Image Segmentation and Selective Smoothing by UsingMumford-Shah Model, IEEE TRANSACTIONS ON IMAGE PROCESSING,2005, 14(10):1537-1549
    [61]Zeng X, Staib L H, Schultz R T, Duncan J S. Segmentation and measurementof the cortex from 3D MR images using coupled surfaces propagation. IEEETrans. Med. Imaging, 1998,18(10): 100-111
    [62]Xu C, Pham D, Rettmann M, Yu D, and Prince J. Reconstruction of the FlumanCerebral Cortex from Magnetic Resonance Images. IEEE Transactions on Medical Imaging, 1999,18(6): 467-480
    [63]Dale A, Fischl B, and Sereno M. Cortical Surface-based Analysis I:Segmentation and Surface Reconstruction. Neurolmage, 1999, 9(2):179-194
    [64]MacDonald D, Kabani N, Avis D, and Evans A. Automated 3-D Extraction ofInner and Outer Surfaces of Cerebral Cortex from MRI.NeuroImage,2000,12(3):340-356
    [65]Han X, Xu C, Braga-Neto U, and Prince J. Topology Correction in BrainCortex Segmentation Using a Multiscale, Graph-based Algorithm. IEEETransactions on Medical Imaging, 2002, 21(2): 109-121
    [66]Han X; Xu C, Prince J L. A topology preserving level set method forgeometric deformable models. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2003, 25(6):755 -768
    [67]Cootes T F, Taylor C J, Cooper D, and Graham J. Active Shape Models-TheirTraining and Application. Computer Vision and Image Understanding, 1995,61(1): 38-59
    [68]Cootes T F, Edwards G J, and Taylor C J. Active Appearance Models. IEEETRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE, 2001, 23( 6): 681-685
    [69]Cootes T F and Taylor C J. A mixture model for representing shape variation.Image and Vision Computing, 1999, 17(8):567-574
    [70]Cootes T F, Cooper D H, Taylor C J, and Graham J. A trainable method ofparametric shape description. Image and Vision Computing, 1992,10(5):289-294
    [71]Davies R H, Twining C J, Cootes T F, et al. A Minimum Description LengthApproach to Statistical Shape Modeling. IEEE TRANSACTIONS ONMEDICAL IMAGING, 2002, 21(5): 525-537
    [72]Frangi A F, Rueckert D, Schnabel J A, and Niessen W J., AutomaticConstruction of Multiple-Object Three-Dimensional Statistical ShapeModels:Application to Cardiac Modeling. IEEE TRANSACTIONS ONMEDICAL IMAGING, 2002,21(9): 1151-1166
    [73]Hill A and Taylor C J. A framework for automatic landmark identificationusing a new method of nonrigid correspondence. IEEE Trans. Pattern Anal.Machine Intell., 2000,22(5): 241-251
    [74]Kelemen A, Szekely G, and Gerig G. Elastic model-based segmentation of 3-Dneuroradiological data sets. IEEE Trans. Med. Imag., 1999,18(10):28-839
    [75]Kotcheff A C W and Taylor C J. Automatic construction of eigenshape modelsby direct optimization. Med. Image Anal., 1998,2(4): 303-314
    [76]Tagare H D. Shape-based nonrigid correspondence with application to heartmotion analysis. IEEE Trans. Med. Imag., 1999, 18(7): 434-349
    [77]Bookstein F L. Landmark methods for forms without landmarks:Morphometrics of group differences in outline shape. Med. Image Anal.,1997,1(3): 225-243
    [78]Leventon M, Grimson E, Faugeras 0. Statistical shape influence in geodesicactive contours", Proc. IEEE Conference on Computer Vision and PatternRecognition, Hilton Head Islands,South California, Los Alamatos, CA, USA ,2000,1:316-323
    [79]Chen Y, Tagare H et al. Using Shape Priors in Geometric Active Contours in aVariational Framework. Int'l J. Computer Vision, 2002,50(3): 315-328
    [80]Tsai A, Yezzi A et al. A Shape-Based Approach to the Segmentation ofMedical Imagery Using Level Sets. IEEE TRANSACTIONS ON MEDICALIMAGING, 2003, 22(2): 137-154
    [81]Yang J, Duncan J S. 3D image segmentation of deformable objects with jointshape-intensity prior models using level sets. Medical Image Analysis, 2004,8(3) 285-294
    [82]Charpiat G, Faugeras O, and Keriven R. Approximations of shape metrics andapplication to shape warping and empirical shape statistics. Journal ofFoundations Of Computational Mathematics, 2005, 5(1): 1-58
    [83]Cremers D, Funka-Lea G. Dynamical Statistical Shape Priors for Level SetBased Tracking. IEEE Trans. Pattern Anal. Mach. Intell., 2006,28(8): 681-685
    [84]Rousson M, Paragios N. Prior Knowledge, Level Set Representations andVisual Grouping. International Journal of Computer Vision, 2007, to appear.
    [85] 杨莉,杨新.基于区域划分的曲线演化多目标分割.计算机学报,2004,27(3):420-425
    [86] 李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法.计算机学报,2002,25(11):1175-1183 .
    [87] 王峥,杨新,施鹏飞.基于窄带Mumford-Shah模型的图像分割方法(英文).红外与毫米波学.2002,21(3):161-166
    [88] 杨莉,杨新.基于水平集方法的多运动目标分割.上海交通大学学报,2004,38(5):713-717
    [89] 王峥,杨新,李俊,施鹏飞.水平集方法中曲线跟踪算法的改进.上海交 通大学学报,2002,36(12):1833-1836
    [90] 王峥,杨新,李俊,施鹏飞.提高水平集方法初始化计算速度的研究.信 号处理,2002,18(2):97-101
    [91] 杨新,李俊,施鹏飞.对水平集方法鲁棒初始化的双向快速步进法.系统 仿真学报,200l,13增刊:163-167
    [92] 肖亮,吴慧中,韦志辉,汤淑春.图像分割中分段光滑Mumford-Shah模型 的水平集算法.计算机研究与发展,2004,41(1):129-135.
    [93] 蔡超,周成平,丁明跃,张天序.基于C_V方法改进的红外图像自动分割. 华中科技大学学报(自然科学版),2006,34(3):62-64
    [94] 郑罡,王惠南,李远禄,汤敏.基于Chan_Vese模型的目标多层次分割算 法.中国图象图形学报,2006,11(6):804-810
    [95] 周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建.计 算机研究与发展,2006,42(7):1173-1178
    [96] 张建伟,夏德深. 基于双水平集的图像分割模型,计算机研究与发展, 2006,43(1):120-125
    [97] 陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割. 计算机学报,2005,28(6):991-999
    [98] 陈强,周则明,王平安,夏德深.带标记线左心室MR图像的自动分割.中国 图象图形学报,2004,9(6):666-673
    [99] 周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏 MRI图像分割.系统仿真学报,2005,17(1):129-133
    [100]段先华,夏德深.基于目标监督的先验形状level set模型分割心脏MR图 像.江苏科技大学学报(自然科学版),2006,20(1):51-56
    [101]张建伟,刘聪,夏德深.基于非线性扩散滤波的水平集模型MRl分割.计 算机工程与设计,2006,27(18):3553-3381
    [102]朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割.软 件学报,2002,13(9):1866-1872.
    [103]于洪川,王德军,唐泽圣,唐龙.水平集演化中的奇点与改进的窄带算法. 软件学报,2003,14(4):811-817
    [104]冯志林,尹建伟,石慧,陈刚,董金祥.提花织物纹理的Allen-Cahn水平 集去噪方法,计算机辅助设计与图形学学报.2004,16(8):1033-1039
    [105]黄福珍,苏剑波,席裕庚.基于几何活动轮廓模型的人脸轮廓提取方法.中 国图象图形学报,2003,8(A)(5):546-550
    [106]肖昌炎,赵永明,张素,陈亚珠.水平集方法中符号距离函数快速重构.信 号处理,2003,19(6):551-555
    [107]林亚忠,程跃斌,陈武凡.一种水平集分割的快速算法.南方医科大学学 报,2006,26(6):764-766
    [108]金大年,杨丰,陈武凡. 基于贝叶斯分类的水平集MR图像分割方法.中 国医学物理学杂志,2005,22(4):568-571
    [109]马波, 张田文.基于曲线进化的目标检测算法.信号处理, 2003.19(3):237-241[11O]吴仲乐,王遵亮,罗立民. 基于GPU的快速Level Set图像分割.中国图 象图形学报,2004,9(6):679-683
    [111]张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片 图像分割.中国图象图形学报,2004,9(12):1459-1465
    [112]贾迪野,黄凤岗,文小芳.一种全局优化的水平集图像分割方法.中国图 象图形学报,2005,10(1):25-30
    [113]罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术. 中国图象图形报,2006,11(3):301-309
    [114]李俊韬,张海,范跃祖. 复杂交通场景中多运动目标分割算法.北京航空 航天大学学报,2006,32(3):297-300
    [115]罗宏文,马驷良,徐中宇.基于水平集方法的显微细胞图像分割.吉林大 学学报(理学版).2006,44(5):760-763
    [116]朱昀,杨杰,于志强.基于混合水平集模型的CT颅面眼眶分割.生物医学 工程学杂志,2005,22(5):875-879
    [117]余瑞星,李言俊,张科. 利用对数极坐标的快速水平集算法. 光电工程, 2006.33(5):71-75
    [118]魏颖,徐心和,贾同,赵大哲. 基于优化水平集方法的CT图像肺结节 检测算法.系统仿真学报,2006,18(suppl2):909-915
    [119]刘国才,王耀南.基于水平集逐层迭代算法的多层Mumford-Shah图像分 割、去噪与重建模型.自动化学报,2006,32(4):534-540
    [120]刘国才,王耀南.多层Mumford-Shah向量图像分割、去噪与重建模型.自 动化学报, 2007,33(6):602-607
    [121]刘国才,王耀南,全惠敏.基于多层Munford-Shan向量模型的彩色视乳头 图像杯盘重建、分割与度量. 中国生物医学工程学报,2007,26(4):97-105
    [122]李灿飞,王耀南,刘国才.基于Chan-Vese分段平滑的分裂新模型.自动化 学报,2007,33:待出版
    [123] Guo-cai Liu, Yao-nan Wang, Shu-rong Peng, et.al. Statistical Shape-Based Hierarchical Mumford-Shah Model for the Segmentation of Medical Images. In: . WACBE Proceedings of The 3rd WACBE World Congress on Bioengineering. Bangkok, Thailand: WACBE, 2007
    [124] Yao-nan Wang, Guo-cai Liu ,Xuan-Chu Duan. Statistical Shape Model for Computer Vision Based on Narrowband Level Set. IEEE TRANSACTIONS on PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 2007.3 投修改稿
    [125] Guo-cai Liu, Yao-nan Wang, Shu-rong Peng, Can-fei Li, and Xuan-Chu Duan. Hierarchical Mumford-Shah Functional Combined with Narrowband Level Set Statistical Shape Model. IEEE TRANSACTIONS on Medical Imaging. 2007.1 投稿
    [126] 何儒云,王耀南,刘国才,基于多层Mumford-Shah模型的InSAR干涉图相位解缠法,电子学报,2006.11投稿
    [127] Kruse F E, Burk R, Volcker H E, et al. Reproducibility of topographicmeasurements of the optic nerve head with laser tomographic scanning.Ophthalmology, 1989, 96(9): 1320-1324.
    [128] Wollstein G, Garway-Heath D F, Hitchings R A. Identification of earlyglaucoma cases with the scanning laser ophthalmoscope. Ophthalmology,1998, 105(9): 1557-1563.
    [129] Morgan J E, Sheen J L, North R V, et al. Discrimination of glaucomatousopticneropathy by digital stereoscopic analysis. Ophthalmology, 2005, 112(5):855-862.
    [130]罗知卫,段宣初,蒋幼芹等.GDx VCC检测原发性开角型与可疑青光眼视网膜神经纤维层损害的对比研究.眼科,2005,14(2):104-108.
    [131] Stein D M, Ishikawa H, Hariprasad R, et al. A new quality assessment parameter for optical coherence tomography. Br J Ophthalmol, 2006, 90(2):186-190.
    [132] Ishikawa H, Gabriele M L, Wollstein G et al. Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking. Invest Ophthalmol Vis Sci., 2006, 47(3):964-967.
    [133] Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology, 1991, 98(5 Suppl): 807-822.
    [134] Hee M R,Puliafito C A,Duker J S,et al. Topography of Diabetic macular edema with optical coherence Tomography. Ophthalmology, 1998, 105(2): 360-370.
    [135] Storm C, Sander B, Larsen N, et al. Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci., 2002, 43(1): 241-245.
    [136] Guan K, Hudson C, Flanagan J G. Comparison of Heidelberg Retina Tomograph II and Retinal Thickness Analyzer in the assessment.of diabetic macular edema. Invest Ophthalmol Vis Sci., 2004, 45(3): 610-616.
    [137]杨文利,魏文斌,王景昭,年龄相关性黄斑变性的彩色多普勒超声影像特征.中华眼科杂志,2005,41(4):300-304.
    [138] Pieroni C G, Witkin A J, Ko T H, Ultrahigh resolution optical coherencetomography in non-exudative age related macular degeneration. Br. J.OpHthalmol, 2006, 90(2): 191-197.
    [139] Quaranta-E 1 Maftouhi M, Mauget-Faysse M. Anomalous vitreoretinaladhesions in patients with exudative age-related macular degeneration: AnOCT study. Eur J Ophthalmol, 2006, 16(1): 134-137.
    [140] Neubauer A S, Thiel M, Priglinger S, et al. Mapping of the retinal pigmentepithelium in exudative age related macular degeneration. Graefes Arch ClinExp Ophthalmol, 2005, 18(l):1-10.
    [141] Soliman M A,Van Den Berg T J, Ismaeil A A,et al. Retinal nerve fiber layeranalysis relationship between optical coherence tomography and red-freephotography. Am J Ophthalmol, 2002, 133(2): 187-195.
    [142] Medeiros F A, Zangwill L M,Bowd C,et al. Comparison of the GDxVCCscanning laser polarimeter, HRT-II ,confocal scanning laserophthalmoscope,and Stratus OCT optical coherence tomography for thedetection of glaucoma. Arch Ophthalmol, 2004, 122(6): 827-837.
    [143] Quigley H A., Katz J, Derick, RJ, et al. An evaluation of optic disc and nervefiber layer examinations in monitoring progression of early glaucoma damage.Ophthalmology, 1992, 99 (l):19-28.
    [144] Mardin C Y, Horn F K. Influence of optic disc size on the sensitivity of theHeidelberg Retina Tomograph. Archive for Clinical and ExperimentalOphthalmology, 1998,236 (9):641-645.
    [145] Iester M, Mikelberg F S, Courtright, et al. Interobserver variability of optic disk variables measured by confocal scanning laser tomography. American Journal of Ophthalmology 2001,132 (l):57-62.
    [146]徐亮.识别早期青光眼视神经损害的新概念.眼科,2003,12(6):324-326.
    [147]徐亮.青光眼视神经的定量检测.见李美玉主编,青光眼学,第一版.北京: 人民卫生出版社,2004,174-181.
    [148]罗知卫,段宣初.GDxVCC系统在青光眼早期诊断和随访中的应用.国际眼科杂志,2005,5(3):513-517.
    [149] Chrastek R, Wolf M, Donath K, et al. Automated segmentation of the opticnerve head for diagnosis of glaucoma. Medical Image Analysis, 2005, 9(4):297-314.
    [150] Lowell J, Hunter A, Steel D, et al. Optic Nerve head segmentation. IEEETransaction on Medical Imaging. 2004, 23( 2): 256-264.
    [151] Morris D T, Donnison C. Identifying the neuroretinal rim boundary usingdynamic contours. Image and Vision Computing, 1999, 17(3): 169-174.
    [152] Chanwimaluang T, Fan G. An efficient algorithm for extraction of anatomicalstructures in retinal images. In:Proceedings of the International Conference(ICIP 2003) of the Image Processing, Barcelona, Catalonia, Spain: IEEE Press,2003. 1:1-1093-1096.
    [153] Mendels F, Heneghan C, Thiran J P. Identification of the optic disk boundaryin retinal images using active contours. In:Proceedings of the Irish MachineVision and Image Processing Conference (IMVIP_99). Dublin, Ireland: IEEEPress, 1999. 103-115.
    [154] Mendels F, Heneghan C, Harper PD, et al. Extraction of the optic discboundary in digital fundus images. In: Proceedings of The First JointBMEWMBS Conferma, Serving Humanity, Advancing Tachnology. Atlanta,GA, USA: IEEE Press, 1999. 1139.
    [155] Lee S. Visual monitoring of glaucoma. Oxford: Robotics Research Group,Department of Engineering Science, University of Oxford, 1991.
    [156] Pinz A, Bernogger S, Datlinger P, et al. Mapping the human retina. IEEETransaction on Medical Imaging. 1998, 17(4): 606-619.
    [157] Lee S Y, Kim K, Seo J M, et al. Automated quantification of retinal nervefiber layer atrophy in fundus photograph. In: Proceedings of the 26th AnnualInternational Conference of the IEEE EMBS. San Francisco, CA, USAdEEEPress, 2004. 1241-1243.
    [158] Liu Zheng , Opas C, Krishnan S M. Automatic image analysis of fundusphotograph. In: Proceedings - 19th International Conference IEEE/ETV1BS.Chicago, IL USA: IEEE Press, 1997. 524-525.
    [159] Li Huiqi, Chutatape 0. Fnndus image features extraction. In:Proceedings ofthe 22d Annual EMBS International Conference, Chicago IL USA:IEEE Press,2000.3071-3073.
    [160] Koozekanani D, Boyer K L, Roberts C. Tracking the optic nerve head in OCTvideo using dual eigenspaces and an adaptive vascular distribution model.IEEE Transaction on Medical Imaging. 2003, 22(12): 1519-1536.
    [161] Lalonde M, Beaulieu M, Gagnon L. Fast and robust optic disc detection usingpyramidal decomposition and Hausdorff-Based template matching. IEEETransaction on Medical Imaging. 2001, 20(11): 1193-1200.
    [162] Trucco E, Kunmt P J. Locating the optic disk in retinal images via plausibledetection and constraint satisfaction. In;International Conference on ImageProcessing. Singapore: IEEE Press, 2004. 155-158.
    [163] Foracchia M, Grisan E, Ruggeri A. Detection of optic disc in retinal images bymeans of a geometrical model of vessel structure. IEEE Transaction onMedical Imaging. 2004, 23(10):l 189-1195.
    [164] Hoover A, Goldbaum M. Locating the optic nerve in a retinal image using thefuzzy convergence of the blood vessels. IEEE Transaction on Medical Imaging.2003, 22(8): 951-958.
    [165] Li Huiqi, Chutatape O. Automated feature extraction in color retinal images bya model based approach. IEEE Transaction on Biomedical Engineering. 2004,51(2): 246-254.
    [166] Walter T, Klein J, Massin P, Erginay A. A contribution of image processing tothe diagnosis of diabetic retinopathy梔etection of exudates in color fundusimages of the human retina. IEEE Transaction on Medical Imaging. 2002,21(10): 1236-1243.
    [167] Corona E, Mitra S, Wilson M, et al. Digital stereo image analyzer forgenerating automated 3-D measures of optic disc deformation in glaucoma.IEEE Transaction on Medical Imaging. 2002, 21(10): 1244-1253.
    [168] Kong H J, Kim S K, Seo J M, et al. Three dimensional reconstruction ofconventional stereo optic disc image. In: Proceedings of 26th AnnualInternational Conference of the Engineering in Medicine and BiologySociety. San Francisco, CA, USA: IEEE Press, 2004. 1229 -1232.
    [169] Kolfa R. Surface reconstruction from retinal laser images. In: Proceedings ofthe 26th Annual International Conference of the IEEE EMBS. San Francisco,CA, USA : IEEE Press, 2004. 1233-1236.
    [170] Ramirez M, Mitra S, Kher A, et al. 3-D digital surface recovery of the opticnerve head from stereo fundus images. In: Proceedings of the Fifth AnnualIEEE Symposium of the Computer-Based Medical Systems. Durham, NorthCarolina , USA: IEEE Press, 1992, 284 -291.
    [171] Matsopoulos G K, Mouravliansky N A, Delibasis K K, Nikita K S, Automaticretinal image registration scheme using global optimization techniques. IEEETransactions on Information Technology in Biomedicine ,1999, (3) :47-60.
    [172] Kubecka L, Jan J. Registration of Bimodal Retinal Images" ImprovingModifications. In: Proceedings of the 26th Annual International Conference ofthe IEEE EMBS San Francisco, CA, USA, 2004, 1-5: 1695-1698.
    [173] Kubecka L, Skokan M, Jan J. Optimization Methods for Registration ofMultimodal Images of Retina. In: Proc. 25th Annual Int. Conf IEEE-EMBS,Cancun, Mexico: IEEE Press, 2003, 599-601.
    [174] Skokan M, Skoupy A, Jan J. Registration of Multimodal Images of Retina. InProc. 24th conference of IEEE EMBS, Houston, USA: IEEE Press, 2002,1094-1096.
    [175] Ritter N, Owens R, Cooper J, et al. Registration of stereo and temporal imagesof the retina. IEEE Trans.Med. Imag., 1999,18(5): 404-418.
    [176] Nunes J C, Bouaoune Y, Delechelle E, and Bunel P. A multiscale elasticregistration scheme for retinal angiograms. Computer Vision and ImageUnderstanding, 2004, 95(2): 129-149
    [177] Markow M S, Rylander H G, Welch A J. Real-time algorithm for retinaltracking, IEEE Transactions on Biomedical Engineering, 1993 ,40(12):1269-1281.
    [178] Zana F and Klein J C. A multimodal registration algorithm of eye fundusimages using vessels detection and Hough transform. IEEE Trans. Med. Imag.,1999, 18(5): 419-428.
    [179] Lin G, Stewart C V, Roysam B, et al. Predictive Scheduling Algorithms forReal-Time Feature Extraction and Spatial Referencing: Application to RetinalImage Sequences. IEEE Transactions on Biomedical Engineering, 2004, 51(1):115-125.
    [180] Can A, Stewart C V, Roysam B, et al. A featurebased, bobust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3):347-364.
    [181] Can A, Stewart C V, Roysam B, Tannenbaum H L. A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: mosaicing the curved human retina. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4):412-419.
    [182] Matsopoulos G K, Asvestas P A, Mouravliansky N A, and Delibasis K K. Multimodal Registration of Retinal Images Using Self Organizing Maps. IEEE Trans. Med. Image, 2004, 23(12): 1557-1563.
    [183] Ryan N, Heneghan C, Chazal P D. Registration of digital retinal images using landmark correspondence by expectation maximization. Image and Vision Computing, 2004, 22(11):883-898.
    [184] Yuille A L, Cohen D S, and Hallinan P. Feature extraction from faces.using deformable templates. International Journal of Computer Vision, 1992,8(2):99-112
    [185] Staib L H and Duncan J S. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992,14(11):1061-1075
    [186] Grenander U and Miller M. Representations of knowledge in complex systems.Journal of the Royal Statistical Society B, 1994,56(4):549-603
    [187] Goodall C. Procrustes methods in the statistical analysis of shape. Journal ofthe Royal Statistical Society B, 1991,53(2):285-339
    [188] Bookstein F L. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989,11(6):567-585
    [189] Kirby M and Sirovich L. Application of the Karhumen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(1): 103-108
    [190] Mclnerney T and Terzopoulos D. Deformable models in medical imageanalysis: a survey. Medical Image Analysis, 1996,1 (2):91-108
    [191] Bajcsy and Kovacic A. Multiresolution elastic matching. Computer Graphics and Image Processing, 1989,46( 1): 1-21
    [192] Christensen G. Consistent linear-elastic transformations for image matching.In: Proc.l6th Conference on Information Processing in Medical Imaging,Visegrad, Hungary :Springer-Verlag, 224-237
    [193] Christensen G E, Rabbitt R D, Miller M I, et al. Topological properties ofsmooth anatomic maps. In: Proc.l4th Conference on Information Processing inMedical Imaging, France:Kluwer Academic Publishers, 1995, 101-112
    [194] Park J, Mataxas D, Young A, and Axel L. Deformable models with parameterfunctions for cardiac motion analysis from tagged mri data. IEEE Transactionson Medical Imaging, 1996,15(3):278-289
    [195] Pentland A P and Sclaroff S. Closed-form solutions for physically basedmodelling and recognition. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1991,13(7):715-729
    [196] Dryden I and Mardia K V. The Statistical Analysis of Shape. London: Wiley,1998,1-200
    [197] Turk M and Pentland A. Eigenfaces for recognition. Journal of CognitiveNeuroscience, 1991,3(l):71-86
    [198] Ezzat T and Poggio T. Facial analysis and synthesis using image-based models.In: Proc. 2nd International Conference on Automatic Face and GestureRecognition. Los Alamitos,CA,USA:IEEE, 1996.,116-121,
    [199] Jones M J and Poggio T. Multidimensional morphable models : A frameworkfor representing and matching object classes. International Journal ofComputer Vision, 1998, 2(29): 107-131
    [200] Cootes T F and Taylor C J. Modelling object appearance using the grey-levelsurface. In: Proc. 5th British Machine Vison Conference.York, England:BMVA Press, 1994,479-488
    [201] Nastar C, Moghaddam B, and Pentland A. Generalized image matching:Statistical learning of physically-based deformations. In:Proc. 4th EuropeanConference on Computer Vision, volume 1, Cambridge, UK, 1996, 589-598
    [202] Lades M, Vorbruggen J, Buhmann J, et al. Distortion invariant objectrecognition in the dynamic link architecture. IEEE Transactions on Computers,1993,42(3):300-311.
    [203] Bresson X, Vandergheynst P, and Thiran P. A Priori Information in ImageSegmentation: Energy Functional based on Shape Statistical Model and ImageInformation. In:IEEE International Conference on Image Processing. ICIP'03,Barcelona, Spain, 2003, 3:428-428
    [204] Riklin-Raviv T, Kiryati N, and Sochen N. Unlevel Sets: Geometry andPrior-Based Segmentation. In: Proc. European Conf. Computer Vision, Prague,Czech Republic ,2004,4:50-61
    [205] Yang J, Staib L H, , and Duncan J S. Neighbor- Constrained SegmentationWith Level Set Based 3-D Deformable Models. IEEE TRANSACTIONS ONMEDICAL IMAGING, 2004, 23( 8): 940-948
    [206] Tsai A, Wells W, Tempany C, et al. Mutual information in coupledmulti-shape model for medical image segmentation. Medical Image Analysis,2004, 8(4): 429-445
    [207] Cremers D, Sochen N, and Schno C . A Multiphase Dynamic Labeling Modelfor Variational Recognition-Driven Image Segmentation. Int'l J. ComputerVision, 2006, 66( 1): 67-81.
    [208] Wang Y, Staib L H. Boundary finding with correspondence using statisticalshape models. In: IEEE Conference on Computer Vision and PatternRecognition (CVPR'98), Santa Barbara, CA,USA: 1998, 338-345
    [209] Goldestin R M, Zebker H A. Satellite radar interferometry: Two-dimensionalphase Unwrapping. Radio Science, 1988, 23(4):713-720.
    [210] Xu W, Cumming I. A region-growing algorithm for InSAR phase unwrapping,IEEE Transaction on Geoscience and Remote Sensing. 1999, 37(1): 124-134.
    [211] Flynn T J. Consistent 2-D phase unwrapping guided by a quality map. In:Proceedings of the 1996 International Geoscience and Remote SensingSymposium. Lincoln, Piscataway, NJ: 1996,2057-2059.
    [212] Flynn T J. Two-dimensional phase unwrapping with minimum weighteddiscontinuity. Journal of the Optical Society of America.1997,14(10):2692-2701.
    [213] Pritt M D. Least-squares two-dimensional phase unwrapping using FFT's.IEEE Transaction on Geoscience and Remote Sensing. 1994,32(3): 706-708.
    [214] Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweightedphase unwrapping that uses fast transforms and iterative methods. J. OpticalSociety of America, 1994, 11(l):107-117.
    [215] Ghiglia D C, Romero L A. Minimum Lp-norm two-dimensional .phaseunwrapping. Journal of the Optical Society of America, 1996,13(10): 1-15.
    [216] Costantini M. A novel phase unwrapping method based on networkprogramming. IEEE Transaction on Geoscience and Remote Sensing.1998,36(3):813-821.
    [217] Ghiglia D C, Pritt M. D. Two-dimensional phase unwrapping: theory, algorithm, and software. John Wiley&Sons. Inc: 1998, 1:512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700