用户名: 密码: 验证码:
时滞神经网络稳定性及复杂网络同步的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了易于分析和应用,许多系统建模时忽略了传输所带来的时间延迟。但是,时滞是客观存在的。同时,时滞的存在也给系统的稳定性带来影响,产生振荡行为或其它不稳定现象甚至出现混沌现象。近年来,时滞系统的研究吸引了大批的研究人员,对时滞系统的稳定性研究也取得了大量深刻的结果。神经网络是一种复杂的大规模动力学系统,其动力学属性十分广泛。由于其在人工智能、信号处理、图像处理和全局优化等问题中的重要应用,近年来时滞神经网络的动力学问题引起了学术界的广泛关注。尤其是时滞神经网络平衡点和周期解的稳定性得到了深入的研究。复杂网络近年来成为科学和工程各个领域的研究热点。由于复杂网络在信号传输速度有限,节点间竞争和通道拥塞等情况下,必然存在时滞,这种现象在生物或物理网络中非常普遍。因此,带时滞的复杂网络系统吸引了越来越多研究者的关注。
     本论文主要致力于对几类时滞系统的全局稳定性、指数稳定性和同步状态稳定性分析,取得了一些较深刻的结果。本文的主要内容和创新之处可概述如下:
     ①时滞Hopfield神经网络的全局渐近稳定性分析
     在对时滞Hopfield神经网络模型进行“线性化”后,对模型进行变换,通过构造一个新颖的Lyapunov泛函,得到了时滞Hopfield神经网络平衡点全局渐近稳定的充分判定准则。我们的结果适用于典型的带时滞的Hopfield神经网络。
     ②时滞细胞神经网络的全局渐近稳定性分析
     通过一个恒等变形将所研究的时滞细胞神经网络系统转换为线性模型,然后利用Lyapunov稳定性定理和线性矩阵不等式方法建立新颖的与时滞有关的渐近稳定性判定准则。给出了数值例子来验证我们结果的可行性。
     ③带常时滞的BAM神经网络的稳定性分析
     首先对时滞BAM模型进行“线性化”,然后进行参数化模型变换,通过Lyapunov-Krasovskii泛函和线性矩阵不等式技术,建立了几个新颖的关于时滞BAM神经网络的与时滞无关和与时滞有关的渐近稳定性和指数稳定性判定准则。尤其是在激活函数的适当假设下将一般的时滞BAM神经网络转换为一类自治的线性系统。理论分析和数值模拟显示本文结果为时滞BAM神经网络提供了一些新的稳定性判定准则。
     ④带耦合时滞的复杂网络的同步分析
     首先将非线性的复杂网络系统变换为线性系统,通过构造适当的Lyapunov-Krasovskii泛函,结合线性矩阵不等式(LMI)技术,研究了这种时滞复杂网络的同步问题,得到一个与时滞相关的同步条件。数值模拟说明我们的结果是有效的。
In order to analyze and apply easily, the transmission delays are ignored in modeling for most systems. But it is known that time delay is unavoidable. At the same time, time delays may affect the stability of the system, and even lead to instability, oscillation or chaos phenomena. Recently, research of delayed systems have attracted a large number of researchers, and many profound results have been established. The neural network, as a large-scale complex system, exhibits the rich and colorful dynamical behaviors. Due to its important and potential applications in artificial intelligence, signal processing, image processing as well as optimizing problems and so on, the dynamical issues of delayed neural networks have attracted worldwide attention in recent years, and many interesting stability criteria for the equilibriums and periodic solutions of delayed neural networks have been derived. Recently, complex networks attract more and more attentions from various fields of science and engineering. Due to the finite speeds of transmission and spreading as well as traffic congestions, a signal or influence traveling through a complex network often is associated with time delays, which is very common in biological and physical networks. So, complex dynamical networks with delays have become a focal research topic in recent years, and are attracting more and more attention from many fields of scientific research.
     This dissertation focuses on the global exponential and synchronous stability for several delayed system. The main achievements and originality contained in this dissertation are as follows:
     ①Global asymptotic stability for Hopfield neural networks with delays
     After the“linearization”of the delayed Hopfield neural network model, the considered neural network model is transformed. By employing suitable Lyapunov functional, delay-dependent criteria to ensure global asymptotic stability of the equilibrium of the Hopfield neural networks are established. Our results are suitable to the general delayed Hopfield neural networks.
     ②Global asymptotic stability for cellular neural networks with delays
     The cellular neural networks are transformed into the linear models via some equivalent transformation. By constructing a novel Lyapunov functional, sufficient criteria for the existence of a unique equilibrium and global asymptotic stability of the cellular neural network are derived. A numerical simulation is also given to illustrate the validity of our result.
     ③Stability criteria for BAM neural networks with delays
     First, the delayed BAM neural network model is linearized, and then, the model is parameterized transformed. Some novel delay-dependent and delay-independent asymptotical stability and exponential stability criteria for delayed BAM neural networks are derived and an estimation of the exponential convergence rate is then established by constructing an appropriate Lyapunov functional and using the linear matrix inequality (LMI) approach. Particularly, the general delayed BAM neural networks have been shifted into a class of non-autonomic linear systems under the appropriate assumption on the activation functions. The theoretical analysis and numerical simulations show that our results give some new criteria for the stability of delayed BAM neural networks.
     ④Synchronization stability criterion for complex network with coupling delays
     Nonlinear complex network system is transformed to linear system. A new criterion for global synchronization stability for the complex networks with coupling delays has been derived using an approach combining the Lyapunov-Krasovskii functional with LMI techniques. It has been illustrated that the proposed result generalizes and improves those reported in the literature. A numerical simulation is also given to illustrate the validity of our result.
引文
[1] Warren S. McCulloch, Walter Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics, 1943, 5: 115-133.
    [2] D. O. Hebb. The Organization of Behaviour. New York: Wiley, 1949.
    [3] T. Kohonen. Self-organization and Associative Memory. Berlin: Springer-Verlag, 1984.
    [4] Bernard Widrow, David E. Rumelhart, Michael A. Lehr. Neural Networks: Application in Industry. Business and Science. Communication of the ACM, 1994, 37(3): 93-105.
    [5] S.Y. Kung, Jenq-Neng Hwang. Neural Networks for Intelligent Multimedia Processing. IEEE Signal Processing Magazine, 1997, 14(4): 44-45.
    [6] Patrick van der Smagt. Minimisation Methods for Training Feed-Forward Neural Networks. Neural Networks, 1994, 7(1): 1-11.
    [7] Alex Alexandridis, Haralambos Sarimveis, George Bafas. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Network, 2003, 16(7): 1003-1017.
    [8] S. Grossberg. Nonlinear Neural Networks: Principles. Mechanisms and Architectures. Neural Networks, 1998, 1(1): 47-61.
    [9] M. Prakash, M. N. Murty. Growing Subspace Pattern Recognition Method and Their NN Models. IEEE Transactions on Neural Networks, 1996, 8: 161-168.
    [10] Miroslaw Galicki, Lutz Leistritz, Ernst Bernhard Zwick, Herbert Witte. Improving Generalization Capabilities of Dynamic Neural Network. Neural Computation, 2004, 16: 1253-1282.
    [11] Masaharu Adachi, Kazuyuki Aihara. Associative Dynamics in a Chaotic Neural Network. Neural Networks, 1997, 10: 83-98.
    [12] Xiaofeng Liao, Juebang Yu. Qualitative Analysis of Bi-directional Associative Memory with Time Delay. International Journal of Circuits Theory and Applications, 1998, 26(4): 219-229.
    [13] Xiaofeng Liao, Guanrong Chen, Edgar N. Sanchez. LMI-based Approach for Asymptotically Stability Analysis of Delayed Neural Networks. IEEE Transactions on CAS-I, 2002, 49(7): 1033-1039.
    [14] Jinde Cao, Jun Wang, Xiaofeng Liao. Novel stability criteria for delayed cellular neural networks. International Journal of Neural Systems, 2003, 13(5): 367-375.
    [15] M. P. Joy. On the global convergence of a class of functional differential equations withapplications in neural network theory. Journal of Mathematical Analysis and Applications, 1999, 232(1): 61-81.
    [16] Jinde Cao, Jun Wang. Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Transactions on Circuits and Systems I, 2005, 52(2): 417-426.
    [17] Qiang Zhang, Xiaopeng Wei, Jin Xu. An improved result for complete stability of delayed cellular neural networks. Automatica, 2005, 41(2): 333-337.
    [18] Jiye Zhang, Xuesong Jin. Global stability analysis in delayed Hopfield neural network models. Neural Networks, 2000,13(7): 745-753.
    [19] Xiaofeng Liao, Kwok-Wo Wong, Chi-Sing Leung and Zhongfu Wu. Hopf bifurcation and chaos in a single delayed neuron equation with non-monotonic activation function. Chaos, Solitons & Fractals, 2001, 12(8): 1535-1547.
    [20] Chuandong Li, Xiaofeng Liao. Global robust asymptotical stability of multi-delayed interval neural networks: An LMI Approach. Physics Letters A, 2004, 328(3): 452-462.
    [21] Xiaofeng Liao, Kwok-wo Wong, Shizhong Yang. Convergence dynamics of hybrid bi-directional associative memory neural networks with distributed delays. Physics Letters A, 2003, 316 (12): 55-64.
    [22] Hongtao Lu. On stability of nonlinear continuous-time neural networks with delays. Neural Networks, 1999, 13(10): 1135-1143.
    [23] Teh-Lu Liao, Fong-Chin Wang. Global stability for cellular neural networks with time delay. IEEE Transactions on Neural Networks, 2000, 11(6): 1481-1484.
    [24] Xiaofeng Liao, Kwok-Wo Wong, Shizhong Yang. Stability analysis for delayed cellular neural networks based on linear matrix inequality approach. International Journal of Bifurcation and Chaos, 2004, 14(9): 3377-3384.
    [25] S. Arik, V. Tavsanoglu. On the global asymptotic stability of delayed cellular neural networks. IEEE Transactions on Circuits System I, 2002, 47(4): 571-574.
    [26] Jinde Cao. Global stability conditions for delayed CNNs. IEEE Transactions on CAS-I,2001, 48(11): 1330-1333.
    [27] Jinde Cao, Jun Wang. Global Asymptotic Stability of a General Class of Recurrent Neural Networks With Time-Varying Delays.IEEE Transactions on CAS-I, 2003, 50(1): 34-44.
    [28] R. Pastor-Storras, A. Vespignani. Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge, England, 2004.
    [29] D. J. Watts, S. H. Strogatz. Collective dynamics of small-world networks. Nature, 1998, 393(6684): 440-442.
    [30] P. Ersod, A. Renyi. On random graphs. Publications Mathematics, 1959, 6: 290-297.
    [31] P. Ersod, A. Renyi. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Science, 1960, 5: 17-61.
    [32] P. Ersod, A. Renyi. On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungary 1961, 12: 261-267.
    [33] 廖晓昕. 稳定性的理论、方法和应用. 华中理工大学出版社,1999.
    [34] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 1997, 78: 4193-4196.
    [35] A. Barsella, C. Lepers. Chaotic lag synchronization and pulse lasers coupled by saturable absorber. Optics Communications, 2002, 205: 397-403.
    [36] Gilles Renversez. Synchronization in two neurons: Results for model with time-delayed inhibition. Physica D, 1998, 114: 147-171.
    [37] X. Huang, J. Xu, W. Huang, F. Zhu. Error analysis for delay systems. ACTA Physica SINICA, 2001, 50 (12): 2296-2307.
    [38] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore. Lag synchronization in time-delayed systems. Physics Letters A, 2002, 292(6): 320-324.
    [39] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou. The synchronization of chaotic systems. Physics Reports, 2002, 366: 1-101.
    [40] R. Mainieri, J. Rehacek. Projective synchronization in three-dimensional chaotic systems. Physical Review Letters, 1999, 82: 3042-3045.
    [41] S. Arkady. Pikovsky, Michael G. Rosenblum, Grigory V. Osipov. Kurths, Jürgen. Phase synchronization of chaotic oscillators by external driving. Physica D, 1997, 104: 219-238.
    [42] H. U. Voss. Anticipating chaotic synchronization. Physical Review E, 2000, 61(5): 5115-5119.
    [43] S. Sivaprakasam, E. M. Shahverdiev, P. S. Spencer, K. A. Shore. Experimental Demonstration of Anticipating Synchronization in Chaotic Semiconductor Lasers with Optical Feedback. Physical Review Letters, 2001, 86, 15401-1-3.
    [44] L. O. Chua, L.Yang. Cellular Neural Networks: Theory and Applications. IEEE Transactions on Circuits System I, 1988, 35: 1257-1290.
    [45] S. Arik An Analysis of Global Asymptotic Stability of Delayed Cellular Neural Networks. IEEE Trans Neural Networks, 2002, 13: 1239-1242.
    [46] Xiaofeng Liao, Kwok-wo Wong, Juebang Yu. Novel stability conditions for cellular neural networks with time delay. International Journal of Bifurcation and Chaos, 2001, 11: 1853-1864.
    [47] Jinde Cao. Periodic Oscillation and Exponential Stability of Delayed CNNs. Physics LettersA, 2002: 157-163.
    [48] Chuandong Li, Xiaofeng Liao, K. Wong. Delay-dependent and delay-independent stability criteria for cellular neural networks with delays. International Journal of Bifurcation and Chaos, 2006(16): 3323-3340.
    [49] Xiaoxin Liao, Jun Wang. Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays. IEEE Transactions on Circuits and Systems I, 2003, 50(2): 268-274.
    [50] T. Roska, C. Wu, L. O. Chua. Stability of cellular neural networks with dominant nonlinear and delay-type template. IEEE Transactions on Circuits and Systems I, 1993, 40(4): 270-272.
    [51] S. Arik, V. Tavsanoglu. Equilibrium analysis of delayed CNNs. IEEE Transactions on Circuits System I, 1998, 45: 168-171.
    [52] Qiang Zhang, Runnian Ma, Chao Wang, Jin Xu. On the global stability of delayed neural networks. IEEE Transactions on Automatic Control, 2003, 48(5): 794-797.
    [53] S. Mohamad, K. Gopalsamy. Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Applied Mathematics and Computation, 2003, 135(1): 17-38.
    [54] Jinde Cao. A set of stability criteria for delayed cellular neural networks. IEEE Trans. Circuits System I, 2001, 48: 494-498.
    [55] Xiaofeng Liao, Zhongfu Wu, Juebang Yu. Stability analyses for cellular neural networks with continuous delay. Journal of Computational and Applied Mathematics, 2002, 143: 29-47.
    [56] Xue Mei Li, Li Hong Huang, Huiyan Zhu. Global stability of cellular neural networks with constant and variable delays. Nonlinear Analysis, 2003, 53(3-4): 319-333.
    [57] E. N. Sanchez, J. P. Perez. Input-to-state Stability Analysis for Dynamic Neural Networks. IEEE Transactions on Circuits Systems I, 1999, 46: 1395-1398.
    [58] Keqin Gu, Vladimir L. Kharitonov, Jie Chen. Stability of time-delay System. New York: Springer-Verlag, 2003.
    [59] Stephen Boyd, Laurent El Ghaoul, Eric Feron, Venkataramanan Balakrishnan. Linear Matrix Inequalities in Systems and Control Theory. Philadephia: SIAM, 1994.
    [60] D. Yue, S. Won. Delay-dependent Robust Stability of Stochastic Systems with Time Delay and Nonlinear Uncertainties. Electron Lett, 2001, 37: 992-993.
    [61] J. K. Hale, S. M. Verduyn Lunel. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993.
    [62] Yen-Hung Chen, Shu-Cherng Fang. Neurocomputing with Time Delay Analysis for SolvingConvex Quadratic Programming Problems. IEEE Transactions on Neural Networks, 2000, 11(1): 230-240.
    [63] P. Gahinet, A. Nemirovski, A. Laub, M. Chilali. LMI control toolbox user’s guide. Massachusetts: The Mathworks, 1995.
    [64] J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 1984, 81(10): 3088-3092.
    [65] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., 1982, 79(2): 2554-2558.
    [66] Aiping Chen, Jinde Cao, L. Huang. An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE Transactions on Circuits System I, 2002, 49(7): 1028-1032.
    [67] Xiaofeng Liao, Kwok-wo Wong, Zhongfu Wu, Guanrong Chen. Novel robust stability criteria for interval delayed Hopfield neural networks. IEEE Transactions on CAS-I, 2001, 48(11): 1355-1359.
    [68] Xiaofeng Liao, Juebang Yu. Robust stability for interval Hopfield neural networks with time delay. IEEE Transactions on Neural Networks, 1998, 9(5): 1042-1046.
    [69] Van Den Driessche P, X. Zou. Global attractivity in delayed Hopfield neural networks model. SIAM J Appl Math 1998, 58: 1878-1890.
    [70] Qiang Zhang, Xiaopeng Wei, Jin Xu. Delay-dependent global stability results for delayed Hopfield neural networks. Chaos Solitons Fractals, 2007, 34(2): 662-668.
    [71] Qiang Zhang, Xiaopeng Wei, Jin Xu. Delay-dependent global stability condition for delayed Hopfield neural network. Nonlinear Analysis: Real World Applications, 2007, 8(3): 997-1002.
    [72] K. Gopalsamy, X.Z. He. Stability in asymmetric Hopfield networks with transmission delays. Physica D, 1994, 76: 344-358.
    [73] Hong Qiao, Jigen Peng, Zong-Ben Xu. Nonlinear measures: a new approach to exponential stability analysis for Hopfield-type neural networks. IEEE Trans. Neural Networks, 2001, 12(2): 360-370.
    [74] S. Arik. Stability analysis of delayed neural networks. IEEE Transactions Circuits System I, 2000, 47: 1089-1092.
    [75] Zhi-Hong Guan, Guanrong Chen, Yi Qiu. On equilibria, stability, and instability of Hopfield neural networks. IEEE Transactions on Neural Networks, 2000,11: 534-540.
    [76] S. I. Niculescu. Delay Effects on Stability: A Robust Approach. Springer, Berlin, 2001.
    [77] Xiaofeng Liao, Jun Wang, Jinde Cao. Global and Robust Stability of Interval HopfieldNeural Networks with Time-varying Delays. International Journal of Neural Systems, 2003, 13(3): 171-182.
    [78] Keqin Gu. An integral inequality in the stability problem of time-delay system. Proceeding of 39th IEEE Control and Decision Conference, Sydney, Austria, 2000: 2805-2810.
    [79] K. Gopalsamy, Xue-zhong He. Stability in asymmetric Hopfield nets with transmission delays. Physical D, 1994, 76: 344-358.
    [80] Qiang Zhang, Xiaopeng Wei, Jin Xu. A new global stability result for delayed neural networks. Nonlinear Analysis: Real World Applications, 2007, 8(3): 1024-1028.
    [81] B. Kosko. Adaptive bi-directional associative memories. Applied Optimization, 1989, 26(23): 4947-4960.
    [82] B. Kosko. Unsupervised learning in noise. IEEE Transactions on Neural Networks, 1990, 1(1): 44-57.
    [83] B. Kosko. Unsupervised learning in noise. International Joint Conference on Neural Networks, 1989: 7-17.
    [84] D. Tank. Hopfield J. Simple ‘neural’ optimization networks: An A/D converter, signal decision circuit and a linear programming circuit. IEEE Transactions on Circuits System, 1986, 33(5): 533-541.
    [85] K. Gopalsamy, Xue-Zhong He. Delay-independent stability in bidirectional associative memory networks. IEEE Transactions on Neural Networks, 1994, 5(6): 998-1002.
    [86] Sabri Arika. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays. Physics Letters A, 2006, 351(1-2): 85-91.
    [87] Zhongfu Wu, Xiaofeng Liao. New Stability Conditions for BAM Neural Networks with Time Delays. The 2000 IEEE Asia-Pacific Conference on Circuits and Systems, 2000, 12: 323-326.
    [88] Jinde Cao. Global asymptotic stability of delayed bi-directional associative memory neural networks. Applied Mathematics Computational, 2003, 42(2-3): 333-339.
    [89] Xia Huang, Jinde Cao, De-Shuang Huang. LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks. Chaos, Solitons & Fractals, 2005, 24(3): 885-898.
    [90] Jiye Zhang, Yiren Yang. Global stability analysis of bidirectional associative memory neural networks with time delay. International Journal of Circuit Theory and Applications, 2001, 29(2): 185-196.
    [91] V. Sree Hari Rao, Bh. R. M. Phaneendra. Global dynamics of bidirectional associative memory neural networks involving transmission delays and dead zones. Neural Networks1999, 12(3): 455-465.
    [92] Ju H. Park. A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos, Solitons & Fractals 2006, 29(2): 446-453.
    [93] Chuandong Li, Xiaofeng Liao, Rong Zhang. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach. Chaos, Solitons & Fractals, 2005, 24(4): 1119-1134.
    [94] Sabri Arika, Vedat Tavsanoglu. Global asymptotic stability analysis of bidirectional associative memory neural networks with constant time delays. Neurocomputing, 2005, 68: 161-176.
    [95] Xiaofeng Liao, Guangyuan Liu, Juebang Yu. Neural Networks of bidirectional associative memory with axonal signal transmission delays. J. Electron, 1997, 19(4): 439-444.
    [96] C. Mathai, B. C. Upadhyaya. Performance analysis and application of the bi-directional associative memory to industrial spectral signatures. Proceedings of IJCNN, 1989, 1: 33-37.
    [97] I. Elsen, K. F. Kraiss, D. Krumbiegel. Pixel based 3D object recognition with bidirectional associative memories. International Conference on Neural Networks, 1997, 3(9-12): 1679-1684.
    [98] S. M. R. Hasan, Ng Kang Siong. A VLSI BAM neural network chip for pattern recognition application. Proceedings of IEEE International Conference on Neural Networks 1995, 1: 164-168.
    [99] K. Gopalsamy, X. Z. He. Stability in asymmetric BAM networks with transmission delays. Physica D, 1994, 76: 344-358.
    [100] P. Van den Driessche, X. Zou. Global attractivity in delayed BAM neural network model. SIAM J. Appl. Math. 1998, 58(6): 1878-1890.
    [101] Qiankun Song, Jinde Cao. Global exponential stability and existence of periodic-solutions in BAM networks with delays and reaction diffusion terms. Chaos, Solitons & Fractals, 2005, 23(2): 421-430.
    [102] Qiankun Song, Zhenjiang Zhao, Yongmin Li. Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms. Physics Letters A, 2005, 335(2-3): 213-225.
    [103] Sannay Mohamad. Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks. Physica D: Nonlinear Phenomena, 2001, 159(3-4): 233-251.
    [104] Weirui Zhao, HuanShui Zhang, Shulan Kong. An analysis of global exponential stability of bidirectional associative memory neural networks with constant time delays. Neurocomputing, 2007, 70 (7-9): 1382-1389.
    [105] Hongyong Zhao. Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays. Neurocomputing, 2006, 69(4-6): 424-448.
    [106] Hui Wang, Xiaofeng Liao, Chuandong Li. Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay. Chaos, Solitons & Fractals, 2007(33): 1028-1039.
    [107] Jinde Cao, Lin Wang. Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Transactions on Neural Networks 2002, 13(2): 457-463.
    [108] Jinde Cao, Meifang Dong. Exponential stability of delayed bidirectional associative memory networks. Applied Mathematics and Computation, 2003, 135(1): 105-112.
    [109] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton: Princeton University Press, 1999.
    [110] Mark Buchanan. Nexus: Small Worlds and the Ground Breaking Science of Networks. Norton, New York, 2002.
    [111] S. H. Strogatz. Exploring complex networks. Nature, 2001, 410(6825): 268-276.
    [112] Reka Albert, Albert-Laszlo Barabasi. Statistical mechanics of complex networks. Reviews Modern Physics, 2002, 74: 47-97.
    [113] Xiao Fan Wang, Guanrong Chen. Complex networks: small-world, scale-free and beyond, IEEE Circuits System Magazine, 2003, 3 (1): 6-20.
    [114] Jin Zhou, Tianping Chen. Synchronization in general complex delayed dynamical networks. IEEE Transactions Circuits System I, 2006, 53(3): 733-744.
    [115] Chunguang Li, Guanrong Chen. Synchronization in general complex dynamical networks with coupling delays. Physica A, 2004, 343: 263-278.
    [116] C. Li, W. G. Sun, J. Kurths. Synchronization of complex dynamical networks with time-delays. Physica A, 2006, 361(1): 24-34.
    [117] Qingyun Wang, Guanrong Chen, Qishao Lu, Fei Hao. Novel criteria of synchronization stability in complex networks with coupling delays. Physica A, 2007, 378(2): 527-536.
    [118] Weiwei Wang, Jinde Cao. Synchronization in an array of linearly coupled networks with time-varying delay. Physica A: Statistical Mechanics and its Applications, 2006, 366: 197-211.
    [119] K. Gopalsamy, Xue-zhong He. Delay-independent stability in bi-directional associative memory networks. IEEE Transactions on Neural Networks, 1994, 5: 998-1002.
    [120] V. Sree Hari Rao, Bh. R. M. Phaneendra. Global dynamics of bi-directional associative memory neural networks involving transmission delays and dead zones. Neural Networks, 1999, 12: 455-465.
    [121] Xiaofeng Liao, Juebang Yu, Guanrong Chen. Novel stability criteria for bi-directional associative memory neural networks with time delays. International Journal of Circuits Theory and Applications, 2002, 30: 519-546.
    [122] Xiaofeng Liao, Guanrong Chen, Edgar N. Sanchez. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks, 2002, 15: 855-866.
    [123] Xiaofeng Liao, Zhongfu Wu, Juebang Yu. Stability switches and bifurcation analysis of a neural network with continuously delay. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 1999, 29(6): 692-696.
    [124] Xiaofeng Liao, Kwok-wo Wong, Zhongfu Wu. Bifurcation analysis in a two-neuron system with distributed delays. Physica D, 2001, 149: 123-141.
    [125] Xiaofeng Liao, Kwok-wo Wong, Zhongfu Wu. Asymptotic stability criteria for a two-neuron network with different time delays. IEEE Transactions on Neural Networks, 2003, 14(1): 222-227.
    [126] Xiaofeng Liao, Shaowen Li, Guanrong Chen. Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural Networks, 2004, 17(4): 545-561.
    [127] Xiaofeng Liao, Kwok-wo Wong. Robust stability of interval bi-directional associative memory neural networks with time delays. IEEE Trans. Man and Cybernetics-B, 2004, 34(2): 1141-1154.
    [128] Hongyong Zhao. Global stability of bidirectional associative memory neural networks with distributed delays. Physics Letters A, 2002, 297(3-4): 182-190.
    [129] Hongyong Zhao, Li Sun, Guanglan Wang. Periodic oscillation of discrete-time bidirectional associative memory neural networks. Neurocomputing, 2007, 70(16-18): 2924-2930.
    [130] T. Roska, A. Zarandy, S. Zold, P. Foldesy, P. Szolgay, The computational infrastructure of analogic CNN computing I: The CNN-UM chip prototyping system. IEEE Transactions on Circuits System I, 1999, 46(2): 261-268.
    [131] Xiaofeng Liao, Kwok-wo Wong. Global exponential stability for a class of retarded functional differential equations with applications in neural networks. Journal of Mathematical Analysis and Applications, 2004, 293(1): 125-148.
    [132] Xiaofeng Liao, Chunguang Li, Kwok-wo Wong. Criteria for exponential stability of Cohen-Grossberg neural networks. Neural Networks, 2004, 17: 1401-1414.
    [133] Xiaofeng Liao, Chuandong Li. An LMI approach to asymptotical stability of multi-delayed neural networks, Phys. D, 2006, 200(1-2): 139-155.
    [134] Xiaofeng Liao, Kwok-wo Wong, Chunguang Li. Global exponential stability for a class of generalized neural networks with distributed delays. Nonlinear Analysis: Real WorldApplications, 2004, 5: 527-547.
    [135] Hongtao Lu, Guanrong Chen. Global exponential convergence of multitime-scale neural networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(11): 761-765.
    [136] Xiaofeng Liao, Guanrong Chen. Hopf bifurcation and chaos analysis of chen’s system with distributed delays. Chaos, Solitons & Fractals, 2006, 25(1): 11-23.
    [137] Fenghua Tu, Xiaofeng Liao. Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay. Chaos, Solitons & Fractal, 2005, 26(5): 1499-1505.
    [138] Chuandong Li, Xiaofeng Liao, Rong Zhang. New Algebraic Conditions for Global Exponential Stability of Delayed Recurrent Neural Networks.Neural computing, 2005, 64: 319-333.
    [139] Chuandong Li, Xiaofeng Liao, Yong Chen. On the robust stability of bidirectional associative memory neural networks with constant delays. Lecture Notes in Computer Science, 2004, 3173: 102-107.
    [140] Chuandong Li, Xiaofeng Liao, Rong Zhang. Delay-dependent exponential stability Analysis of BAM Neural Networks: an LMI approach. Chaos, Solitons & Fractals, 2005, 24(4): 1119-1134.
    [141] Zhong Zhang, Chuandong. Li, Xiaofeng Liao. Delay-dependent robust stability analysis for interval linear time-variant systems with delays and application to delayed neural networks, Neurocomputing, 2007, 70(16-18): 2980-2995.
    [142] A. L. Barabasl, R. Albert. Emergence of scaling in random networks. Science, 1999, 286: 509-512.
    [143] T. Roska, L. O. Chua. Cellular neural networks with nonlinear and delay-type template. Int. J Circuit Theory Appl, 1992, 20: 469-481.
    [144] C. W. Wu, L. O. Chua. Synchronization in an array of linearly coupled dynamical systems. IEEE Transactions on Circuits and Systems I, 1995, 42(8): 430-447.
    [145] M. E. J. Newman, D. J. Watts. Scaling and percolation in the small-world network model. Phys Rev E, 1999, 60: 7332-7342.
    [146] P. M. Gade, C. K. Hu. Synchronous chaos in coupled map lattices with small-world interactions. Phys. Rev. E, 2000, 62(5): 6409-6413.
    [147] Xiaofan Wang, Guanrong Chen. Synchronization in small-world dynamical networks. International Journal of Bifurcation and Chaos, 2002, 12(1): 187-192.
    [148] M. Barahona, L. M. Pecora. Synchronization in small-world systems. Physical Reviw Letters,2002, 89(5): 054101.
    [149] Pin-Qun Jiang, Bing-Hong Wang, Shou-Liang Bu, Qing-Hua Xia, Xiao-Shu Luo. Hyperchaotic Synchronization In Deterministic Small-World Dynamical Networks. International Journal of Modern Physics B, 2004, 18(17-19): 2674-2679.
    [150] X. F. Wang, and G. Chen, Synchronization in scale-free dynamical networks: Robustness and fragility, IEEE Trans. Circuits Syst. I., 2002, 49(1): 54-62.
    [151] M. Pecora Louis, L. Carroll Thomas. Synchronization in chaotic systems. Physical Review Letters, 1990, 64(8): 821-824.
    [152] H. Hong, M. Y. Choi, B. J. Kim. Synchronization on small-world networks. Physical Review E, 2002, 65: 026139.
    [153] J. LU, X. Yu, G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 2004, 334: 281-302.
    [154] Xiang Li, Guanrong Chen. Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint. IEEE Transactions on Circuits and Systems-I, 2003, 50(11): 1381-1390.
    [155] K. Kaneko. Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency. Physica D, 1989(1,2): 1-41.
    [156] C. Li, H. Xu, X. Liao, J. Yu, Synchronization in small world oscillator networks with coupling delays, Physica A, 2004, 335 (3-4): 359-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700