用户名: 密码: 验证码:
供水管道泄漏检测定位中的信号分析及处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于各种人为和自然因素,比如管道腐蚀、地质沉降和城市建设等,城市供水管网泄漏事故时有发生,不可避免,若不能及时发现泄漏故障管道和确定管道泄漏位置,将造成大量水资源浪费。目前对压力管道泄漏检测与定位的主要研究工作集中在长输油、输气管道上,研发了解决相应实际问题的漏点发现和定位方法及仪器系统。由于供水管网与长输油管道和输气管道在空间分布、构成及工作条件上存在较大的差异,供水管网具有自身特点:1)管网空间分布复杂,主副及更次级管道组成一个复杂的拓扑管网系统,分支多、节点多;2)主副及更次级管道供水负荷不同,因此,在一个管网系统中的管道条件(如管内供水压力、管道材质、管径、管壁厚度、管道间接口形式和管道埋设条件等)复杂多变,主副及更次级管道条件差异较大;3)泄漏形式多种多样,包括小孔、裂纹和管道接口破裂等。因此,通常用于输油或输气管道的泄漏检测与定位方法较难在供水管道上应用。目前,基于泄漏声信号处理的方法已广泛应用在供水管道泄漏检测与定位中,主要的研究工作集中在泄漏声信号的传播机理、各种时延估计定位算法优化和泄漏检测仪器系统构建上,对泄漏声信号产生机理、泄漏声信号特征提取及辨识,以及解决我国供水管道泄漏检测定位中所面临的实际问题做的工作或研究较少,如传统时延估计泄漏定位方法需要准确知道被测管道长度和泄漏声传播速度这两个参数,但在实际应用中,两参数存在较大误差或难以获得,常导致定位不准或错误。
     针对以上问题,论文主要研究工作如下:
     1.根据流体力学和计算流体动力学基本理论,分析了因泄漏引起的泄漏管段流场,认为因泄漏引起的管内空泡声、湍流声和湍流附面层脉动压力是引起泄漏处管道振动的激励源,分析了管道泄漏条件(开口大小、管内压力等)与空泡声、湍流声和湍流附面层脉动压力间的关系;应用薄壳振动理论研究了在上述激励源下的管道振动特性。进行了泄漏声产生机理实验,验证了管道泄漏条件与泄漏声信号间的关系。
     2.从泄漏声产生机理出发,分析了管道泄漏处湍流拟序结构与空泡间相互作用的机理,认为在该机理作用下,泄漏声信号产生过程具有“不可重复”的特征;由于相关函数具有分析时间序列拟序结构的能力,且近似熵从统计的角度区别时间过程的复杂性,因此,提出将信号相关分析和近似熵理论相结合的方法,提取泄漏声信号“不可重复”的特征,辨识管道泄漏故障发生;在实际检测现场,由于各种管内和管外固定声源噪声(如阀门噪声、工地施工噪声等)常导致泄漏误判和漏点定位错误,重点分析了管内固定噪声源(阀门噪声和接口噪声)的产生机理和特征,为复杂干扰环境下的泄漏辨识提供理论支持。将提出的泄漏信号特征提取和辨识方法应用于实际供水管道泄漏检测中,在各种管内管外干扰源下,提出的方法与其他方法相比具有低的漏检和误检率。
     3.阐述了广义互相关、自适应滤波等时延估计方法的基本原理及其在泄漏定位中的应用,分析了这些传统定位方法在实际泄漏点定位中存在的问题。
     4.研究了泄漏声信号在以管道、管内流体和管道埋设介质等构成的信道中传播的特征,从而构建了新的泄漏信号传感模型;阐述了盲系统辨识基本原理,由于泄漏声信号传播信道是高阶系统,且信道间存在病态问题,因此,提出采用overlap-save和相关函数配准原理构建代价函数,解决高阶信道估计和信道间的病态问题;采用遗传算法对多目标函数进行全局最优化,避免梯度算法收敛陷入局部最小点,对泄漏声信道辨识进行优化。通过高阶信道盲辨识仿真及实际泄漏声传播信道盲辨识,验证了该方法的有效性。
     5.实际泄漏检测定位环境中,不可避免存在干扰噪声,尤其是各种突发干扰噪声,分析了该类噪声对泄漏声传播信道盲辨识的影响,提出了突发干扰噪声抑制方法;借助泄漏声信道盲辨识,研究了泄漏声传播速度与管道条件间的关系,进而获得一种不依赖声传播速度的泄漏定位方法;通过从辨识的泄漏声传播信道中提取新的定位参数,获得不依赖管道长度的泄漏定位方法。盲系统辨识与传统时延估计泄漏定位方法实际应用结果表明,盲系统辨识方法具有高于传统定位方法的应用优势和定位精度。
     6.应用多功能、高性能的数字混合信号处理器构成实时数据采集、预处理嵌入式系统,实现检测数据的分布采集;以性价比极高的便携式个人计算机为仪器系统主机,采用虚拟仪器技术,将泄漏声信号特征提取及辨识方法、盲系统辨识定位方法应用到该技术平台上,软硬件结合,实现了泄漏检测与定位系统的各种仪器功能。
The leakage of pipe is one of the emergency problems confronted by water supply industry. It is necessary to find and locate the leak occurrences timely, which can be beneficial to maintain the safely running of pipeline and avoid the waste of water resource. The research on the leak detection and location of pressure pipelines mainly focuses on the long-distance oil and gas pipelines. Although the techniques involved in a leakage control program of long-distance oil and gas pipelines are well developed, the techniques are almost not appropriate for using in water pipelines. The reasons are as follows: 1) Because of the size and complexity of the water distribution network, the major and minor pipes in the network form a topological structure with multi-branch and multi-node. 2) Because of the different supply arrangements between major and minor pipes, the pipe conditions in the distribution network are diverse, such as the pipe size, pipe material, the pipe wall thickness, the joints and the cover conditions. 3) Leakage occurs in different components of the distribution system: transmission pipes, distribution pipes, service connection pipes, joints, valves, and fire hydrants. Causes of leaks include corrosion, material defects, faulty installation, excessive water pressure, water hammer, ground movement due to drought or freezing, and excessive loads and vibration from road traffic. Thus, the developed methods for leak detection and location in the long-distance oil and gas pipelines are almost not suitable for application in the water pipelines.
     Acoustic leak detection techniques have been shown to be effective and are widely used in the nondestructive testing of water industry. The current studies mainly focus on the leak acoustic signal propagation characteristics and the optimization of leak location methods based on time delay estimation. In this thesis, the mechanism of leak acoustic signal generation, the feature extraction and identification and a new leak location method are investigated. The main work is provided as follows:
     1. Aiming at the mechanism of leak acoustic signal generation, we investigate the leak fluid field in pipe by computational fluid dynamics (CFD). The results show that the unsteady flow separation at the leak hole, cavitations, and fluctuating pressure in a turbulent boundary layer are the excitation sources of leak noise. The effects of leak type, pipe pressure on the excitation sources are investigated. The vibration characteristics of the pipe under excitation are analyzed based on the thin shell vibration principle. The experimental results show the validness of the mechanism analyses.
     2. According to the generation mechanism of the leak acoustic signal, the characteristics of the leak acoustic signal are investigated. The auto correlation technology is adopted to descript the leak signal characteristics due to the ability to analyze the coherence of time series. A new procedure to identify the leak acoustic signal from the disturbed noises is proposed based on the conjunction of correlation and approximate entropy algorithm.
     3. The principle and application in leak location of the correlation and the adaptive filter techniques are introduced. The problems of the traditional leak location methods are analyzed.
     4. In order to establish the leak detection signal model, the leak acoustic propagation characteristics are investigated experimentally. The leak acoustic channels may be supposed to be linear time-invariant FIR systems. It is noted that a leak acoustic channel system has an impulse response with quite a long sequence. Because the overlap-save technique is a block processing where the channel coefficients being identified are updated once per block of input data, it is accurate for the identification of a long impulse response. The cross-correlation fitting technique shows superior performance when the channel is close to unidentifiable. Therefore, two cost functions are constructed based on the overlap-save and the cross-correlation fitting techniques to identify the leak acoustic channels. As genetic algorithm (GA) requires no gradient calculation and is less susceptible to local optima, we adopt GA to optimize the cost functions in blind channel identification. The practical identification results show the validness of the proposed scheme.
     5. Since the collected signals are heavily blurred by bursting interferences and present non-stationary, we propose a method to discriminate and remove the burst-type noise. Actually the acquired signals contain the characteristics related to the acoustic propagation channels, thus the blind system identification strategy is applied to estimate the transmission performances of acoustic channels. Then the times due to the propagation of the leak source signal traveling from the leak point to sensors are determined. The leak noise propagation velocity is directly calculated based on the estimated propagation times and pipe length. Here the variations of propagation velocity with pipe conditions are investigated experimentally. Due to the fact that the propagation times can be estimated by leak acoustic channel identification, for leak location, even if the information of pipe conditions is not available, the leak point can be located. This way, for leak location, the detection distance or the propagation velocity is no longer a prerequisite.
     6. The intelligent leak detection and location instrument system consists of a host computer, multiple data acquisition units connected to accelerometers integrated with ICs. Based on the virtual instrumentation, the hardware combined with the software implements the functionalities of information acquisition, storage, transmission, processing and presentation.
引文
[1] 世界资源研究所, 联合国环境规划署, 联合国开发计划署. 世界资源报告. 中国环境科学出版社. 1993.
    [2] 中国城镇供水协会. 2004 年城市供水统计年鉴. 2004.
    [3] 宋序彤, 钱琦, 曹金清. 中国城市供水未计量用水和漏损分析.管网漏损控制研讨会论文集,中国水协科技委管道专业委员会, p1-12, 2001.
    [4] 王光焘等.《城市供水行业 2000 年技术进步规划》, 中国建筑工业出版社,北京,1993, 1(7),335-374.
    [5] 何均. 亟待解决的中国城市管网漏水问题. 地下管线管理, 1996, 1: 22-23.
    [6] 黄久松. 重视城市供水管线检漏与治理. 地下管线管理, 1997, 4:9.
    [7] 冼骏峰.中国自来水漏水调查技术与探讨.地下管线管理,1997, 4:26-29.
    [8] 吴基胜, 葛成茂. 英国供水泄漏管理及我国的现状. 给水排水. 1997, 11:55-57.
    [9] 何桂湘. 英国城乡干管测漏的几种新技术. 城市供水. 2000, 6:42-44.
    [10] 崔玉川, 付涛. 我国城市给水发展现状与特点. 中国给水排水. 1995. 11(2):25-29.
    [11] 中国城镇供水协会. 2003 年城市供水统计年鉴. 2003.
    [12] 王继明, 杨昌彬等. 浅谈漏水听音原理及在实践中的应用. 地下管线管理 2002(3):38-39.
    [13] International Water Association. Manual of Best Practice: Performance Indicators for Water Supply Services. International Water Association. 2000.
    [14] E.J Seiders. Hydraulic Gradient Eyed in Leak Detection. Oil and Gas Journal, 1979, (19):116-125.
    [15] 王桂增, 董东. 基于 Kullback 信息测度的长输管线的泄漏检测. 信息与控制, 1989, 18(1): 14-18.
    [16] A. Benkherouf. Leak Detection and Location in Gas Pipelines. IEEE Proceedings, March, 1988, 135(2):142-148.
    [17] 唐秀家. 不等温长输管道泄漏定位理论. 北京大学学报,1997,33(5):574-580.
    [18] FURNESS R A. Modern pipelines monitoring techniques, Part 2, Instrumentation and system design. Pipes &Pipelines International, 1985, 10:14- 8.
    [19] GRIEBENOW G. Leak detection implementation: modeling and tuning methods. Transactions of the ASMS, 1989, 111:66 - 71.
    [20] 夏海波, 张来斌, 王朝晖. 国内外油气管道泄漏检测技术的发展现状. 油气储运, 2001, 20(1) :1-5.
    [21] 陈华波, 涂亚庆. 输油管道泄漏检测方法综述. 管道技术与设备. 2000, (1):38-41.
    [22] 蔡正敏,吴浩江,黄上恒,等. 小波变换在管道泄漏在线监测中去噪的应用. 机械科学与技术, 2001, 20(2): 4-8.
    [23] 靳世久. 瞬态负压波结构模式识别法原油管道泄漏检测技术.电子测量与仪器学报,1998,12(1):19-23.
    [24] 邓鸿英, 杨振坤, 王毅. 基于负压波的管道泄漏检测与定位技术研究. 计算机测量与控制.2003, 11(7):481-489.
    [25] Huali Chen, Hao Ye, Chen LV, Hongyu Su. Application of support vector machine learning to leak detection and location in pipelines. Instrumentation and Measurement Technology Conference, 2004. IMTC 04. Proceedings of the 21st IEEE. 2004, 3:2273-2277.
    [26] Isermann R. Process Fault Detection Based on Modeling and Estimation Methods A Survey. Automatic, 1984, 20 (4):387-404.
    [27] I. R. Ellul. Advances in Pipeline Leak Detection Techniques. Pipes and Pipelines International, 1989, 34 (3):7-12.
    [28] Liou Chyr Pyng. Pipeline Leak Detection Based on Mass Balance. Proceedings of the International Conference on Pipeline Infrastructure Ⅱ. 1993. 175-188.
    [29] 蔡正敏,彭飞,易发新,吴智中.长输管道泄漏故障诊断方法的研究.应用力学学报, 2002,19(2):38-44.
    [30] 白莉,岳前进,李洪升.噪声干扰条件下长输管道检漏的一致最大功效检验.石油学报, 2004,25(2):108-112.
    [31] A. J. Ward-. Pressure losses in ducted flows. London, Butterworths, 1971.
    [32] Digernes T. Real Time Failure Detection and Identification Applied to Supervision of Oil Transport in Pipeline. Modeling, Identification and Control, 1980, (1):39-49.
    [33] L.Billmann, R.Isermann. Leak Detection Methods for Pipelines, Automatica, 1987, 23(3): 381-385.
    [34] Benkherouf A, Allidina A Y. Leak Detection and Location in Gas Pipelines, IEEE Proceedings, March, 1988, 135(2):142-148.
    [35] Wang, G.Z. Fang, C.Z. Wang, K.F. State estimation and leak detection and location in pipeline. Industrial Electronics, Control and Instrumentation, 1991. Proceedings. IECON '91. 1991 International Conference on.155-160 vol.1, 1991.
    [36] Ashton S A, Shield D N, Daley S. Application of a Fault Detection Method for Pipelines. System Science, 1997, 23 (2):97-109.
    [37] Z.Kowalczuk and K.Gunawickrama, Leak Detection and Isolation for Transmission Pipelines via Nonlinear State Estimate. 4th IFAC SAFEPROCESS, 2:943-948, 2000.
    [38] Siebert H. A Simple Method for Detecting and Locating Small Leaks in Gas Pipelines. Process Automation, 1981, 90-95.
    [39] 秦泗肇,王桂增,陶洛文,方崇智. 长输管道的泄漏故障诊断. 工业过程模型化及控制. 中国自动化学会第二届过程控制科学报告会论文集. 上海:华东化工学院出版社,1988.
    [40] Wade, W R, Rachford, H H. Detecting leaks in pipe lines in pipe lines using SCADA information. Pipe Line Industry.1988, 68(1):64-66.
    [41] Benkherouf A, Allidina A Y. Leak detection and location in gas pipelines. IEE Proceedings, Pt D, 1988,135 (2):142-148.
    [42] Poulakis Z.; Valougeorgis D.; Papadimitriou C.Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probabilistic Engineering Mechanics, 2003, 18(4):315-327.
    [43] Ferrante M, Brunone B. Harmonic Analysis of Pressure Signal during Transients for Leak Detection in Pressurized Pipes. Proceedings of the 4th Int Conf on Water Pipeline Systems. York, UK: BHR Group Limited, 1999. 259-267.
    [44] Wang X J, Lambert Martin F, Simpson Angus R, et al. Leak Detection in Pipelines Using the Damping of Fluid Transients. Journal of Hydraulic Engineering, 2002, 128(7): 6972-711.
    [45] Osama Hunaidi, Wing T.Chu. Acoustical Characteristics of Leak Signals in Plastic Water. Applied Acoustic, 1999, 55:235-254.
    [46] Osama Hunaidi, Wing Chu, Alex Wang, and Wei Guan. Detecting leaks in plastic pipes. AWWA, Volume 92, No. 2, pp. 82-94, February 2000.
    [47] C.R. Fuller, F.J. Fahy, Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid, Journal of Sound and Vibration, 1982, 81: 501-518.
    [48] Sinha, B. K., Plona, T. J., Kostek, S., Chang, S. K. Axisymmetric wave propagation in fluid-loaded cylindrical shells. I. Theory. J. Acoust. Soc. Am. 1992, 1132-1143.
    [49] Muggleton JM, Brennan MJ, Pinnington RJ. Wavenumber prediction of waves in buried pipes for water leak detection. J Sound Vib 2002; 249(5):939-54.
    [50] Muggleton JM, Brennan MJ, Linford PW. Axisymmetric wave propagation in fluid-filled pipes: wavenumber measurements in in vacuo and buried pipes. J Sound Vib 2004; 270(1-2):171-90.
    [51] Muggleton JM, Brennan MJ, Linford PW. Leak noise propagation and attenuation in submerged plastic water pipes. J Sound Vib 2004; 278(3):527-37.
    [52] M. Prek. Wavelet analysis of sound signal in fluid-filled viscoelastic pipes. Journal of Fluids and Structures. 2004, 19: 63-72.
    [53] Pinnington RJ, Briscoe AR. Externally applied sensor for axisymmetric waves in a fluid-filled pipe. J Sound Vib 1994; 173(4):503-16.
    [54] Long R, Cawley P, Lowe MJS. Acoustic wave propagation in buried iron water pipes. Proc Royal Soc Lond: Mathematical, Physical and Engineering Sciences 2003; 459:2749-70.
    [55] J. Zhang, L. Jia, Y. Shu. Wave propagation characteristics of the shells of revolution by frequency wave number spectrum method. Journal of Sound and vibration, 2002, 251(2):367-372.
    [56] Wan, Q.; Koch, D.B.; Morris, K. Multichannel spectral analysis for tube leak detection. Proceedings of IEEE, 1993.
    [57] 唐秀家. 供水管网泄漏检测定位方法及仪器. 水利学报, 1997, 3:19-26.
    [58] 唐秀家, 颜大椿. 基于神经网络的管道泄漏检测方法及仪器.北京大学学报, 1997, 33(3):319-327.
    [59] Michael Savic. Detection of leaks in pipelines. US Patent. Patent number: 5416724. 1995.
    [60] Changsheng Ai, Honghua Zhao, Rujian Ma, and Xueren Dong. Pipeline damage and leak detection based on sound spectrum LPCC and HMM. Proceeding of the Sixth International Conference on Intelligent System Design and Applications. 2006. 829-833.
    [61] Toshitaka Sato and Akira Mita. Leak detection using the pattern of sound signals in water supply systems. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. Proc. of SPIE vol. 6529.
    [62] 李光海 , 刘时风 , 耿荣生 , 沈功田 . 声发射源特征识别的最新方法 . 无损检测 , 2002,24(12):534-538.
    [63] 崔建. 管道泄漏声发射检测方法及系统研究. 北京: 清华大学, 2000.
    [64] 毛汉领, 黄文, 包家福,龙芋宏. 自来水管网泄漏检测的两种方法. 控制与测量. 2002, 1:35-47.
    [65] 王潜龙, 冯全科, 屈展, 帕娜尔汗. 基于声发射与小波包理论的压力管道泄漏检测.西安交通大学学报. 2003, 37(5):515-518.
    [66] 谷小红, 张光新, 侯迪波, 周泽魁. 小波包分解与能量特征提取相结合的水管泄漏位置的确定. 四川大学学报. 2005, 37(6):145-149.
    [67] 焦敬品, 何存富, 吴斌, 费仁元, 王秀彦. 管道声发射泄漏检测技术研究进展. 无损检测. 2003, 25(10): 519-523.
    [68] 焦敬品, 何存富, 吴斌, 费仁元. 基于导波理论的管道泄漏声发射定位新技术研究. 机械工程学报. 2004, 40(10):77-81.
    [69] 焦敬品, 何存富, 吴斌, 费仁元. 基于模态分析和小波变换的声发射源定位新算法研究. 仪器仪表学报. 2005,5:482-485.
    [70] 张立. 基于多声学传感器的声发射检测技术的应用研究. 浙江大学硕士论文. 2006.
    [71] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O. Hunaidi. A model of the correlation function of leak noise in buried plastic pipes. Journal of Sound and Vibration. 2004, 277: 133-148.
    [72] Y. Gao, M.J. Brennan, P.F. Joseph. A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes. Journal of Sound and Vibration. 2006, 292:552-570.
    [73] R.E. Stevens, J.H. Anspach, New technology overcomes the problems of under ground system interferences on power projects, Proceedings of the American Power Conference. 1993, 55:323- 326.
    [74] M. Farley, R. Liemberger, Developing a non-revenue water reduction strategy: planning and implementing the strategy, Water Science and Technology: Water Supply. 2005, 5(1):41-50.
    [75] P. Lander, W.E. Saltzstein, Method for detecting leaks in pipelines, U. S. Patent No. 5974862, 1999.
    [76] M. Farley, R. Liemberger. Developing a non-revenue water reduction strategy: planning and implementing the strategy. Water Science and Technology: Water Supply. 2005, 5(1):41-50.
    [77] Hunaidi, O.; Wang, A.; Bracken, M.; Gambino, T.; Fricke, C. Acoustic methods for locating leaks in municipal water pipe networks. International Conference on Water Demand Management, Dead Sea, Jordan, May 30-June 3, 2004, pp. 1-14.
    [78] Joseph W. Maresca. Pipeline and advanced leak-location system. Vista Research Technical Memorandum No. 53.
    [79] 郭亚军, 聂伟荣, 朱继南. 基于 3 个传感器的管道泄漏相关定位算法. 南京理工大学学报. 2003, 27(6):682-685.
    [80] 王继华, 张致付,雷林源.灰色系统在地下管道泄漏定位中的应用. 桂林工学院学报, 2003, 23(1):46-49.
    [81] 王继华. 相关测漏技术的基本理论与新成果. 硕士论文. 桂林工学院.2003.
    [82] Shifeng Liu, Luming Li, Jian Cui, Tie Li. Acoustic Emission Detection of Underground Pipeline Leakage.15th World Conference on Nondestructive Testing Roma (Italy) 15-21 October 2000.
    [83] 黄文, 毛汉领, 包家福, 龙芋宏.管网泄漏检测的单传感器定位方法. 控制与测量.2002,4:37-40.
    [84] 龚斌, 包日东, 金志浩, 闻邦椿. 压力管道泄漏点的新型声发射定位研究.化工机械. 2005, 32(5):291-293.
    [85] Verde C, Visairo N. Bank of Nonlinear Observers for the Detection of Multiple Leaks in a Pipeline. IEEE Conferenceon Control Application Proceedings. 2001. 714-719.
    [86] Verde C. Multi-leak detection and location in fluid pipelines. Control Engineering Practice, 2001, (9):673-682.
    [87] C. Verde and N. Visairo. Idntificability of multi-leaks in a pipeline. Proceeding of the 2004 American Control Conference Boston, Massachurens June 30 -July 2, 2004.
    [88] C Verde. Reconfigurable model for multi-leak location in a pipeline. Proceedings of the American Control Conference Denver, Colorado June 4-6.2003.
    [89] Kanai, H., Kido, K. New method to locate multiple sound sources in one-dimensional space based on estimation of each source sound. American Society of Mechanical Engineers, Pressure Vessels and Piping Division. 1989, 177:227-232.
    [90] 张宏伟,牛志广,陈超,洪霞.供水管道漏损预测模型研究.中国给水排水, 2001,17(6):7-9.
    [91] 傅玉芬. 城市供水管网漏损控制.硕士论文.天津大学, 2004.
    [92] 陈兵.城市给水管网漏失问题的研究.博士学位论文.哈尔滨工业大学,2001.
    [93] 陈磊 , 张土乔 , 吕谋 , 何小香 . 遗传算法优化管网神经元网络模型 . 中国给水排水,2003,19(5):5-7.
    [94] Brothers, K.J. A practical approach to Water Loss Reduction. Water 21, 2003 54-55.
    [95] M.Eiswirth, L.S.Burn. New methods for defect diagnosis of water pipelines. 4. Int. Conf. on Water pipeline system, 28-30. March, York, UK.
    [96] AWWA (1987). Leaks in Water Distribution Systems-A Technical/Economic Overview. American Water Works Association, Denver, CO.
    [97] AWWA (1999). Water Audits and Leak Detection. Manual of Water Supply Practices M36, American Water Works Association, Denver, CO.
    [98] Fuchs H V and Riehle R. Ten years of experience with leak detection by acoustic signal analysis Applied Acoustics. 1991, 33 1-19.
    [99] http://www.adler.com.cn/show.shtml.
    [100] 常贵林、刘吉东等,工业泄漏与治理,北京:中国石化出版社,2001.
    [101] Hunaidi, O. and Giamou, P, Ground – penetrating radar for detection of leaks in buried water distribution pipes, Pro. 7th Int. Conf. on Ground-Penetrating Radar – GPR’98, Lawrence, Kansas, 27-30, may 1998(2): 783-786.
    [102] 梁建文,赵新华,肖笛,张宏伟. 一种城市供水管网爆管故障在线检测系统. 中国发明专利,申请号:02100405.6.
    [103] 冯继东. 埋地供水管漏损的声信号特征及检漏系统仿真系统. 硕士论文, 华中科技大学, 2004.
    [104] 郭亚军. 压力管道泄漏检测与漏点定位算法研究与实现. 硕士论文, 南京理工大学, 2003.
    [105] 耿为民.给水管网漏损控制及其关键技术研究.博士论文, 同济大学, 2004.
    [106] 闫红美.地下输水管道漏水信号特征分析. 硕士论文,长春科技大学,1999.
    [107] 闫新海.地下输水管道漏水相关检测技术研究. 硕士论文,长春科技大学,2000.
    [108] 夏开新.相关测量及弱信号检测在管网漏点定位系统中的应用研究.硕士论文,哈尔滨工业大学,2004.
    [109] 何峰.管道漏点定位系统及相关问题的研究.硕士论文,哈尔滨工业大学,2005.
    [110] 佟凯.相关分析法在管道漏点定位系统中的试验研究.硕士论文,哈尔滨工业大学,2005.
    [111] 贺强.给水管网定位和测漏设备应用研究.硕士论文,哈尔滨工业大学,2005.
    [112] 孙中.地下自来水管道测漏仪检测电路的设计.硕士论文, 吉林大学,2002.
    [113] 孙忠. 地下自来水管道测漏仪检测系统的改进与实现. 硕士论文, 吉林大学,2002.
    [114] Yumei Wen, Ping Li, Jin Yang and Zhangmin Zhou, Information processing in buried pipeline leak detection system, Proceedings of 2004 international conference on information acquisition, pp.489-493, 2004.
    [115] Yumei Wen, Ping Li, Xin Na, Jin Yang, Mobile instrument for intelligent leak detection and location on underground water supply pipelines, SPIE vol. 5758, Proc. of SPIE Smart Structures & Materials and Nondestructive Evaluation for Health Monitoring & Diagnostics Symposium, San Diego, USA, 2005.
    [116] 吴慧娟, 文玉梅, 李平. 被动检测系统中自适应算法收敛的动态判断. 仪器仪表学报. 2007, 28(3): 414-420.
    [117] 文玉梅,李平,杨进.自适应时延估计中的信号自相关函数估计. 信号处理. 2006, 22(6):774-777.
    [118] 一种便携式的管道泄漏监测仪, 发明专利, 200510020194.2.
    [119] 传感器连接电缆受力承载机构, 实用新型, zl200420032548.6
    [120] Matin Thompson, Chapman, C.J. and Howison, S.D. and Ockendon, J.R. Noise generation by water pipe leaks. 40th European Study Group with Industry, Keele 2001.
    [121] 忻孝康, 刘儒勋, 蒋伯诚. 计算流体动力学. 长沙:国防科技大学出版社,1989.
    [122] 张廷芳, 计算流体力学. 大连:大连理工大学出版社,1992.
    [123] 张兆顺,崔桂香.流体力学.北京:清华大学出版社,1999.
    [124] 刘鹤年.流体力学.北京:中国建筑 I 一业出版社,2001.
    [125] 张远君.液体力学大全.北京:北京航空航天出版社,1991.
    [126] 王福军. 计算流体动力学分析———CFD 软件的理论与应用. 北京:清华大学出版社,2004.
    [127] Noordij L, van Wijngaarden L. Relaxation effects, caused by relative motion, on shock waves in gas-bubblelliquid mixtures. J Fluid Mech. 1974, 66:115-143.
    [128] Shen Y, Peterson F B. Unsteady cavitation on an oscillating hydrofoil. In: Proc 12th ONR Symp on Naval Hydrodynamics, 1978, pp 362-384.
    [129] 黄景泉. 空泡溃灭时的流场. 应用数学和力学. 1989, 10(3):247-251.
    [130] Rayleigh J W. On the pressure developed in a liquid during the collapse of a spherial cavity. Philos Mag 1917,34:94-98.
    [131] 黄景泉. 空泡起始与溃灭阶段的噪声. 应用数学和力学. 1990, 11(8):725-729.
    [132] Leighton T.G, Fagan K. J, Field J. E. Acoustic and photographic studies of injected bubbles. Eur. J. Phys. 1991, 12:77-85.
    [133] Lyamshev L M. On the theory of hydrodynamic cavitation noise.Sov Phys-Acoustic.1969, 15:494-498.
    [134] Boguslavskii Yu Ya, Loffe A I, Naugol nykh K A. Sound raddiation by a cavitation zone.Sov Phys-Acoustic.1970,16:17-20.
    [135] Biesheuvel A, Van Wingaarden L. Two-phase flow eqution for a dilute dispersion of cavitation noise. J Fluid Mech, 1984, 148:304-318.
    [136] M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bubble columns, AIChE J. 1990, 36 (10):1485-1499.
    [137] G.M. Faeth, Recent advances in modelling particle transport properties and dispersion in turbulent flow, in: Proceedings of the ASME-JSME Thermal Engineering Conference, vol. 2, ASME, New York, 1983, pp. 517–534.
    [138] D.G. Crighton, P. Huerre, Shear-layer pressure fluctuations and superdirective acoustic sources, J. Fluid Mech. 1990, 220:255-368.
    [139] J.B. Freund, Noise in a low-Reynolds-number turbulent jet at Mach 0.9, J. Fluid Mech. 2001, 438:277-305.
    [140] A.P. Dowling, T.P. Hynes. Sound generation by turbulence. European Journal of Mechanics B/Fluids. 2004, 23:491–500.
    [141] M.J. Lighthill, On sound generated aerodynamically: I. General theory, Proc. Roy. Soc. London Ser. A . 1952, 211:564–581.
    [142] J.E. Ffowcs Williams, The noise from turbulence convected at high speed, Philos. Trans. Roy. Soc. London. 1963, 255:469–503.
    [143] R. Mani, The influence of jet flow on jet noise, Parts 1 and 2, J. Fluid Mech. 1976, 73:753–793.
    [144] G.M. Lilley, On the noise from jets, noise mechanisms, CP-131-Agard 113.1-13.12, 1974.
    [145] M. E. GOLDSTEIN and B. M. ROSENBAUM. Emission of sound from turbulence convected by a parallel flow in the presence of solid boundaries. 1973 NASA TND-7118.
    [146] Willmarth W W, Roos F W. Resolution and structure of the wall pressure field beneath a turbulent boundary laryer.J Fluid.Mech.1965, 22:81-94.
    [147] Dyer I. Sound radiation into a closed space from boundary layer turbulence. Proc. Second Symposium on Naval Hydrodynamic. ONRACR-388 Washington, 1958, 151-174.
    [148] Hoerner S F. Fluid-dynamic drag.1965.
    [149] 杨耀乾 .薄壳理论.北京: 中国铁道出版社,1981.
    [150] 诺沃日洛夫著, 白鹏飞等译. 薄壳理论.北京: 工人出版社, 1961.
    [151] 陈正翔, 江松青. 圆柱壳中结构振动波的传播特性. 振动工程学报. 1998, 11 (4): 450-456.
    [152] Wang C., Lai J. C. S. Prediction of natural frequencies of finite length circular cylindrical shells. Applied acoustics. 1999, 59: 385-400.
    [153] L iuMan, Gorman D. G. Prediction of the vibratory characteristics of cylindrical structures with p resence of single2phase flow. Engineering Structures. 1996, 18 (6): 437-446.
    [154] 连法增. 材料物理性能. 沈阳: 东北大学出版社, 2005.
    [155] 肖国庆, 张军战. 材料物理性能. 北京: 中国建材出版社, 2005.
    [156] W. D. Mccomb. The physics of fluid turbulence. 1990.
    [157] A. A. Townsend. The structure of turbulent shear flow.1976.
    [158] 梁在潮. 工程湍流. 华中理工大学出版社, 1994.
    [159] Yoshiaki Kodanla.Efect of microbubble distribution on skin friction reduction. Proc.of the Int.Sympo.on Seawater Drag Reduction, Newport, 1998.
    [160] H. H. Legner. A simple model for gas bubble drag reduction. Phys. Fluids. 1984, 27(12):2788-2790.
    [161] Kato, H., Iwashina, T., Miyanaga, M., Yamaguchi, H., 1999. Effect of microbubbles on the structure of turbulence in a turbulent boundary layer. Journal of Marine Science and Technology 4, 155-162.
    [162] Hiroharu Kato, Tomoaki Iwashina, Masaru Miyanaga, and Hajime Yamaguchi. Effect of microbubbles on the structure of turbulence in. a turbulent boundary layer. J Mar Sci Technol. 1999, 4:155-162.
    [163] Sato Y., Sadatomi M. and Sekoguchi K. Momentum and heat transfer in two-phase bubble flow. Int. J. Multiphase Flow. 1981, 7:167-177.
    [164] 胡广书. 数字信号处理. 清华大学出版社. 2003.
    [165] Gouri K. Bhattacharyya and Richard A. Johnson. Statistical Concepts and Methods. John Wiley & sons, 1977.
    [166] S.M. Pincus, Approximate Entropy as a complexity measure, Chaos. 1995, 5 (1):110–117.
    [167] R. Yan, R.X. Gao, Complexity as a measure for machine health evaluation, IEEE Transactions on Instrumentation and Measurement. 2004, 53 (4):1237–1334.
    [168] Salomon R. Evolutionary algorithms and gradient search: similarities and differences. IEEE Transactions on Evolutionary Computation. 1998, 2 (2): 45-55.
    [169] Ku Chao-Chee, Lee, Kwang Y., Diagonal recurrent neural networks for dynamic systems control, IEEE Trans. Neural Networks. 1995, 6(1):144-156.
    [170] Ming-Jyh Chern, Chin-Cheng Wang, Chen-Hsuan Ma. Performance test and flow visualization of ball valve. Experimental Thermal and Fluid Science. 2007, 31(6):502-512.
    [171] 吴石,张文平,封海波. 充液管路系统中阀门流噪声的研究. 噪声与振动控制. 2005, 6(3):51-57.
    [172] R. C. K. Leung and N. W. M. Ko. The interaction of perturbed vortex rings and its sound generation. Journal of Sound and Vibration. 1997, 202 (1):1-27.
    [173] M.V. Melander, N.J. Zabusky, A.S. Styczek, A moment model for vortex interactions of the two-dimensional Euler equations, part 1: computational validation of a Hamiltonian elliptical representation, Journal of Fluid Mechanics. 167:95-115, 1986.
    [174] S.K. Tang, N.W.M. Ko, Basic sound generation mechanisms in inviscid vortex interactions at low Mach number, Journal of Sound and Vibration. 262: 87–115, 2003.
    [175] T. Kambe, T. Minota, Acoustic emissions by vortex motions, Journal of Fluid Mechanics. 1986, 173:643-666.
    [176] A. Powell, Theory of vortex sound, Journal of the Acoustical Society of America. 1964, 36 (1):177-195.
    [177] C. Schrama, A. Hirschberg. Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. Journal of Sound and Vibration. 2003, 266:1079–1098.
    [178] P. M. Morese, K. U. Ingard. Theoretical Acoustics. McGraW-Hill, 1968.
    [179] Knapp C. H. and Carter G. C., “ The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Processing. 1976, ASSP-24:320-326.
    [180] Roth P. R. Effective measurements using digital signal analysis. IEEE Spectrum. 1971, 8: 62-70.
    [181] Carter G. C., Nuttal A. H. and Cable P. G. The smoothed coherence transform. Proc. IEEE (Lett.). 1973, 61:1497-1498.
    [182] Carter G. C., Nuttal A. H. and Cable P. G. The smoothed coherence transform (SCOT). Navel Underwater Systems Center, New London Lab., New London, CT, Tech. Memo TC-159-72, 1972.
    [183] AL-HUSSAINI E. K. and KASSAM S. A. Robust Eckart filters for time delay estimation. IEEE Trans. Acoust., Speech, Signal Processing. 1984, ASSP-32(5):1052-1063.
    [184] Hannan E. J. and Thomson P. J. Estimation group delay. Biometrika. 1973, 60:241-253.
    [185] Hannan E. J. and Thomson P. J. Delay estimation and the estimation of coherence and phase. IEEE Trans. Acoust. Speech and Signal Processing. 1981, 29(3):485-490.
    [186] Haykin S., Adaptive filter theory (fourth edition), publishing house of electronics industry, 2002.
    [187] Hen-Geul Yeh. Kalman filtering and systolic processors. IEEE, Acoust, Speech, and Signal Processing, IEEE International Conference on ICASSP '86. , Volume: 11 1986, pp. 2139-2142.
    [188] 刘有恒,信号检测与估计,人民邮电出版社,1989.
    [189] Widrow B. and Stearns S. D. Adaptive signal processing. Prentice Hall, Englewood Cliffs, NJ, 1985.
    [190] Dimitris G. M., Vinay K. I. and Stephen M. K. Statistical and adaptive signal processing. publishing house of electronics industry, 2003.
    [191] Feintuch P. l., Bershad N. J. et al, Time delay estimation using the LMS adaptive filter-Dynamic behavior. IEEE Trans. Acoust., Speech, and Signal Processing. 1981, 29(3): 576-576.
    [192] Krolik J., Joy M., Eizenman M. A comparative study of the LMS adaptive filter versus generalized correlation methods for time delay estimation. IEEE, Acoust., Speech, and Signal Processing, International Conference on ICASSP '84. , Volume: 9, 1984, pp. 652-655.
    [193] Ho K. C., Ching P. C. and Chan Y. T. Adaptive time delay estimation in noisy environments. IEEE, Acoust., Speech, and Signal Processing, 1991. ICASSP-91., vol.2, 1991 International Conference on, 14-17 1991, pp.1461-1464.
    [194] Ho K. C., Chan Y. T. and Ching P. C. Adaptive time-delay estimation in nonstationary signal and/or Noise power environments. IEEE Transactions on Signal Processing. 1993, 41(7):2289-2299.
    [195] So H. C. and Ching P. C. Comparative study of five LMS-based adaptive time delay estimatiors. IEE Proc-Radar, Sonar Navig. 2001, 148:9-15.
    [196] 孟子厚,盛胜我,赵松龄. 自来水管网相关检漏技术时延估计方法的选择与综合.声学技术,1995,14(1):15-21.
    [197] L. Tong, G. Xu, and T. Kailath, Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Trans. Inform. Theory. 1994, 40(2):340-349.
    [198] E. Moulines, P. Duhamel, et. al.. Subspace methods for blind identification of multichannel FIR filters. IEEE Trans. Signal Processing. 1995, 43(2):516-525.
    [199] G. Xu, H. Liu, L. Tong, T. Kailath. A least-squares approach to blind channel equalization. IEEE Trans. Signal Processing. 1995, 43(12): 2982-2993.
    [200] A. P. Liavas, P. A. Regalia, J. P. Delmas. On the robustness of the linear prediction method for blind channel identification with respect to effective undermodeling/ overmodeling. IEEE Trans. Signal Processing. 2001, 48: 1477-1481.
    [201] Hanks H. Zeng, L. Tong. Blind channel estimation using the second-order statistics: algorithms. IEEE Trans. Signal Processing. 1997, 45(8):1919-1930.
    [202] L. Tong, Q. Zhao. Joint Order Detection and Blind Channel Estimation by Least Squares Smoothing. IEEE Trans. Signal Processing. 1999, 47(9): 2345- 2355.
    [203] X.H. Li, H. Fan. QR Factorization Based Blind Channel Identification and Equalization with Second-Order Statistics. IEEE Trans. Signal Processing. 2000, 48(1):60-69.
    [204] Houcem Gazzah, Phillip A. Regalia, et. al.. A blind multichannel identification algorithm robust to order overestimation. IEEE Trans. Signal Processing. 2002, 50(6):1449-1458.
    [205] Y. Huang, J. Benesty. A class of frequency -domain adaptive approaches to blind multichannel identification. IEEE Trans. Signal Processing. 2003, 51(1):11-24.
    [206] Z.L. Yu, M.H. Er. A robust adaptive blind multichannel identification algorithm for acoustic applications. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2004, 2:25-28.
    [207] Y. Huang, J. Benesty, Adaptive multi–channel least mean square and Newton algorithms for blind channel identification. Signal Process. 2002, 82:1127-1138.
    [208] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
    [209] G.B. Giannakis, S.D. Halford, Performance analysis of blind equalizers based on cyclostationary statistics. In Proc. 26th Conf. Inform. Sci. Syst., Princeton, NJ, Mar. 1994, 711-716.
    [210] K.F. Man, K.S. Tang, S. Kwong, Genetic algorithm: concepts and applications. IEEE Trans. Ind. Electron. 1996, 43 (5):519-534.
    [211] Krzyzak A. Nonparametric estimation and classification using radial basis function nets and empirical risk mini-mization, IEEE Transactions on Neural Networks. 1996, 7(2):475-487.
    [212] D.E.Goldberg, Genetic Algorithms in Search, Optimization vand Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [213] K. DeJong, Learning with the genetic algorithms: An overview, Machine Learning, 1988, 3 (10):121-137.
    [214] David L. Donoho, Iain M. Johnstone, Threshold selection for wavelet shrinkage of noisy data. Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1994, 1: 24-25.
    [215] David L. Donoho, De-noising by soft-thresholding, IEEE Tran on Inpormation theory. 1999, 40(3):613-627.
    [216] Milanovic, A. Srbljic, S. Radej, J. Performance of distributed systems based on Ethernet and personal computers. Industrial Electronics, Proceedings of the IEEE International Symposium on,Volume: 1, 12-16 July 1999, 79-83.
    [217] 冯冬芹, 金建祥, 褚建. Ethernet 与工业控制网络. 仪器仪表学报. 2003, 24(1): 23-26.
    [218] Hoai Hoang, Real-Time Communication for Industrial Embedded Systems Using Switched Ethernet. Parallel and Distributed Processing Symposium, Proceedings 18th International, April 26-30, 2004, 127-130.
    [219] Gary W. Johnson, Richard Jennings 著, 武嘉澎, 陆劲昆译. LabVIEW 图像编程. 北京大学出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700