用户名: 密码: 验证码:
阳离子聚合物模板剂合成沸石材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis of Zeolites from Cationic Polymer Template
  • 作者:刘淑真
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:肖丰收
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-12-01
摘要
本论文致力于采用新型阳离子聚合物作为模板剂合成传统EMT、RHO和X型沸石,尝试降低制备EMT和RHO沸石的生产成本,并将介孔结构引入到X沸石中,这些研究工作对于这些沸石的工业应用具有重要意义。
     第一章为绪论部分,概述了沸石分子筛的发展历史、结构、合成方法、合成机理、及其应用;简单介绍了合成沸石分子筛过程中所使用的模板剂;并且对阳离子聚合物做了简单的介绍。
     第二章介绍了一种使用新型模板剂阳离子聚合物—聚二烯丙基二甲基氯化铵合成六方八面沸石—EMT沸石的方法,并且对所合成的样品进行了一系列的表征,在性质方面主要研究了所合成样品的酸性以及在异丙基苯催化裂化反应中的活性。
     第三章介绍了一种合成低硅铝比的微孔—介孔复合材料的新方法,即采用了沸石前驱体与有机模板剂(阳离子聚合物聚二烯丙基二甲基氯化铵和螺旋藻)相结合的方法,合成了具有介孔结构的NaX沸石,并且在性质方面重点研究了样品的离子交换性能。
     第四章介绍了一种利用新型模板剂合成具有八元环孔道结构的硅铝骨架RHO沸石的新方法。在合成过程中我们利用阳离子聚合物聚二烯丙基二甲基氯化铵为有机模板剂,代替了传统合成中所使用的价格昂贵的无机阳离子铯离子,不仅提供了一种合成RHO沸石的新方法,而且大大降低了RHO沸石的生产成本,为RHO沸石在工业中的广泛应用奠定了基础,并且对样品做了一系列的表征。
Microporous zeolite type materials are widely used in ion-exchange, adsorption, separation, and catalytic areas. Up to now, 176 identified zeolite structure types have been reported by IZA, but only a few of them find industrial applications. The developments of zeolite materials are mainly focus on two directions: (1) synthesis of zeolite materials with new structures, and (2) extension of the composition of known materials byond known limits. Notably, these developments in zeolite area close related with templates used in the zeolite synthetic procedure. Since R. M. Barrer and P. J. Denny introduced organic quaternary ammonium in the synthesis of zeolites system in 1961 and proposed the concept of template, various inorganic and organic molecules have been used in the synthesis of zeolite materials and many new types of zeolite materials have been synthesized, promoting the development of microporous zeolite materials. Therefore, template has become one of the important topics of zeolite study area.
     The main aim of this paper is to find new type of templates used for the synthesis of zeolite materials. In this paper, we have successfully synthesized EMT, RHO, and Meso-NaX zeolites using novel organic template in different synthesis systems. The organic template used in our synthesis procedure is cationic polymer polydiallyldimethylammonium chloride (PDADMAC). Additionally, in the synthesis of Meso-NaX zeolite spirulina is also used as template.
     In this paper, we first have successfully prepared EMT zeolite with 12R channels (hexagonal polymorph of faujasite-type zeolites) used cationic polymer polydiallyldimethylammonium chloride as organic template. Usually, to synthesize EMT zeolite, the template used must contain high-cost and toxic 18-crown-6, which makes the high cost for preparing EMT zeolite and environmental pollution, limiting the practical application of EMT zeolite. In this paper, we have first investigated the systemic conditions for the synthesis of EMT zeolite using polydiallyldimethylammonium chloride as organic template in the absence of 18-crown-6. Additionally, cationic polymer used in the synthesis is low cost and nontoxic, which reduces the cost and environmental pollution producing from the synthsis of EMT zeolite. Otherwise, in the synthesis procedure of EMT zeolite, low-cost water glass was used as silica source taking the place of silica sol used in the traditional method. Additionally, we first used zeolite precursor solution to provide zeolite seeds in synthesis, saving the aging time of starting gels at room temperature. According to the results of experiments, we got the best synthetic condition for the preparation of EMT zeolite, including the amount of template, crystallization time, and crystallization template. In addition, the acid amount of EMT-rich faujasite is slightly higher than that of Y zeolite based on the results of NH3-TPD, and EMT-rich faujasite has higher conversion than Y zeolite in the cumene cracking reaction.
     The pore size of microporous zeolite materials is relative small, which limits the transmission of bulky molecules to the channels and limits the practical applications of zeolites. The mesoporous zeolites contain not only crystal wall and pore structure of microporous materials maintaining the properties of zeolite such as high hydrothermal stability, but also the mesopores improving the transmission of bulky molecules and increasing the catalytic and ion-exchange property. In this paper, we first use the combination of zeolite precursor and organic templates to prepare mesoporous NaX zeolite. In the synthesis procedure of mesoporous NaX zeolite, FAU zeolite precursor solution provides total silica source and zeolite seeds, cationic polymer polydiallyldimethylammonium chloride and spirulina provide organic templates. Under the synthetic conditions, FAU zeolite precursors assemble with organic templates, grow gradually, and form mesoporous NaX zeolite finally. According to high resolution SEM images of the samples, mesopores with the size mainly in the range of 4-50 nm can be clearly observed, and the sizes of most of mesopores are smaller than 10 nm. Additionally, we also can observe the connection of small particles into large NaX crystal in the SEM images of Meso-NaX zeolite. According to the results of N_2 adsorption-desorption of the Meso-NaX zeolites, the samples exhibit N_2 adsorption behavior of both microporous materials at low relative pressure (P/P0 <0.02) and mesoporous materials at high relative pressure (P/P0=0.4-1.0), conforming the coexistence of micropore and mesopore in Meso-NaX zeolites. Otherwise, the calcium ion exchange rates of Meso-NaX zeolites are higher than that of conventional NaX zeolites, and we think that the existences of mesoporous and small particles in Meso-NaX zeolites accelerate transmission of calcium ion in the channels, increasing the calcium ion exchange rate, which would be helpful for the application of X zeolite as ion-exchanger.
     RHO zeolite is one of small pore size zeolites with 8R channels. Now, various types of RHO zeolites with different framework components have been successfully synthesized with organic or inorganic cations templates in the synthetic procedures. However, although the RHO zeolite with aluminosilicate framework can be synthesized in the absence of organic template, the inorganic cation must contain high-cost cesium ion, limiting the application of RHO zeolite in industry. Based on the seeking of novel template for preparation of RHO zeolite with aluminosilicate framework, we have first successfully synthesized aluminosilicate RHO zeolite using cationic polymer polydiallyldimethylammonium chloride as template in the absence of cesium ions. Additionally, we have systematically studied the effect of organic template, basicity, crystallization time, and crystallization temperature on the growth of RHO zeolite. We have characterized the RHO zeolite by H2O and N2 adsorption experiments. Owing to the small pore size, RHO zeolite only has adsorption behavior to water molecules. Therefore, aluminosilicate RHO zeolite could be used as dryer for gases such as nitrogen. The new approach to synthesizing aluminosilicate RHO zeolite in the presence of cationic polymer greatly decreases the cost of preparing RHO zeolite and the pollution to environment, which is helpful for practical applications of RHO zeolite.
     The samples were characterized by X-ray diffraction, scanning electron microscopy, N_2 adsorption-desorption, ~(29)Si NMR, NH_3-TPD, the cracking of cumene, calcium ion exchange, and water adsorption. According to the results of different characterizations, zeolites synthesized in the paper display different potentials in various areas.
引文
[1] X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu, J. Phys. Chem. B., 1997, 101, 6525.
    [2] A. Monnier, F. Schuth, Q. Huo, D. Margolesse, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science, 1993, 261, 1299.
    [3] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 1994, 368, 321.
    [4] P. T. Tanev, T. J. Pinnavaia, Science, 1995, 267, 865.
    [5] Q. S. Huo, D. L. Margolesse, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature, 1994, 368, 317.
    [6] Q. S. Huo, D. L. Margolesse, U. Ciesla, D. E. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater., 1994, 6, 1176.
    [7] G. S. Allard, J. C. Glyde, C. G. Goliner, Nature, 1995, 378, 366.
    [8] Q. S. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science, 1995, 268, 1324.
    [9] K. Suzuki, K. Ikari, H. Imai, J. Am. Chem. Soc., 2004, 126, 462.
    [10] A. F. Cronstedt, K. Vetenskaps, Akad. Handle Stockholm, 1756, 18, 120.
    [11] R. M. Barrer, J. Chem. Soc., 1948, 10, 2158.
    [12] A. Corma, Chem. Rev., 1995, 95, 559.
    [13] R. M. Barrer, P. J.Denny, J. Chem. Soc., 1961, 971.
    [14] A. Dyer, An Introduction to Zeolite Molecular Sieves; John Wiley & Sons: Chichester, U. K., 1988.
    [15] Ch. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, 2001.
    [16] http://www.iza-structure.org/databases.
    [17] 徐如人,庞文琴等编著,分子筛与多孔材料化学,北京:科学出版社,2004.
    [18] D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Uses, Wiley-Interscience, New York, 1974.
    [19] W. Lowenstein, Am. Mineral, 1954, 39, 92.
    [20] W. M. Meier, Molecular Sieves, Soc. of Chem. and Ind. London, 1968, 10-27.
    [21] W. M. Meier, D. H. Olson, Atlas of Zeolite Structure Types 2nd Rev. ed. Butterw orths, London, 1987, 5.
    [22] J. V. Smith, Topochemistry of Zeolites and Related Materials. 1. Topology and Geometry, Chem. Rev., 1988, 88, 149.
    [23] Ch. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types. Elsevier, 2001.
    [24] J. M. Newsam, Science, 1989, 231, 1093.
    [25] L. B. McCusker, C. Baerlocher, Zeolite Structure, 37~56, in Introduction to Zeolite Science and Practice, Studies in Surface and Catalysis, 2001 (137), H. Van. Bekkum, E. M. Flanigen, P. A. Jacobs, J. C. Jansen (Eds.), Elsevier, 2001.
    [26] L. S. Dent Glasser, G. Harvey, Proc. 6th Int. Conf. Zeolites, 1983, 925.
    [27] G. Harvey, L. S. Dent Glasser, Properties of Aluminosilicate Solution, A Thesis of Ph. D. 1984.
    [28] E. M. Flanigen, Adv. Chem. Ser., 1973, 121, 114.
    [29] P. K. Dutta, M. Pur, D. C. Shieh, Mater. Res. Soc. Symp. Proc., 1988, 111, 101.
    [30] R. M. Barrer, P. J. Denny, J. Chem. Soc., 1961, 971.
    [31] E. M. Flanigen, R. L. Patton, S. T. Wilson, Stud. Surf. Sci. Catal., 1988, 13, 37.
    [32] J. P. Arharcet, M. E. Dauis, Chem. Mater., 1991, 3, 567.
    [33] B. M. Lok, T. R. Cannon, C. A. Messina, Zeolites, 1983, 3, 282.
    [34] 徐如人, 庞文琴,无机合成与制备化学,北京高等教育出版社,2001.
    [35] S. L. Lawton, W. J. Rohrbaugh, Science, 1990, 247, 1319.
    [36] J. Ciric, U. S. Patent, 1976,3950496.
    [37] M. E. Davis, R. F. Lobo, Chem. Mater., 1992, 4, 756.
    [38] R. A. Van Nordstand, D. S. Santilli, S. I. Zones, ACS Sym. Ser., 1988, 268, 236.
    [39] F. Delprato, L. Delmotte, J. L. Guth, L. Huve, Zeolites. 1990, 10, 546.
    [40] M. Yoshikawa, P. Wagner, M. Lovallo, J. Phys. Chem. B., 1998, 102, 7139.
    [41] L. D. Rollmann, E. M. Valyoosik, U. S. Patent, 1978, 4108881.
    [42] J. C. Jansen, S. T. Wilson, Studies in Surface Science and Catalysis, 2001, 137, 175.
    [43] X. Bu, P. Feng, G. D. Stucky, Science, 1997, 278, 2080.
    [44] I. D. Brown, D. Altermat, Bond-Valence Parameters Obtained From a Systematic Analysis, Acta Crystallogr., 1985, B41, 244.
    [45] N. J. Tapp, N. B. Milestone, D. M. Bibby, Zeolites, 1988, 8, 183.
    [46] E. M. Flanigen, R. L. Patton, U. S. Patent, 1978, 4073864.
    [47] J. L. Guth, H. Kessler, R. Wey, Stududies in Surface Science and Catalysis, 1986, 28, 121.
    [48] K. J. Jr. Balkus, C. D. Hargis, S. Kowalak, ACS Symp. Ser., 1992, 499, 347.
    [49] K. J. Jr. Balkus, A. Ramsran, R. Szostak, 12th Int. Zeolite Conference Materials Research Society, PA, 1999, 1931.
    [50] K. J. Jr. Balkus, A. G. Gabrielov, N. Sandler, Mater. Res. Soc. Symp. Proc., 1995, 368, 369.
    [51] K. J. Jr. Balkus, M. Biscotto, A. G. Gabrielov, Stud. Surf. Sci. Catal., 1997, 105, 415.
    [52]《沸石分子筛》中国科学院大连化物所编,1978 年出版(科学出版社)。
    [53]《沸石分子筛的结构与合成》徐如人、庞文琴、屠昆岗编吉林大学出版1987.
    [54] 徐文旸,李瑞丰,曹景慧等,燃料化学学报,1989,17, 104.
    [55] E. P. 55,046.
    [56] D .M. Bibby, M.P. Dale, Nature, 1985, 317, 157.
    [57] Xu WenYang, Dong linxiang, Li Jinping et al., J. Chem. Soc. Chem, Commun., 1990, 755.
    [58] D. Michael, P. Mingo, Adv. Mater., 1993, 5, 857.
    [59] A. Arafat, J. C. Jansen, A. R. Ebaid, H. Van Bekkum, Zeolites, 1993, 13,162.
    [60] I. Girnus, K. Jancke, R. Vetter, J. Richer-Mendau, J. Caro, Zeolites, 1995, 15, 35.
    [61] M. Fang, H. Du, W. Xu, X. Meng, W. Pang, Microporous Materials, 1997, 9, 59.
    [62] Y. Han, H. Ma, S. Qiu, F. Xiao, Microporous and Mesoporous Materials, 1999, 30, 321.
    [63] J. C. Jansen, A. Arafat, A. K. Barakat, H. Van Bekkum, in: M. L. Occelli, H. Robson (Eds.), Synthesis of Microporous Materials, vol. 1, Van Nordstrand Reinhold, New York, 1992, p. 33.
    [64] J. P. Zhao, C. Cundy, J. Dwyer, Studies in Surface Science and Catalysis, 1997, 105, 181.
    [65] C. G. Wu, T. Bein, J. Chem. Soc. Chem. Commun., 1996, 8, 925.
    [66] S. E. Park, D. S. Kim, J. S. Chang, W. Y. Kim, Studies in Surface Science and Catalysis, 1998, 117, 265.
    [67] H. Chon, S. K. Ihm, Y. S. Uh, Studies in Surface Science and Catalysis, 1997, 105, 181.
    [68] G. Lischke, B. Parlitz, U. Lohse, E. Schreier, R. Fricke, Appl. Catal. A, 1998, 166, 351.
    [69] M. Park, S. Kormarneni, Microporous and Mesoporous Materials, 1998, 20, 39.
    [70] 霍启升,吉林大学博士学位论文,1992.
    [71] W. Lin, J. Chen, Y. Sun, W. Pang, J. Chem. Soc. Chem. Commun., 1995, 2367.
    [72] W. Xu, J. Dong, F. Wu, J. Chem. Soc. Chem. Commun., 1990, 755.
    [73] 李国文,庞文琴,中国专利,1987.
    [74] 周群,李宝宗,裘式纶,庞文琴,高等学校化学学报,1999,20,693.
    [75] 周群,庞文琴,裘式纶,贾明君,中国专利,1996,ZL 93 1 17593. 3.
    [76] R. J. Argauer, G. R. Landolt, U. S. P. l972, 3702886.
    [77] F. Crea, R. Aiello, A. Nastro, et al., Zeolites, 1991, 11, 521.
    [78] Li Jianquan, Liu Guanghuan, Dong Jinxiang, et al., Stud. Surf. Sci. Catal., 1994, 84, 195.
    [79] Li Reifeng, Fan Weibin, Ma Jinghong, Zeolites, 1995, 15, 73.
    [80] 窦涛,冯芳下等,燃料化学学报,1997, 25, 16.
    [81] Y. Sun, S. Qiu, T. Song, W. Pang, J. Shen, D. Jiang, Zeolites, 1995, 15, 745.
    [82] 林文勇,吉林大学博士学位论文,1999.
    [83] E. M. Flanigen, R. L. Patton, U. S. Pat. 1978, 4073865.
    [84] J. L. Guth, H. Kessler, R. Wey, Proc. 7th Int. Zeolites, Conf., 1986, 137.
    [85] S. Qiu, W. Pang, H. Kessler, J. L. Guth, Zeolites, 1989, 9, 440.
    [86] M. Gopepper, J. L. Guth, Zeolites, 1991, 11, 477.
    [87] J. M. Bennett, R. M. Kirchner, Zeolites, 1991, 11, 502.
    [88] S. Veda, T. Fudushima, M. Koizumi, Journal of Clay Science Society of Japan, 1982, 23, 18.
    [89] S. Veda, N. Kageyama, M. Koizumi, Proc. 6th Int. Conf. Zeolites, 1983, 905.
    [90] W. Q. Pang, S. Veda, M. Koizumi, Proc 7th Int. Zeolites. Conf., 1986, 177.
    [91] W. Pang, S. Qiu, Q. Kan, Z. Wu, S. Pery, Proc 8th Int. Zeolites. Conf., 1989, 281.
    [92] D. W. Breck, E. M. Flanigen, Molecular Sieves, 1968, 49.
    [93] B. D. McNicol, Adv. Chem. Ser., 1973, 121, 152.
    [94] B. D. McNicol, J. Phys. Chem., 1972, 76, 3388.
    [95] Xu Wengyang, Li Jianquan, Li Wenyuan, Zeolites, 1989, 9, 468.
    [96] G .T. Kerr. J. Phys. C hem., 1966, 70, 1047.
    [97] J. Ciric, J. Colloid Interf. Sci., 1968, 28, 315.
    [98] S. P. Zhdanov Adv. Chem. Series 101 Washington D. C. 1971,20.
    [99] Z. Gabelica, Appl. Catal., 1980, 1, 201.
    [100] A. A. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Y. H. Yue, Z. Gao, Adv. Mater., 2002, 14, 926.
    [101] F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schl?gl, T. Tokoi, T. Tatsumi, Angew. Chem. Int. Ed., 2006, 45, 3090.
    [102] Y. Bouizi, J. L. Paillaud, L. Simon, V. Valtchev, Chem. Mater., 2007, 19, 652.
    [1] H. Van Bekkum, E. M. Flanigen, and J. C. Jansen, Introduction to Zeolite Science and Practice; Elsevier: Amsterdam, 1991.
    [2] A. Dyer, An Introduction to Zeolite Molecular Sieves; John Wiley & Sons: Chichester, U.K., 1988.
    [3] D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Uses,Wiley-Interscience, New York, 1974.
    [4] C. R. Marcilly, Top. Catal., 2000, 15, 357.
    [5] R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [6] J. M. Newsam, Science, 1986, 231, 1093.
    [7] P. P. Venuto, and E. T. Habib, Fluid Catalytic Cracking Zeolite Catalysis, Marcel Decker, Inc., New York, 1979.
    [8] 徐如人,庞文琴等编著,分子筛与多孔材料化学,北京:科学出版社,2004.
    [9] T. Chatelain, J. Patarin, M. Soulard, J. L. Guth, and P. Schulz, Zeolites, 1995, 15, 90.
    [10] B. A. M. Goossens, B. H. Wouters, V. Buschmann, and J. A. Martens, Adv. Mater., 1999, 11, 561.
    [11] J. M. Thomas, S. Ramdas, G. R. Millward, J. Klinowski, M. Audier, J. Gonzalez-Calbet, and C. A. Fyfe, J. Solid State Chem., 1982, 45, 368.
    [12] F. Delprato, J. L.Guth, L.Huve, J. Baron, L. Delmotte, M. Soulard, D. Anglerot, and C. Zivkov, Zeolites for Nineties, In: J. C. Jansen, L. Moscou, M. F. M. Post, (Eds.), 8th International Zeolite Conference, Amsterdam, Recent Research Report 53, Azko Chemicals: Amsterdam, 1989, p.127.
    [13] F. Delprato, L. Delmotte, J. L. Guth, and L. Huve, Zeolites, 1990, 10, 546.
    [14] D. E. W. Vaughan, and M. G. Barrett, U. S. Pat., 1982, 4,333,859.
    [15] M. W. Anderson, K. S. Pachis, F. Prébin, S. W. Carr, O. Terasaki, T. Ohsuna, and V. Alfredsson, Chem. Commun., 1991, 23, 1660.
    [16] O. Terasaki, T. Ohsuna, V. Alfredsson, J. O. Bovin, D. Watanabe, S. W. Carr,and M. W. Anderson, Chem. Mater., 1993, 5, 452.
    [17] F. Dougnier, J. Patarin, J. L. Guth, and D. Anglerot, Zeolites, 1992, 12, 160.
    [18] S. Morin, A. Berreghis, P. Ayrault, N. S. Gnep, and M. Guisnet, J. Chem. Soc., Faraday Trans., 1997, 93, 3269.
    [19] J. A. Martens, and P. A. Jacobs, J. Mol. Catal., 1993, 78, L47.
    [20] S. Ernst, Y. Traa, and U. Deeg, Stud. Surf. Sci. Catal., 1994, 84, 925.
    [21] T. Bécue, J. M. Manoli, and G. D.Mariadassou, J. Catal., 1997, 170, 123.
    [22] T. Bécue, J. Leglise, J. M. Manoli, C. Potvin, and D. Cornet, J. Catal., 1998, 179, 90.
    [23] B. L. Su, Zeolites, 1996, 16, 25.
    [24] J. P. Arhancet, and M. E. Davis, Chem. Mater., 1991, 3, 567.
    [25] M. St?cker, H. Mostad, and T. R?rivik, Catal. Lett., 1994, 28, 203.
    [26] T. R?rivik, H. Mostad, O. H. Ellestad, and M. St?cker, Appl. Catal., A 1996, 137, 235.
    [27] D. E. W. Vaughan, U. S. Pat., 1989, 4,879,103,.
    [28] J. W. Sun, M. X. Sun, C. Nie, and Q. Z. Li, Chem. Commun., 1999, 999, 2459.
    [29] S. L. Burkett, and M. E. Davis, Microporous Mater., 1993, 1, 265.
    [30] Y. F. Luo, J. W. Sun, W. Zhao, J. D. Yao, and Q. Z. Li, Chem. Mater., 2002, 14, 1906.
    [31] R. Wendelbo, M. St?cker, H. Junggreen, H. B. Mostad, and D. E. Akporiaye, Microporous Mesoporous Mater., 1999, 28, 361.
    [32] E. J. P. Feijen, K. D. Vadder, M. H. Bosschaerts, J. L. Lievens, J. A. Martens, P. J. Grobet, and P. A. Jacobs, J. Am. Chem. Soc., 1994, 116, 2950.
    [33] U. Lohse, I. Pitsch, E. Schreier, B. Parlitz, and K. H. Schnabel, Appl. Catal. A: General, 1995, 129, 189.
    [34] M. M. J. Treacy, and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, New York, 4rd edn., 2001, p.1-383.
    [35] K. Karim, J. Zhao, D. Rawlence, and J. Dwyer, Microporous Mater., 1995, 3, 695.
    [36] F. Dougnier, and J. L. Guth, J. Chem. Soc., Chem. Commun., 1995, 9, 951.
    [37] G. Engelhardt, E. Lippmaa, M. Tarmak, and M. A. Magi, Z. Anorg. Allg. Chem., 1981, 482, 49.
    [38] T. Chatelain, J. Patarin, E. Fousson, M. Soulard, J. L. Guth, and P. Schulz, Microporous Mater., 1995, 4, 231.
    [39] V. H. Carmel, J. Catal., 1984, 85, 362.
    [40] R. Ryong, Chem. Commun., 1997, 36, 156.
    [41] 何农跃, 施其宏, 邱孝培等, 石油化工, 1994, 23, 497.
    [42] 戴志晖, 温相如, 南京师大学报(自然学版), 1999, 22, 53.
    [1] R. P. Townsend, and E. N. Coker, in: Introduction to Zeolite Science and Practice, Studies in Surface Science and Catalysis, ed. H. van Bekkum, P. A. Jacobs, E. M. Flanigen and J. C. Jansen, Elsevier, Amsterdam, 2001, vol. 137, pp. 467.
    [2] A. Dyer, An Introduction to Zeolite Molecular Sieves, John Wiley & Sons, New York, 1988.
    [3] M. J. Schwuger, and M. Liphard, in: Zeolites as Catalysts, Sorbents and Detergent Builders, Studies in Surface Science and Catalysis, ed. H. G. Karge, J. Weitkamp, Elsevier, Amsterdam, 1989, vol. 46, pp. 673.
    [4] R. P. Denkewicz, Jr. A. G. Monino, D. E. Russ, and H. A. Sherry, J. Am. Oil Chem. Soc., 1995, 72, 11.
    [5] O. E. Ekectukwu, and L. E. Loucks, in: Proceedings of the Symposium on Waste Management, ed.: R. G. Post, WM Symposia Inc., Tucson, 1992, vol. 2, pp. 1635.
    [6] M. Kuronen, R. Harjula, J. Jernstr?m, M. Vestenius, and J. Lehto, Phys. Chem. Chem. Phys., 2000, 2, 2655.
    [7] D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Uses, Wiley-Interscience, New York, 1974.
    [8] R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [9] C. R. Marcilly, Top. Catal., 2000, 15, 357.
    [10] J. M. Newsam, Science, 1986, 231, 1093.
    [11] R. Menhake-Bena, H. Kazemian, S. Shahtaheri, M. Ghazi-Khansari, and M. Hosseini, in: Recent Advances in the Science and Technology of Zeolites andRelated Materials, Studies in Surface Science and Catalysis, ed. E. van Steen, L. H. Callanan, and M. Claeys, Elsevier, Amsterdam, 2004, vol. 154, p. 1892.
    [12] R. Petrus, and J. Warcho?, Micropor. Mesopor. Mater., 2003, 61, 137.
    [13] E .V. R. Borgstedet, H. S. Sherry, and J. P. Slobogin, Stud. Surf. Sci. Catal., 1997, 105, 1659.
    [14] C. J. Adams, and A. Araya, Stud. Surf. Sci. Catal., 1997, 105, 1667.
    [15] M. Tatic, and B. Drazj, Stud. Surf. Sci. Catal., 1985, 24, 129.
    [16] L. F. Fu, Y. D. Wang, Y. Liu, J. L. Dong, and Q. H. Xu, Chinese J. Inorg. Chem., 2000, 16, 123.
    [17] M. E. Davis, Nature, 2002, 417, 813.
    [18] M. Hartmann, Angew. Chem., 2004, 116, 6004; Angew. Chem. Int. Ed., 2004, 43, 5880.
    [19] C. C. Freyhardt, M. R. Tsapatsis, F. Lobo, K. J. Balkus, and M. E. Davis, Nature, 1996, 381, 295.
    [20] S. Mintova, N. H. Olson, V. Valtchev, and T. Bein, Science, 1999, 283, 958.
    [21] C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116.
    [22] Y. Tao, H. Kanoh, and K. Kaneko, J. Am. Chem. Soc., 2003, 125, 6044.
    [23] Z. Yang, Y. Xia, and R. Mokaya, Adv. Mater., 2004, 16, 727.
    [24] W.-C. Li, A.-H. Lu, R. Palkovits, W. Schmidt, B. Spliethoff, and F. Schüth, J. Am. Chem. Soc., 2005, 127, 12595.
    [25] H. Wang, and T. J. Pinnavaia, Angew. Chem. Int. Ed., 2006, 45, 7603.
    [26] M. Choi, H. Cho, R. Srivastava, C. Venkatesan, D. Choi, and R. Ryoo, Nat. Mater., 2006, 5, 718.
    [27] R. Srivastava, M. Choi, and R. Ryoo, Chem. Commun., 2006, 4489.
    [28] M. Choi, R. Srivastava, and R. Ryoo, Chem. Commun., 2006, 4380.
    [29] F. S. Xiao, L. F. Wang, C. Y. Yin, K. F. Lin, Y. Di, J. X. Li, R. R. Xu, D. S. Su, R. Schl?gl, T. Tokoi, and T. Tatsumi, Angew. Chem. Int. Ed., 2006, 45, 3090.
    [30] A. A. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, Y. H. Yue, and Z. Gao, Adv. Mater., 2002, 14, 926.
    [31] J. Scherzer, ACS Symp. Ser. 1984, 248, 157.
    [32] R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, and G. J. Ray, Top.Catal. 1997, 4, 27.
    [33] A. Redondo, and P. J. Hay, J. Phys. Chem. 1993, 97, 11754.
    [34] Y. D. Wang, L. F. Fu, Y. Liu, and Q. H. Xu, Chinese J. Anal. Chem., 1999, 27, 868.
    [35] M. M. J. Treacy, and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier, New York, 4rd edn., 2001, pp. 1-383.
    [36] Y. Liu, W. Z. Zhang, and T. J. Pinnavaia, J. Am. Chem. Soc., 2000, 122, 8791; Angew. Chem. Int. Ed., 2001, 40, 1255.
    [37] Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao, and F.-S. Xiao, Angew. Chem. Int. Ed., 2001, 40, 1258.
    [38] Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao, and F.-S. Xiao, J. Am. Chem. Soc., 2001, 123, 5014.
    [39] Y. Han, F.-S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li, S. Lin, F. Deng, and X. Ai, J. Phys. Chem. B., 2001, 105, 7963.
    [40] F.-S. Xiao, Y. Han, Y. Yu, X. J. Meng, M. Yang, and S. Wu, J. Am. Chem. Soc., 2002, 124, 888.
    [41] K. S. W. Sing, Pure Appl. Chem., 1985, 57, 603.
    [42] P. L. Llewellyn, Y. Grillet, F. Schüth, H. Reichert, and K. K. Unger, Microporous Materials, 1994, 3, 345.
    [43] H. Li, Y. Sakamoto, Z. Liu, T. Ohsuna, O. Terasaki, M. Thommes, and S. Che,Micropor. Mesopor. Mater., 2007, DOI: 10.1016/j.micromeso.2007.02.054.
    [44] Y. R. Wang, M. Lin, and A. Tuel, Micropor. Mesopor. Mater., 2007, 102, 80.
    [45] G. Engelhardt, E. Lippmaa, M. Tarmak, and M. A. Magi, Z. Anorg. Allg. Chem., 1981, 482, 49.
    [1] D. W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Uses, Wiley-Interscience, New York, 1974.
    [2] C. R. Marcilly, Top. Catal., 2000, 13, 357.
    [3] J .M. Newsam, Science, 1986, 231, 1093.
    [4] H.Van Bekkum, E. M. Flanigen, J. C. Jansen, Introduction to Zeolite Science and Practice; Elsevier: Amsterdam, 1991.
    [5] A. Dyer, An Introduction to Zeolite Molecular Sieves; John Wiley & Sons: Chichester, U.K., 1988.
    [6] R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [7] J. M. Newsam, D. E. W. Vaughan, K. G. Strohmaier, J. Phys. Chem., 1995, 99, 9924.
    [8] R. M. Barrer, P. J. Denny, J. Chem. Soc., 1961, 971.
    [9] L. S. Dent Glasser, G. Harvey, Proc. 6th Int. Conf. Zeolites, 1983, 925.
    [10] G. Harvey, L. S. Dent Glasser, Properties of Aluminosilicate Solution, A thesis of Ph. D. 1984.
    [11] E. M. Flanigen, Adv. Chem. Ser., 1973, 121, 114.
    [12] P. K. Dutta, M. Pur, D. C. Shieh, Mater. Res. Soc. Symp. Proc., 1988, 111, 101.
    [13] E. M. Flanigen, R. L. Patton, S. T. Wilson, Stud. Surf. Sci. Catal., 1988, 13, 37.
    [14] J. P. Arharcet, M. E. Dauis, Chem. Mater., 1991, 3, 567.
    [15] B. M. Lok, T. R. Cannon, C. A. Messina, Zeolites, 1983, 3, 282.
    [16] S. L. Lawton, W. J. Rohrbaugh, Science, 1990, 247, 1319.
    [17] K. J. Jr. Balkus, C. D. Hargis, S. Kowalak, ACS Symp. Ser., 1992, 499, 347.
    [18] K. J. Jr. Balkus, A. Ramsran, R. Szostak, 12th Int. Zeolite Conf. Materials Research Society, PA, 1999, 1931.
    [19] K. J. Jr. Balkus, A. G. Gabrielov, N. Sandler, Mater. Res. Soc. Symp. Proc., 1995, 368, 369.
    [20] K. J. Jr. Balkus, M. Biscotto, A. G. Gabrielov, Stud. Surf. Sci. Catal., 1997, 105, 415.
    [21] B. J. Schoeman, J. Sterte, J. E. Otterstedt, Zeolites, 1994, 14, 110.
    [22] M. E. Davis, R. F. Lobo, Chem. Mater., 1992, 4, 756.
    [23] R. A.Van Nordstand, D. S. Santilli, S. I. Zones, ACS Sym. Ser., 1988, 268, 236.
    [24] F. Delprato, L. Delmotte, J. L. Guth, L. Huve, Zeolites. 1990, 10, 546.
    [25] M. Yoshikawa, P. Wagner, M. Lovallo, J. Phys. Chem. B., 1998, 102, 7139.
    [26] J. C. Jansen, S. Wilson, T. Studies in Surface Science and Catalysis, 2001,137, 175.
    [27] X. Bu, P. Feng, G. D. Stucky, Science, 1997, 278, 2080.
    [28] W. M. Meier, D. H. Olson, Ch. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, Boston, 1996.
    [29] Pingyun Feng, Xianhui Bu, Galen D. Stucky, Microporous and Mesoporous Materials, 1998, 23, 315.
    [30] D. R. Corbin, L. Abrams, G. A. Jones, M. M. Eddy, W. T. A. Harrison, G. D. Stucky, D. E. Cox, J. Am. Chem. Soc., 1990, 112, 4821.
    [31] L. B. McCusker, Ch. Baerlocher, in: D.Olson, A. Bisio (EDS.), Proc. 6th Int. Zeolite Conf., Butterworth, Guildford, Surrey, 1984, p. 812.
    [32] J. B. Parise, L. Abrams, T. E. Gier, D. R. Corbin, J. Jorgensen, E. Prince, J. Phys. Chem., 1984, 88, 2303.
    [33] R. M. Barrer, M. A. Rosembalt, in: D. H. Olson, A. Bision (Eds.), Proc. 6th Int. Zeolite Conf. , Butterworth, Guildford, Surrey, 1984, p. 276.
    [34] W. H. Baur, R. X. Fischer, R. D. Shannon, in: P. J. Grobet, W. J. Mortier. E. F. Vansant, G. Schultz-Ekloff (Eds.), Innovation in Zeolite Materials Science, Elsevier, Amsterdam, 1988, p. 281.
    [35] A. Bieniok, W. H. Baur, J. Solid State Chem., 1991, 90, 173.
    [36] C. P. Grey, F. I. Poshni, A. F. Gualtieri, P. Norby, J. C. Hanson, D. R. Corbin, J. Am. Chem. Soc., 1997, 119, 1981.
    [37] J. B. Parise, T. E. Gier, D. R. Corbin, D. E. Cox, J.Phys. Chem., 1984, 88, 1635.
    [38] T. M. Nenoff, J. B. Parise, G. A. Jones, L. G. Galya, D. R. Corbin, G. D. Stucky, J. Phys. Chem., 1996, 100, 14256.
    [39] Y. Lee, J. A. Hriljac, T. Vogt, J. B. Parise, M. J. Edmondson, P. A. Anderson, D. R. Corbin, T. Nagai, J. Am. Chem. Soc., 2001, 123, 8418.
    [40] Y. Lee, B. A. Reisner, J. C. Hanson, G. A. Jones, J. B. Parise, D. R. Corbin, B. H. Toby, A. Freitag, J. Z. Larese, J. Phys. Chem. B, 2001, 105, 7188.
    [41] L. B. McCuster, Zeolite, 1984, 4, 51.
    [42] G. M. Johnson, A. Tripathi, J. B. Parise, Microporous and Mesoporous Materials, 1999, 28, 139.
    [43] H. E. Robson, D. P. Shoemaker, R. A. Ogilvic, P. C. Manor, in: W. M. Meier and J. B. Uytterhoeven (Eds.), Molecular Sieves, Advances in Chemistry Series No. 121, American Chemical Society, Washington, DC, 1973, p.106.
    [44] H. E. Robson, US Patent 1973, 3,720,753.
    [45] R. M. Barrer, S. Barri, J. Klinowski, in: L. V. C. Rees (ED.), Proc, 5th Int. Zeolite Conf., Heyden, Amsterdam, 1980, p.20.
    [46] M. W. Anderson, L. Kevan, J. Phys. Chem., 1986, 90, 6452.
    [47] H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson, I. R. Harris, J. Alloys Compd., 2003, 356, 710.
    [48] R. D. Shannon, M. J. Keane, L. Abrams, R. H. Staley, T. E. Gier, D. R. Corbin, G. C. Sonnichsen, J. Catal., 1988, 133, 367.
    [49] J. M. Newsam, D. E. W. Vaughan, K. G. Strohmaier, J. Phys. Chem., 1995, 99, 9924.
    [50] L. Abrams, D. R. Corbin, J. Catal., 1991, 121, 9.
    [51] 徐如人,庞文琴等编著,分子筛与多孔材料化学,北京:科学出版社,2004.
    [52] G. Engelhardt, E. Lippmaa, M. Tarmak, M. A. Magi, Z. Anorg. Allg. Chem., 1981, 482, 49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700