用户名: 密码: 验证码:
星载合成孔径雷达干涉测量处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量(InSAR)技术是近二十年发展起来的一种先进的空间观测技术,论文以星载InSAR干涉成像技术为研究对象,在简单介绍InSAR技术发展历程、应用以及有关的InSAR成像原理基础上,对InSAR干涉成像处理流程中各个阶段做了系统地研究,并结合实例对其中关键处理技术包括SAR图像配准、干涉图滤波、干涉图相位解缠的原理和算法做了深入地分析和研究,利用真实ERS-1/2 SAR图像数据干涉测量生成相对数字高程图,利用ENVISAT ASAR图像数据生成同一地区的干涉相位图。
     论文针对SAR图像配准过程中概略配准的必要性,依据地理坐标参数(经纬度)和SAR图像坐标之间的对应关系,提出了一种基于地理坐标参数的SAR图像自动概略配准法,拟合地理坐标和图像坐标之间的变化,实现概略配准,算法计算速度快,精度较高。在概略配准的基础上,分析了精确配准的各种方法和干涉相位的统计特性、估计及评价。
     论文在分析了干涉图去平地效应原理与方法的同时,讨论了干涉图相位噪声特性和干涉图滤波方法,并利用小波分析的多分辨率特性和高频部分系数的方向特性,提出了一种基于小波变换的InSAR干涉图滤波方法,在对干涉图小波分解的基础上,对高频部分系数用对应方向的方向模板平滑处理后做中值滤波,使干涉图中的残差点数目大大减少,同时很好地保持了图像的边缘特征。
     论文分析比较了相位解缠中的路径跟踪法和最小二乘法,针对相位解缠中相位噪声引起的误解缠问题,利用支持向量机强大的分类能力,提出了一种基于支持向量机的InSAR干涉图相位解缠法,根据像元的相位属性对像元分类,对不同类的像元用不同的方法解缠,算法尤其适合解缠具有统计特性的真实干涉图;利用Mumford-Shah提出的最小分割问题的“多层”实现模型,提出了一种基于多层Mumford-Shah模型的InSAR干涉图相位解缠方法,采用“水平集逐层迭代算法”对干涉图进行多层分割以间接确定不同质量特性的干涉图子连通区域,在此基础上从高质量区域向低质量区域对干涉图中像元逐步进行相位解缠,算法先隔开噪声密集的低质量区域,对干涉图进行解缠,提高了解缠的精度;利用枝切法中隔离残差点的思想,提出了一种基于最短距离优先原则的InSAR干涉图区域分割相位解缠法,采用全局性最短距离优先原则连接残差点,把干涉图分割为非残差区域和残差区域,分别用不同的方法解缠,在保证高质量的非残差区域快速准确解缠的同时,使更多的低质量区域像元准确解缠。
     论文利用三组ERS-1/2串行的SAR图像数据对,进行干涉成像处理实验,并根据干涉处理中得到各组数据的不同特点,使用不同的干涉成像处理方法,成功地生成了相关系数图、干涉相位图和成像目标区域的相对数字高程图,从而进一步检验了论文给出方法的有效性。同时,利用由ENVISAT卫星ASAR对BAM地区地震前后成像得到的多幅SAR单视复图像数据,选用一组降轨图像数据和一组升轨图像数据分别做干涉成像处理,生成干涉相位图,可以进一步利用合成孔径雷达差分干涉测量技术和有关地震知识研究地震地表形变。
Interferometric Synthetic Aperture Radar ( InSAR ) is an advanced space observation technique that have been developed in the last two decades or so, this dissertation studies the spaceborne InSAR imaging technique, after the development process and application of InSAR and the related InSAR imaging theory have been simply introduced, the InSAR process flow is systematically studied, then the key techniques such as image registration, noise filtering and phase unwrapping with related examples are fully analyzed and discussed,and the relative digital elevation models are generated using the real ERS-1/2 SAR data,and the SAR interferograms are generated using the ENVISAT ASAR data of the same imaging targets.
     To the requirement of coarse registration in the process of SAR image registration, an automatic coarse SAR image registration algorithm is presented based on the geographical coordinates parameters according to the corresponding relation between the geographical coordinates parameter and image coordinates, the method is implemented by fitting the variance of the corresponding geographical coordinates along with the pixels’image coordinates, it is fast and with high precision. Based on the coarse registration, several algorithms of fine registration and the characteristics and estimation and evaluation of the interferometric phase are analyzed.
     After the principle and methods of flat earth removal in SAR interferogram are investigated, the characteristics of phase noise and speckle reduction method are discussed, an InSAR interferogram filtering algorithm based on the wavelet transform is presented utilizing the multiresolution characteristics and the detail coefficient orientation characteristics of wavelet analysis, after the SAR interferogram is decomposed using wavelet transform, the method smoothes the coefficient using different mode corresponding to its orientation, then filters the coefficient using median filtering. The method decreases the residues, and with good edge preservation.
     The path followed phase unwrapping algorithm and least square phase unwrapping algorithms are discussed and compared, aiming at the error caused by noise, an InSAR phase unwrapping algorithm based on support vector machines is presented using its powerful classification ability, the pixels are classified using the phase-related information, the different type of pixels are unwrapped by different methods, it is an effective method especially for the real SAR interferogram with phase statistics. An InSAR phase unwrapping method based on Hierarchical Mumford-Shah functional Model is presented, the SAR interferogram is segmented into many sub-connective regions with different quality properties by an iterative tier-by-tier level set algorithm, then these regions are unwrapped region by region from the high-quality ones to low-quality ones, thus the method can unwrap the pixels after the low-quality regions have been isolated, which improves the accuracy of phase unwrapping. A region-cutting InSAR phase unwrapping algorithm based on the Shortest Distance First Principle utilizing the idea of isolated the residues, which adopts the global method to connect the residues,the SAR interferogram is cut into non-residue regions and residue regions, different methods are adopted to unwrap them, which guarantees that the pixels of non-residue regions can be unwrapped with accuracy, moreover, much more pixels of residue regions can be correctly unwrapped.
     The spaceborne InSAR experiments are carried out using the three groups ERS-1/2 SAR tandem data, the different processing algorithms of different group are adopted to these groups according to the group’s own characteristics, the correlation map, SAR interferogram and the relative digital elevation models of imaging target are obtained. In addition, several SAR interferograms are generated using one group of the descending pass SLC images and one group of the ascending pass SLC images of the BAM earthquake obtained by ENVISAT ASAR, then the coseismic deformation can be studied using D-InSAR technique and related earthquake knowledge.
引文
[1] Goldstein R M, Zebker H A. Interferometric radar measurement of ocean surface currents. Nature,1987,328: 707-709
    [2] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B. International Journal of Remote Sensing, 1988, 9(5): 857-872
    [3] Li Fuk K, Goldstein R M. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radars. IEEE Transaction on Geoscience and Remote Sensing, 1990,28(1):88-97
    [4] Graham L C. Synthetic Interferometer Radar for Topographic Mapping. In: Proceedings of the IEEE, 1974,62(6):763-768
    [5] Zebker H A, Goldstein R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research, 1986, 91: 4993-4999
    [6] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Science,1988,23:713-720
    [7] Lin Q, Vesecky J F, Zebker H A. Registration of interferometric SAR images. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS)92, 1992,2:1579–1581
    [8] Lin Q, Vesecky J F. New Approaches in Interferometric SAR Data Processing. IEEE Transaction on Geoscience and Remote Sensing,1992,30(3): 560-567
    [9] Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5): 950-959
    [10] Rodriguez E, Martin J M. Theory and design of interferometric synthetic aperture radars. IEEE Proceedings of Radar and Signal Processing, 1992,139(2):147-159
    [11] Madsen S N, Zebker H A, Martin J. Topographic mapping using radar interferometry: processing techniques. IEEE Transaction on Geoscience and Remote Sensing, 1993, 31(1): 246-256
    [12] Zebker H A, Werner C L, Rosen P, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Transaction on Geoscience and Remote Sensing, 1994,32:823-836
    [13] Zebker H A, Rosen P. On the derivation of coseismic displacement field usingdifferential radar interferometry: the landers earthquake. Journal of Geophysical Research, 1994, 99(B10): 19617-19634
    [14] Ghiglia D C, Romero L A.Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America, 1994, 11(1):107-117
    [15] Pritt M D, Shipman J S. Least-squares two-dimensional phase unwrapping using FFT's. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(3): 706-708
    [16] Moreira J, Schwabisch M, Fornaro G, et al. X-SAR interferometry: first results. IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(4): 950-956
    [17] Schwbisch M, Geudtner D. Improvement of phase and coherence map quality using azimuth prefiltering: Examples from ERS-1 and X-SAR. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS) 95, 1995:205-207
    [18] Lanari R, Fornaro G, Riccio D, et al. Generation of digital elevation modelsby using SIR-C/X-SAR multifrequency Two-Pass Interferometry: The Etna Case Study. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(5): 1097-1114
    [19] Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(3): 728-738
    [20] Fornaro G, Franceschetti G, Lanari R. Two dimensional phase unwrapping based on the Laplace and Eikonal equations. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings(IGARSS)95, 1995, 3(3):1828-1830
    [21] Lee J S, Papaihanassiou K P, Ainsworth T L, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Transaction on Geoscience and Remote Sensing, 1998,36(5): 1456-1465
    [22] Rufino G, Moccia A, Esposito S. DEM generation by means of ERS tandem data. IEEE Transaction on Geoscience and Remote Sensing,1998, 36(6):1905-1912
    [23] 王超. 利用航天飞机成像雷达干涉数据提取数字高程模型. 遥感学报,1997,1(1):46-49
    [24] 单新建,刘浩. 利用干涉合成孔径雷达技术提取数字地面模型. 国土资源遥感,2001,2:43-48
    [25] 单新建,宋晓宇,柳稼航等. 星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价. 科学通报,2001,46(24):2074-2079
    [26] 乔学军,李澍荪,王琪等. 利用InSAR技术获取三峡地区的数字高程模型. 大地测量与地球动力学,2003,23(2):122-127
    [27] 王超,刘智,张红等. 张北-尚义地震同震形变场雷达差分干涉测量. 科学通报,2000,45(23):2550-2554
    [28] 单新建,马瑾,宋晓宇等. 利用星载D-INSAR技术获取的地表形变场研究张北-尚义地震震源破裂特征. 中国地震,2002,18(2):119-126
    [29] 单新建,何玉梅,朱燕等. 伽师强震群震源破裂特征的初步分析.地球物理学报,2002,45(3):416-426
    [30] 单新建,马瑾,柳稼航等. 利用星载D-INSAR技术获取的地表形变场提取玛尼地震震源断层参数. 中国科学D辑,2002,32(10):837-844
    [31] 张景发,刘钊. InSAR技术在西藏玛尼强震区的应用. 清华大学学报(自然科学版),2002,42(6):847-850
    [32] 王超,张红,刘智. 苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测.自然科学进展,2002,12(6):621-624
    [33] Zebker H A, Madsen S N, Martin J, et al. The TOPSAR interferometric radar topographic mapping instrument. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5): 933-940
    [34] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993,364:138-142
    [35] Rosen P A, Hensley S, Zebker H A, et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research, 1996, 101(E10): 23109-23126
    [36] Massonnet D, Holzer T, Vadon H. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophysical Research Letters, 1997, 24(8): 901–904
    [37] Mattar K E, Gray A L, Kooij M D, et al. Airborne interferometric SAR results from mountainous and glacial terrain. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings(IGARRS)94,1994:2388- 2390
    [38] Goldstein R M, Engelhardt H, Kamb B. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream. Science, 1993, 262:1525–1530
    [39] Rignot E, Jezek K C, Sohn H G. Ice flow dynamics of the Greenland ice sheet from SAR interferometry. Geophysical Research Letters, 1995, 22(5):575-578
    [40] Joughin I, Tulaczyk S, Fahnestock M, et al. A mini-surge on the ryder glacier, Greenland observed via satellite radar interferometry. Science, 1996, 274:228-230
    [41] Rignot E. Tidal motion, ice velocity, and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. Journal of Glaciology, 1996, 42(142): 476-485
    [42] Marom M, Shemer L, Thornton. E B. Energy density directional spectra of a nearshore wave field measured by interferometric synthetic aperture radar. Journal of Geophysical Research, 1991, 96(B12): 22125-22134
    [43] Ainsworth T L. InSAR Imagery of surface currents, wave fields, and fronts. IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(5):1117-1119
    [44] Wegmuller U, Werner C L, SAR interferometric signatures of forest. IEEE Transaction on Geoscience and Remote Sensing, 1995, 33(5):1153-1161
    [45] Wegmuller U, Werner C L. Retrieval of vegetation parameters with SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing, 1997, 35: 18-24
    [46] 保铮,邢孟道,王彤. 雷达成像技术. 北京:电子工业出版社,2005
    [47] 张澄波. 综合孔径原理、系统分析与应用. 北京:科学出版社,1989
    [48] 王超,张红,刘智. 星载合成孔径雷达干涉测量. 北京:科学出版社,2002
    [49] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 1989, 94(B7): 9183-9191
    [50] 王超,张红,于勇. 雷达差分干涉测量. 地理学与国土研究,2002,18(3):13-17.
    [51] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps. Journal of Geophysical Research,1997,(B4): 7547-7563
    [52] LI Zhi wei, DING Xiao li, LIU Guo xiang. Modeling Atmospheric Effects on InSAR with Meteorologica land Continuous GPS Observations: Algorithms and Some Test Results. Journal of Atmospheric and Solar Terrestrial Physics, 2004, 66:907-917
    [53] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry. IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(1) :8-20
    [54] Ferretti A, Prati C, Rocca F. Non-linear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Transaction on Geoscience and Remote Sensing, 2000, 38(5):2202-2212
    [55] Colesanti C, FerrettiA , Prati C, et al. Monitoring Landslides and Tectonic Motion with the Permanent Scatterers Technique. Engineering Geology, 2003,68(1-2):3-14
    [56] 唐伶俐,张景发,王新鸿等. 极具应用潜力的PS技术. 遥感技术与应用,2005,20(3):309-314
    [57] BERT K. Doris_v3.12 user manua. Delft: Delft institute for Earth-oriented Space Research(DEOS) Delft University of Technology, 1999 :36,157-158
    [58] 汤晓涛. InSAR数据处理的基线估计和影像自动概略配准. 解放军测绘学院学报,1999,12(4):260-262
    [59] CURLANDER J C. Location of pixels in spaceborne SAR imagery. IEEE Trans. on Geoscience and Remote sensing, 1982, 20(3): 359-364
    [60] 袁孝康.星载合成孔径雷达的目标定位方法. 上海航天,1997,(6):51-57
    [61] Prati C, Rocca F. Limits to the resolution of elevation maps from stereo SAR images. International Journal of Remote Sensing, 1990,(11):2215-2235
    [62] Leong Keong Kwoh, Ee Chien Chang, et al. DTM Generation from 35-day repeat Pass ERS-1 Interferometry. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings(IGARSS)94, 1994: 2288-2290
    [63] Just D, Bamler R. Phase statistics of interferograms with applications to synthetic aperture radar. Applied Optics, 1994, 33(20): 4361-4368
    [64] Lim I, Yeo T S, Ng C S, et al. Phase Noise Filter for Interferometric SAR. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGRASS) 97, 1997: 445-447
    [65] Ghiglia D C, Pritt M D.Two-dimensional phase unwrapping: theory, algorithm, and software. New York: John Wiley&Sons. Inc, 1998
    [66] Gatelli F, Guarnieri A M, Parizzi F, et al. The wavenumber shift in SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4): 855-864
    [67] Lee Jong Sen. Intensity and phase statistics of multilook polarimetric and Interferometric imagery. IEEE Transaction on Geoscience and Remote Sensing,1994,32(9):1017-1028
    [68] 陶鹍. 干涉合成孔径雷达数据处理及仿真研究. 中国科学院研究生院博士论文,2003.
    [69] Candelas A L B, Mura J C, Dutra LV, et al. Interferogram phase noise reduction using morphological and modified median filters. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings(IGARSS)95, 1995: 166-168
    [70] Giancarlo B. A locally adaptive approach for interferometric phase noisereduction. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings(IGARSS)99, 1999:264-266
    [71] 岳焕印,郭华东,范典等. 基于静态小波分解的SAR干涉图滤波. 高技术通讯,2002(5):5-9.
    [72] Eichel P H, Ghiglia D C. Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection. Sandia National Labs Tech. Report(SAND)93, 1993:2539-2546
    [73] 穆冬,朱兆达,张焕春. 干涉SAR相位条纹的鲁棒加权圆周期滤波. 数据采集与处理,2001,16(3):299-303
    [74] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693
    [75] Nason G P, Silverman B W. The stationary wavelet transform and some statistical applications. Lecture Notes in Statistics, 1995, 103:281-299
    [76] Coifman R R, Donoho D L. Translation invariant de-noising, Lecture Notes in Statistics. 1995, 103:125-150
    [77] David D L. De-noising by soft-thresholding. IEEE Transaction Information Theory, 1995, 41(3):613
    [78] 韩春明,郭华东,王长林等.一种改进的SAR图像斑点噪声滤波方法. 遥感学报,2004,8(2):121-127
    [79] Wei Xu, Ian Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Transaction on Geoscience and Remote Sensing, 1999, 37(1):124-134
    [80] Flynn T J. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America, 1997, 14(10):2692- 2701
    [81] Ghiglia D C, Romero L A. Minimum LP-norm two-dimensional phase unwrapping. Journal of the Optical Society of America,1996, 13(10):1-15
    [82] Costantini M. A novel phase unwrapping method based on network programming. IEEE Transaction on Geoscience and Remote Sensing, 1998, 36(3):813-821
    [83] 于勇,王超,张红等. 基于不规则网络下网络流算法的相位解缠方法. 遥感学报,2003,7(6):472-477
    [84] Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR. IEEE Transaction on Geoscience and Remote Sensing, 1996, 34(3):728-738
    [85] Pritt M D. Congruence in least-square phase unwrapping. In: IEEE InternationalGeoscience and Remote Sensing Symposium Proceedings(IGARSS)97, 1997, 285-287
    [86] Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995, 20:273-295
    [87] Vapnik V. N. 张学工译. 统计学习理论的本质. 北京:清华大学出版社,2000.
    [88] 卢虎,李彦,肖颖.支持向量机理论及其应用. 空军工程大学学报(自然科学版),2003,4(4):89-91
    [89] 王国胜,钟义信 .支持向量机的若干新进展 . 电子学报, 2001, 29(10):1397-1400
    [90] 徐义田,王来生,张好治等. 基于SVM的分类算法与聚类分析. 烟台大学学报(自然科学与工程版),2004,17(1):9-13
    [91] 刘国才,王耀南. 基于水平集逐层迭代算法的多层Mumford-Shah图像分割、去噪与重建模型. 自动化学报,2006,32(4):534-540
    [92] Osher S, Sethian J A. Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 1988, 79(1):12-49
    [93] Mumford D, Shah J. Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, 1985: 22-26
    [94] Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics , 1989, 42(4):577-685
    [95] Sethian J. A Level Set Methods and Fast Marching Methods. New York: Cambridge University Press,1999,165-349
    [96] Osher S, Paragios N. Geometric Level Set Methods in Imaging, Vision, and Graphics. New York: Springer-Verlag New York Inc., 2003, 175-194
    [97] 马龙,陈文波,戴模. ENVISAT的ASAR数据产品介绍. 国土资源遥感,2005,(1):70-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700